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Abstract—Consistency management, the ability to detect, diagnose and handle inconsistencies, is crucial during the development

process in Model-driven Engineering (MDE). As the popularity and application scenarios of MDE expanded, a variety of different

techniques were proposed to address these tasks in specific contexts. Of the various stages of consistency management, this work

focuses on inconsistency handling in MDE, particularly in model repair techniques. This paper proposes a feature-based classification

system for model repair techniques, based on an systematic literature review of the area. We expect this work to assist developers and

researchers from different disciplines in comparing their work under a unifying framework, and aid MDE practitioners in selecting

suitable model repair approaches.

Index Terms—Model-driven Engineering, Consistency Management, Inconsistency Handling, Model Repair.

✦

1 INTRODUCTION

MODEL-DRIVEN Engineering (MDE) is a family of de-
velopment processes that focus on models as the

primary development artifact. As models are modified by
different stakeholders, in a possibly distributed and het-
erogeneous context, the consistency of the overall MDE
environment must be constantly monitored and managed.
Therefore, consistency management [1], [2] – which involves
various activities concerned with the detection, diagnosis,
handling and tracking of inconsistencies – is essential to
MDE. Such activities are not only fundamental to man-
age intra- and inter-model consistency as models naturally
evolve, but also in more specific activities, like meta-model
and constraint evolution [3], model refactoring [4], variabil-
ity modeling [5] or version merging [6].

1.1 Model Repair

Inconsistencies may arise due to mistakes or imprudent
decisions as the developers apply changes to the models, but
their impact may not be immediately perceptible, especially
considering the complexity of the MDE development envi-
ronment. Inconsistencies may also reflect conflicting or al-
ternative interpretations of the requirements, or uncertainty
and partial knowledge [7]. Thus, development frameworks
should not forbid the introduction of inconsistencies alto-
gether, but instead tolerate them, while still providing sup-
port for their detection [8]. Notwithstanding, as the devel-
opment progresses and conflicting interpretations converge,
so are the models expected to evolve to a consistent version,
and thus inconsistencies must eventually be handled [2].
To be manageable, these tasks must be supported by auto-
mated techniques that help the user decide how to restore
the consistency of the environment. A common solution,
addressed in this study, is to rely on techniques that propose
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update actions that repair the models themselves, in order to
ameliorate the consistency level of the MDE environment.

One of the main challenges in model repair is that for
any given set of inconsistencies, there (possibly) exists an
overwhelming number of updates that resolve them. Yet,
since the selection of the most suitable repair update is
ultimately a choice of the developer, approaches to model
repair must balance the level of automation of the process
with the need for user guidance in the generation of the
alternative solutions. Some authors [9] advocate the use of
heuristics to tackle the presence of a large search space, the
need for algorithms with a low computational complexity,
and the absence of known optimal solutions. Others [10]
advocate against fully automatic approaches that replace the
role of the human designer in repairing models. According
to the latter, repairing models should be an activity that goes
hand in hand with the creative process of modeling.

1.2 Need for a Unifying Taxonomy

The variety of contexts in which consistency management
is necessary gave rise to an equally disparate terminology.
As a clear example, techniques addressing seemingly in-
terchangeable problems identify themselves varyingly as
handling [11], resolving [12], fixing [13] or repairing [14]
inconsistencies, among others. Moreover, to render these
tasks more manageable, a variety of techniques have been
developed that assume a more controlled environment with
more concrete