
Multimedia Systems 7: 119–128 (1999) Multimedia Systems
c© Springer-Verlag 1999

A feature-based algorithm for detecting
and classifying production effects
Ramin Zabih, Justin Miller, Kevin Mai

Computer Science Department, Cornell University, Ithaca, NY 14853, USA; e-mail:rdz@cs.cornell.edu

Abstract. We describe a new approach to the detection and
classification of production effects in video sequences. Our
method can detect and classify a variety of effects, including
cuts, fades, dissolves, wipes and captions, even in sequences
involving significant motion. We detect the appearance of
intensity edges that are distant from edges in the previous
frame. A global motion computation is used to handle cam-
era or object motion. The algorithm we propose withstands
JPEG and MPEG artifacts, even at high compression rates.
Experimental evidence demonstrates that our method can de-
tect and classify production effects that are difficult to detect
with previous approaches.

Key words: Content-based indexing and retrieval – Scene
break detection

1 Introduction

The amount of digital video that is available has increased
dramatically in the last few years, but the tools available
for browsing video remain quite primitive. Computer vision
techniques can support content-based browsing of image se-
quences. For example, we may be able to replace the “fast
forward” button on current video browsers with a button that
searches for the next dissolve. This will require algorithms
to automatically detect such events. This paper presents an
algorithm for detecting and classifying production effects
(including cuts, fades, dissolves, wipes and captions) in dig-
ital video sequences.

The most common production effects are scene breaks,
which mark the transition from one sequence of consecu-
tive images (or scene) to another. A cut is an instantaneous
transition from one scene to the next. A fade is a gradual
transition between a scene and a constant image (fade-out)
or between a constant image and a scene (fade-in). During a
fade, images have their intensities multiplied by some value
α. During a fade-in,α increases from 0 to 1, while during a
fade-outα decreases from 1 to 0. The speed with whichα
changes controls the fade rate. A dissolve is a gradual tran-
sition from one scene to another, in which the first scene

Correspondence to: R. Zabih

fades out and the second scene fades in. Typically, fade-out
and fade-in begin at the same time, and the fade rate is con-
stant. Another common scene break is a wipe, in which a
line moves across the screen, with the new scene appearing
behind the line.

The detection and classification of scene breaks is a first
step in the automatic annotation of digital video sequences.
The problem is also important for other applications, includ-
ing compression and automatic keyframing. Motion-based
compression algorithms like MPEG can obtain higher com-
pression rates without sacrificing quality when the locations
of scene breaks are known. Knowledge about scene breaks
can be used to look for higher level structures (such as a se-
quence of cuts between cameras), or to ensure that keyframes
come from different scenes.

We begin with a survey of related work on scene break
detection. These methods rely directly on intensity data, and
have difficulty with dissolves and with scenes involving mo-
tion. We then present our feature-based approach to the prob-
lem, which detects the appearance of new edges far from old
ones. We show that our methods robustly tolerate compres-
sion artifacts. We then present an empirical evaluation of our
method, on 50 randomly selected MPEG movies containing
scene breaks. We have found no cases where our method
fails but where intensity-based methods succeed. Finally, we
discuss some of the current limitations of our algorithm and
describe extensions which we hope will overcome them.

1.1 Existing algorithms for detecting scene breaks

Scene breaks are detected by computing and thresholding
a similarity measure between consecutive images. Existing
work has relied directly on intensity data, using such tech-
niques as image differencing and intensity histogramming.
Most approaches are based on intensity histograms, and con-
centrate on cuts [7, 8] These methods have difficulty with
“busy” scenes, in which intensities change substantially from
frame to frame. Such changes often result from camera or
object motion.

Cuts usually result in a dramatic change in image in-
tensities, so they can be detected much of the time. How-
ever, a dissolve is a gradual change of all the intensities,

120

and cannot be easily distinguished from motion. A dissolve
can even occur between two scenes each containing motion.
Thus, dissolves are more difficult to detect than cuts, espe-
cially if the scenes involve motion. Increasing the detection
threshold can reduce false positives due to motion, but at
the risk of missing gradual scene transitions.

Hampapur et al. [4] use an explicit model of the video
production process to detect a variety of scene breaks. While
their approach is intensity-based, it does not involve his-
togramming. Instead, they compute a chromatic image from
a pair of consecutive images. Its value at each pixel is the
change in intensity between the two images divided by the
intensity in the later image. Ideally, the chromatic image
should be uniform and non-zero during a fade.

The difficulties caused by motion and by dissolves are
well-known. For example, Hampapur et al. note in their
discussion of dissolves that their measure “is applicable if
the change due to the editing dominates the change due to
motion”[4, page 11], and describe both object and camera
motion as causes of false positives for their method. Another
recent paper [11] describes motion as a major limitation of
histogram-based methods. The only published comparative
analysis of scene break detection methods, due to Boreczky
and Rowe [1], concludes that existing methods “do a poor
job of identifying gradual transitions”.

Zhang et al. [11] have extended conventional histogram-
based approaches to handle dissolves and to deal with certain
camera motions. They use a dual threshold on the change
in the intensity histogram to detect dissolves. In addition,
they have a method for avoiding the false positives that re-
sult from certain classes of camera motion, such as pans and
zooms. They propose to detect such camera motion and sup-
press the output of their scene break measure during camera
motion.

Their method does not handle false positives that arise
from more complex camera motions or from object motion.
Nor does their method handle false negatives that occur in
dissolves between scenes involving motion. In Sect. 4, we
will provide an empirical comparison of our method with
histogram-based techniques and with chromatic scaling.

2 A feature-based approach

Our approach is based on a simple observation: during a
cut or a dissolve, new intensity edges appear far from the
locations of old edges. Similarly, old edges disappear far
from the location of new edges. We define an edge pixel that
appears far from an existing edge pixel as anenteringedge
pixel, and an edge pixel that disappears far from an existing
edge pixel as anexitingedge pixel. By counting the entering
and exiting edge pixels, we can detect and classify cuts,
fades and dissolves. By analyzing the spatial distribution of
entering and exiting edge pixels, we can detect and classify
wipes.

The algorithm we propose takes as input two consecutive
imagesI and I ′. We first perform an edge detection step,
resulting in two binary imagesE andE′. Let ρin denote the
fraction of edge pixels inE′ which are more than a fixed
distancer from the closest edge pixel inE. ρin measures the

Fig. 1. Results from the table tennis sequence

proportion of entering edge pixels. It should assume a high
value during a fade-in, or a cut, or at the end of a dissolve.1

Similarly, let ρout be the fraction of edge pixels inE
which are farther thanr away from the closest edge pixel
in E′. ρout measures the proportion of exiting edge pixels.
It should assume a high value during a fade-out, or a cut, or
at the beginning of a dissolve.

Our basic measure of dissimilarity is

ρ = max(ρin, ρout) . (1)

This represents the fraction of changed edges; this fraction
of the edges have entered or exited. Scene breaks can be
detected by looking for peaks inρ, which we term theedge
change fraction.

An example of the edge change fraction is shown in
Fig. 1. The sequence we have chosen is the widely known
“table tennis” sequence, which was used to benchmark
MPEG implementations. The original sequence contains a
fair amount of motion (including zooms), plus a few cuts. To
demonstrate our algorithm, we have spliced together several
parts of the sequence and inserted a few scene breaks. The
modified table tennis sequence contains a cut (taken from the
original sequence) between frames #9–#10. We have added
a dissolve in frames #25–#35, and then a fade-out starting
at frame #55. On this sequence,ρ shows clear peaks at the
scene breaks, and the detection and the classification algo-
rithm described in Sect. 3.1 performed correctly.

2.1 Motion compensation

Our method can be easily extended in order to handle mo-
tion. We can use any registration technique [2] to compute
a global motion between frames. We can then apply this
global motion to align the frames before detecting entering
or exiting edge pixels. For example, assume that the camera
is moving to the left, and so imageI ′ is shifted to the right
with respect to imageI. A registration algorithm will com-
pute the translation that best alignsI with I ′ (which in this

1 Due to the quantization of intensities, new edges will generally not
show up until the end of the dissolve.

121

example is a shift to the right). We can apply this translation
to I before computing the edge change fraction as shown
above.

There are a wide variety of registration algorithms re-
ported in the literature. The ones we have used involve
global similarity measures between images, and are based
on correlation. Note that we only search for a translational
motion between the two images. While it is possible to han-
dle affine or projective motions, they incur significant addi-
tional overhead, and do not necessarily result in better per-
formance. We can then warpI by the overall motion before
computingρin andρout.

We need a registration algorithm that is efficient, that
can withstand compression artifacts, and that is robust in
the presence of multiple motions. The last property is par-
ticularly important, since we will often be faced with an
image with multiple motions, and our registration algorithm
must compute the predominant motion.

We have explored two algorithms, both of which have
given satisfactory results. We have experimented with us-
ing census transform correlation, a non-parametric approach
developed in [10]. This algorithm operates by transforming
the image in an outlier-tolerant manner and then using cor-
relation. We have also used the Hausdorff distance [6], an
outlier-tolerant method described in Sect. 3.3 that operates
on edge-detected images.

It is tempting to exploit the motion vectors contained
in MPEG-compressed video in order to determine object or
camera motion. Indeed, a number of researchers [11] have
attempted to do this. There are a number of reasons that
we have not taken this approach. MPEG encoders optimize
for compression, and do not necessarily produce accurate
motion vectors. MPEG-compressed streams do not contain
motion vectors for all images; in fact, if the encoder chooses
to create only I-frames, there will be no motion vectors at
all.2

3 Computing the edge change fraction

Computing the values ofρ for a sequence of images is
straightforward. Letδx andδy be the translations necessary
to align the imagesI and I ′, as calculated by one of the
global motion compensation methods discussed in Sect. 2.1.
The first step in our algorithm is edge detection.

In our experiments, we have used an edge detector based
on Canny’s algorithm [3], which thresholds the magnitude of
the intensity gradient. Next, copies ofE andE′ are created
with each edge pixel dilated by a radiusr. Let us call these
dilated imagesĒ andĒ′. Thus, imageĒ is a copy ofE in
which each edge pixel ofE is replaced by a diamond whose
height and width are 2r+1 pixels in length.3 Similarly, image
Ē′ is a dilated copy ofE′.

Considerρout, the fraction of edge pixels inE which
are farther thanr away from an edge pixel inE′. A black

2 This is not as unusual a situation as one might imagine. About one
quarter of the MPEG sequences we have come across on the World-Wide
Web are compressed with only I-frames.

3 To use the Manhattan distance between edges, we dilate by a diamond.
If we were to use the Euclidean distance between edges, we would dilate
by a circle.

Fig. 2. Main steps of the computation of the edge change fraction

pixel E[x, y] is an exiting pixel whenĒ′[x, y] is not a black
pixel (since the black pixels in̄E′ are exactly those pixels
within distancer of an edge pixel inE′). The equation for
ρout is

ρout = 1 −
∑

x,y E[x + δx, y + δy]Ē′[x, y]
∑

x,y E[x, y]
, (2)

which is the fraction of edge pixels which are exiting.ρin

is calculated similarly

ρin = 1 −
∑

x,y Ē[x + δx, y + δy]E′[x, y]
∑

x,y E[x + δx, y + δy]
. (3)

The edge change fractionρ shown in Eq. 1 is the maximum
of these two values.

The major steps of the computation of the edge change
fraction are shown in Fig. 2. The example shows a cut be-
tween the two frames. Whileρ is being calculated, the lo-
cations of the exiting and entering pixels can be saved and
their spatial distribution analyzed when looking for wipes
and other spatial edits.

3.1 Peak detection and classification

We propose to detect scene breaks by looking for peaks
in the edge change fractionρ. We have designed a simple

122

Fig. 3. Values ofρin (shown as “x”) andρout (shown as “o”) in the table
tennis sequence

thresholding scheme for peak detection. We use anevent
thresholdand anevent horizon. A frame whereρ exceeds
the event threshold may be a scene break. To localize scene
breaks that occur over multiple frames, we restrict scene
breaks to occur only whenρ is a local maximum within
a fixed window of consecutive frames. The width of this
window is the event horizon.

3.1.1 Classification

Once a peak has been detected, the next problem is to clas-
sify it as a cut, dissolve, fade or wipe. Cuts are easy to
distinguish from other scene breaks, because a cut is the
only scene break that occurs entirely between two consec-
utive frames. As a consequence, a cut will lead to a single
isolated high value ofρ, while the other scene breaks will
lead to an interval whereρ’s value is elevated. This allows
us to classify cuts.

Fades and dissolves can be distinguished from each other
by looking at the relative values ofρin andρout in a local
region. During a fade-in,ρin will be much higher thanρout,
since there will be many entering edge pixels and few exiting
edge pixels. Similarly, at a fade-out,ρout will be higher than
ρin, since there will be many exiting edge pixels, but few
entering edge pixels. A dissolve, on the other hand, consists
of an overlapping fade-in and fade-out. During the first half
of the dissolve,ρin will be greater, but during the second
half ρout will be greater.

Figure 3 shows the values of bothρin and ρout during
the table tennis sequence. During the fade-out,ρout is much
higher thanρin. During the dissolve, there is an initial peak
in ρin followed by a peak inρout.

3.1.2 Wipes

Wipes are distinguished from dissolves and fades by look-
ing at the spatial distribution of entering and exiting edge
pixels. During a wipe, each frame will have a portion of the
old scene and a portion of the new scene. Between adjacent

Fig. 4. Results from an image sequence with two wipes and a dissolve

frames, a single strip of the image will change from the old
scene to the new scene. For a horizontal wipe there is a ver-
tical strip that passes either left-right or right-left, depending
on the direction of the wipe. Since the between-scene transi-
tion occurs in this strip, the number of edge pixels that either
enter or exit should be higher inside the strip and lower in
the other areas of the image. We will call an edge pixel that
is either entering or exiting achangingpixel.

When computing the edge change fraction, the location
of the changing edge pixels can be recorded and their spatial
distribution analyzed. There are many ways to analyze the
spatial distribution of changing pixels, but we have identi-
fied a simple scheme which has yielded good results. We
calculate the percentage of such pixels in the top half and
the left half of the images, and use this to classify vertical
and horizontal wipes. For a left-to-right horizontal wipe, the
majority of changing pixels will occur in the left half of the
images during the first half of the wipe, then in the right half
of the images during the rest of the wipe. Likewise, for a
top-to-bottom vertical wipe, the majority of changing pixels
will concentrate in the top half, and then in the bottom half.
The other two cases (right-to-left and bottom-to-top wipes)
can be handled similarly.

Our wipe detection method is aided by the ability of
our motion computation to follow the predominant motion.
This is particularly important during a wipe, since there can
be two rather different motions on the image at the same
time. Another aid in discriminating wipes from other scene
breaks is that there is no pattern in the values ofρin and
ρout as there was with dissolves and fades. Also, the relative
differences betweenρin and ρout will be small, since the
changing pixels only occur in a limited strip in the image.

Figure 4 shows the edge change fraction in operation on
an image sequence containing a left-to-right wipe, a right-to-
left wipe, and a dissolve. Figure 5 shows the proportion of
the change pixels that occupy the left half of the image (for
clarity, this data is only shown whenρ > 0.05). Note that,
during the left-to-right dissolve, this fraction drops rapidly
from 1 to 0, while during the right-to-left dissolve it rises
rapidly from 0 to 1. In addition, the pattern during the dis-
solve is essentially random, as would be expected.

123

Fig. 5. Spatial distribution of change pixels in an image sequence with
two wipes and a dissolve (shown only whereρ > .05). Note the random
distribution during the dissolve, as compared to the wipes

3.2 Detecting captions

We have extended our work to handle other production ef-
fects involving overlays. Many broadcast videos also provide
some kind of textual overlay. For example, news broadcasts
often begin a story by overlaying the location of the reporter.
Similarly, a number of movies and television shows overlay
the opening credits on top of a scene.

These textual overlays contain significantly more infor-
mation than scene breaks, but they share some similarities.
Textual overlays can suddenly appear and disappear (like a
cut), or gradually fade-in and fade-out (like a dissolve). The
pixels in the textual overlay should show up as incoming
pixels when they appear, and as outgoing pixels when they
disappear.

Examples are shown in Fig. 6. In this sequence, two title
captions are overlayed on a “busy” sequence of a waterfall.
The first caption is present from the start of the sequence, and
then disappears. The second caption appears later. In each
case, the caption appears instantaneously (in other words,
like a cut rather than like a dissolve). There are significant
edges in the background, which causes some degradation in
the output. However, the captions clearly show up in the
incoming edges. Figure 6 displays, for each caption, the
two consecutive images where the caption appears (left se-
quence) or disappears (right sequence). The figure also show
the incoming (left) and outgoing (right) edge pixels.

3.3 The Hausdorff distance

The edge change fraction is related to the Hausdorff dis-
tance, which has been used to search for the best match for
a model in an image. This distance which has been used for
such tasks as recognition and tracking [6]. The Hausdorff
distance, which originates in point set topology, is a metric
for comparing point sets.

The Hausdorff distance from the point setA to the point
setB is defined as

h(A, B) = max
a∈A

min
b∈B

‖a − b‖ . (4)

Fig. 6. Examples of caption localization

Now consider the Hausdorff distance between the edge-
detected imagesE and E′. If h(E′, E) ≤ r, then every
edge pixel inE′ is within r of the closest edge pixel inE,
there are no entering edge pixels, and soρin = 0. Similarly,
if h(E, E′) ≤ r, then there are no exiting edge pixels and
ρout = 0.

Most applications of the Hausdorff distance use a gen-
eralization called the partial Hausdorff distance, which is

hK(A, B) = Kth
a∈A min

b∈B
‖a − b‖ . (5)

This selects theKth ranked distance from a point inA to
its closest point inB. If we select the largest such distance,
we have the original Hausdorff distance defined in Eq. (4).

Applications which use the partial Hausdorff distance for
matching [5] can provide a fixed fractionK/|A|, which is
equal to 1− ρ. This specifies what fraction of the points
in A should be close to their nearest neighbor inB at the
best match. Alternatively, a fixed distance can be supplied,
and the fraction of points inA within this distance of their
nearest neighbor inB can be minimized. We are using a
similar measure as the basis for algorithms to detect scene
breaks, which is a very different task than matching.

3.4 Algorithm parameters

Our algorithm has several parameters that control its perfor-
mance. These parameters include:

– the edge detector’s smoothing widthσ and thresholdτ ,
– the expansion distancer,

We have gotten good performance from a single set of pa-
rameters across all the image sequences we have tested.
These parameters areσ = 1.2 and τ = 24, for the edge

124

Fig. 7a–c.Results from varying parameters on the table tennis sequence.
a σ = 1, τ = 32, r = 3; b σ = 1, τ = 32, r = 6; c σ = 1.8, τ = 12, r = 6

detector, andr = 6. Except where otherwise noted, these
were the parameters used to generate the data shown in this
paper.

The best choice of parameters, of course, depends upon
the image sequence. For example,r should have a very small
value for an image sequence with minimal motion, but would
have to be large to handle significant independent motion.

Fig. 8. Table tennis sequence results at 0.18 bits/pixel. Note the significant
compression artifacts.

However, we have found empirically that our algorithm’s
performance is fairly tolerant of different parameter settings.
As a demonstration, we have run the table tennis sequence
with a variety of different parameters. Figure 7 shows our
results with several different values ofσ, τ andr.

It is, of course, important that the edge detector param-
eters are set to obtain a reasonable number of edges. This
suggests dynamically thresholding the gradient magnitude,
an extension we will discuss in Sect. 5. Ifr is very small,
the algorithm will also perform badly; small shifts in edges
(due to noise, non-rigid motion, zooming or compression ar-
tifacts) will cause our detector to register false positives. As
r gets larger, the value ofρ when there is no scene break
decreases, but so does the value during a scene break.

3.5 Compression tolerance

Most video will undergo some form of compression during
its existence, and most compression methods are lossy. It is
therefore important that our algorithm degrade gracefully in
the presence of compression-induced artifacts. While edge
detection is affected by lossy compression, especially at high
compression ratios, we do not rely on the precise location of
edge pixels. We only wish to know if another edge pixel is
within r of an edge. As a consequence, the precise location
of edge pixels can be changed by image compression with-
out seriously degrading our algorithm’s performance. The
experimental evidence we present in the next section comes
from images that were compressed with the lossy MPEG
compression scheme.

To demonstrate the compression tolerance of our ap-
proach, we have taken an uncompressed image sequence,
added a few scene breaks, and compressed it with a va-
riety of different compression ratios. We have used JPEG
compression to benchmark the compression tolerance of our
algorithm, because it introduces similar artifacts to MPEG,
but is more standardized. (Note that this is only for the data
shown in Fig. 8 – the data shown in Sect. 4 came from
MPEG-compressed images.)

Figure 8 shows the results from the table tennis sequence
when JPEG-compressed to 0.18 bits per pixel (with a quality
factor of 3). Our algorithm performed correctly, even though

125

Fig. 9. Table tennis sequence with 4:1 subsampling

the compression artifacts make the sequence almost unview-
able. Figure 8 also shows frame #20 at this compression rate.

3.6 Subsampling

Our algorithm also performs well when the input images
are subsampled to reduced resolution. Figure 9 shows our
algorithm’s performance on the table tennis sequence when
subjected to 4:1 horizontal and vertical subsampling. Note
that the output shown in Fig. 9 is only a little worse than the
output that results without subsampling. However, the size
of the images is reduced by a factor of 16. Depending on
how the registration algorithm is implemented, the speedup
can be even greater.

4 Experimental results

We have tested our algorithm on a number of image se-
quences, containing various scene breaks. To provide a com-
parison, we have also implemented two other intensity-based
measures used to detect scene breaks. The first measure is
the intensity histogram difference, which is used with slight
variations in most work on scene breaks [7, 8, 11]. The sec-
ond measure is the chromatic scaling method of Hampapur
et al. [4], a recent method for classifying scene breaks.

There are a number of ways to use intensity histograms.
Let N denote the number of histogram buckets (which is
typically a power of 2 no greater than 256), and letHt

denote the intensity histogram of thet’th frame. The sum of
the histogram differences

N−1∑

i=0

|Ht[i] − Ht+1[i]| (6)

is one frequently used measure. Another common measure
[7] is the χ2 value

N−1∑

i=0

(Ht[i] − Ht+1[i])2

Ht+1[i]
. (7)

We implemented a variant of Eq. (6) used by Zhang et al.
For each of the three color channels, we used the two most
significant bits, for a total ofN = 64 bins in the histogram.

4.1 Sources of data

The image sequences used for testing are MPEG movies.
We obtained a number of MPEG-encoded movies from
http://www.acm.uiuc.edu/rml/Mpeg/ , which in-
clude segments from a number of different sources including
music videos, television advertisements, documentaries, and
NASA recordings. We selected a number of MPEG movies
which contained scene breaks. The running time for our
method on these images was around two frames per sec-
ond, on a single-processor 50-MHz SuperSparc.

In addition, we created some additional MPEG movies.
Because the MPEG movies we obtained from the network
did not contain enough scene breaks to generate significant
data, we spliced together scenes from existing MPEG movies
and inserted a variety of scene breaks. These spliced movies
have several advantages: they show many different scene
breaks at known locations, but the video itself was shot and
compressed by third parties. Finally, we created one movie,
calledandy , from video which we shot. We inserted several
scene breaks during the editing process, and then compressed
it using the Berkeley MPEG encoder.

The data we used is highly compressed. The following
table summarizes the compression parameters of several of
the image sequences we used.

Sequence Bits per pixel Dimensions
clapton 0.91 160× 120
spacewalk 0.82 160× 120
andy 0.35 160× 112

All these sequences are color, so the compression ratios
(from 24-bit color images) range from 26:1 to 69:1. These
high compression ratios probably result from using videos
available on the World-Wide Web, which places a premium
on compression to minimize bandwidth and storage costs.
However, this makes our data set representative of the kind
of video that is widely available today.

All of the test sequences shown use the parameter values
mentioned above. The chromatic scaling method and the his-
togram difference, which we show for comparison, involve
no parameters. All of these methods are intended to produce
distinctive peaks at cuts and dissolves.

4.2 Comparative results on difficult sequences

The image sequences we have collected fall into three
classes. Several image sequences had easy scene breaks,
which could be detected by all the methods we tried. For
example, there may only be cuts, or there may be mini-
mal motion. Another class of image sequences caused errors
for conventional intensity-based methods, but were handled
correctly by our feature-based method. Examples include se-
quences with motion, and especially ones with both motion
and dissolves. Finally, certain image sequences yielded in-
correct answers, no matter what method we used. Examples

126

include commercials with very rapid changes in lighting and
with fast-moving objects passing right in front of the camera.

In our discussion, we will concentrate on sequences
where some algorithm had difficulty detecting the scene
breaks. On the 50 MPEG movies we examined, we did
not find an example where our method failed but where
intensity-based methods worked.

4.2.1 The Clapton sequence

One MPEG video that we obtained is part of an Eric Clapton
music video. It is an interesting sequence because it contains
two dissolves, as well as a moving object (the singer). It has
been used to benchmark other algorithms (e.g., [4]). Fig-
ure 10 shows the performance of several measures on this
sequence. The edge change fraction detects and classifies
both dissolves correctly. The image from each dissolve with
the highest value ofρ is shown in Fig. 13 (these are the
images that are at the center of the two dissolves according
to our detection method described in Sect. 3.1).

The intensity histogram difference, shown in Fig. 10b, is
a noisier measure on this sequence. It does show a rise during
the first dissolve, and it is possible that the dual threshold
scheme of [11] would detect this (depending on the exact
thresholds used). However, the second dissolve appears to be
indistinguishable from the noise. Their method for handling
motion would not help here, since the problem is a false-
negative rather than a false-positive.

The chromatic scaling feature of [4] is shown in Fig. 10c.
As the authors state, their method has difficulty with dis-
solves involving motion.

From these results it is not clear whether the histogram-
ming method would find the first dissolve. Depending on
how the data is thresholded, either the second cut would be
missed or a false cut would be detected at frames #137–
#138. These two frames are shown in Fig. 14.

4.2.2 The Andy sequence

Another sequence that caused some difficulty is theandy
MPEG. The sequence involves camera and object motion,
as well as zooms. It was the most highly compressed MPEG
movie that we examined and consists of five scenes separated
by three cuts and one dissolve. Frames #1–#50 consist of a
stationary scene with the camera panning from right to left.
The sequence then cuts to a scene in frames #51–#99 dur-
ing which the camera zooms in on a stationary background.
There is another cut to a scene in frames #100–#133 con-
sisting of a zoom out from a stationary background. The
camera stops zooming and continues on the same station-
ary background for frames #133–#170 and camera remains
still on the stationary background. Following the third cut,
the sequence contains a scene with a moving person walk-
ing from left to right with the camera panning to the right
to follow the individual during frames #171–#230. Frames
#231–#240 consist of a dissolve between this scene and an-
other in which the camera pans to the right with a stationary
background.

Figure 11 presents the results of our method and the
intensity histogram difference. The image from the dissolve

Fig. 10a–c.Results from the Clapton sequence.a Edge change fraction;
b intensity histogram difference;c chromatic scaling feature

with the highest value ofρ (frame #235) is shown in Fig. 12.
While we have run the chromatic scaling method onandy , it
does not produce good results because the sequence includes
so much motion.

127

Fig. 11a,b.Results from theandy sequence.a Edge change fraction;b in-
tensity histogram difference

Fig. 12. Image fromandy sequence detected as dissolve by our method

4.3 Availability

Code for running the algorithm is available via FTP from
the hostftp.cs.cornell.edu in the directory/pub/
dissolve . The code and the image sequences we used
can be found starting from the first author’s home page on
www.cs.cornell.edu/home/rdz .

Fig. 13. Images fromclapton sequence detected as dissolves by our
method

5 Limitations and extensions

Our algorithm’s failures involve false negatives, and result
from two limitations in our current method. First, the edge
detection method does not handle rapid changes in over-
all scene brightness, or scenes which are very dark or very
bright. Second, our motion compensation technique does not
handle multiple rapidly moving objects particularly well.

The edge detection used in our algorithm has a few lim-
itations at present. For example, rapid changes in overall
scene brightness can cause a false positive. Since a thresh-
olded gradient-based edge detector is dependent on the rela-
tive contrast of regions in the image, large-scale scalings in
image brightness will disturb the edge density of the scene.
This effect sometimes occurs in scenes due to camera auto-
gain.

Scene break detectors based on intensity histogramming
will also generate false positives when the overall scene
brightness changes dramatically. Although the intensities
change dramatically, the underlying edge structure of the im-
age does not change. A more robust edge detection scheme
may enable us to handle these events.

Another improvement, also discussed in [11], involves
handling multiple moving objects. Theclapton sequence
contains some motion, while theandy sequence contains
significant motion (both camera and object motion). As the
above data shows, our algorithm handles these sequences
well. However, the algorithm’s handling of multiple moving
objects could probably be improved by compensating for
multiple motions.

A number of algorithms have been proposed for this
problem in the computer vision literature. When there are
two distinct motions in the scene, our motion compensation

128

Fig. 14. Consecutive images fromandy sequence with large intensity his-
togram difference

will track one of them. Edges that undergo the other motion
will show up as entering or exiting pixels, assuming that
the two motions are sufficiently distinct. We may be able
to use these changing pixels to identify objects undergoing
a different motion. A solution to this problem would allow
users to search a video for the next entrance of an additional
moving object.

Another interesting extension involves combining our
feature-based algorithm with an intensity-based approach.
For example, a conservative intensity-based scheme might
be designed which can reliably determine that there are no
scene breaks in some portion of a video. Our algorithm might
be invoked when the intensity-based scheme indicates a po-
tential scene break. Such a hybrid scheme could be much
faster than our method, especially if the intensity-based com-
ponent operated directly on compressed data.

Since the methods we use are fundamentally non-linear,
it seems unlikely that we will be able to operate directly on
compressed data streams without decompressing. However,
our scheme is reasonably fast, and can be optimized further.
Our method also appears to give good results on reduced-
resolution imagery, as shown in Fig. 9. Finally, much of the
overhead of MPEG decompression is due to dithering (for
example [9] states that dithering consumed 60–80% of the
time in their MPEG decoder). Since our approach only uses
intensity information, this phase of MPEG decompression
can be bypassed.

Conclusions

We have described a new approach to detecting and classi-
fying scene breaks. Our methods robustly tolerate motion,
as well as compression artifacts. We are incorporating our
algorithm into a browser for MPEG videos which allows the
user to search for scene breaks. In the future, we hope to be
able to add higher level search capabilities to this browser.

Acknowledgements.This research has been supported by DARPA under
contract DAAL01-97-K-0104, monitored by ONR. We are grateful to the
anonymous reviewers, and to Dan Huttenlocher and Brian Smith, for sug-
gestions that improved the presentation of this material.

References

1. Boreczky JS, Rowe LA (1996) A comparison of video shot bound-
ary detection techniques. J Electronic Imaging 5(2):122–128. Also
appears in SPIE Proceedings number 2670

2. Brown L (1992) A survey of image registration techniques. ACM
Comput Surv 24(4):325–376

3. Canny J (1986) A computational approach to edge detection. IEEE
Trans Pattern Anal Mach Intell 8(6):679–698

4. Hampapur A, Jain R, Weymouth T (1995) Production model based
digital video segmentation. J Multimedia Tools Appl 1:1–38

5. Huttenlocher D, Jaquith E (1995) Computing visual correspondence:
Incorporating the probability of a false match. In: 5th International
Conference on Computer Vision, pp 515–522

6. Huttenlocher D, Klanderman G, Rucklidge W (1993) Comparing im-
ages using the Hausdorff distance. IEEE Trans Pattern Anal Mach
Intell 15(9):850–863

7. Nagasaka A, Tanaka Y (1991) Automatic video indexing and full-
video search for object appearances. In: 2nd Working Conference on
Visual Database Systems

8. Otsuji K, Tonomura Y (1994) Projection-detecting filter for video cut
detection. Multimedia Systems 1:205–210

9. Rowe LA, Patel K, Smith BC (1993) Performance of a software
MPEG video decoder. In: ACM Multimedia Conference

10. Zabih R, Woodfill J (1994) Non-parametric local transforms for com-
puting visual correspondence. In: 3rd European Conference on Com-
puter Vision, pp 151–158

11. Zhang HJ, Kankanhalli A, Smoliar SW (1993) Automatic partitioning
of full-motion video. Multimedia Systems 1:10–28

Ramin Zabih is an assistant professor of Computer Science at Cornell
University. He received undergraduate degrees in Computer Science and
Mathematics, and a master’s degree in Computer Science, from MIT. His
PhD was awarded by Stanford in 1994. His research interests are in com-
puter vision and its applications. He has served on the program committees
of conferences in both multimedia and computer vision.

Justin Miller received his BS and MEng degrees in computer science
from Cornell University in 1995 and 1996, respectively. He is currently
serving as a nuclear submarine officer in the US Navy. His research interests
include image feature extraction, motion analysis, user interface design and
fast feature-based search algorithms for image databases.

Kevin Mai received a B.S. in computer science from Cornell in 1995,
and an M. Eng in 1996. He is currently out in the workforce.

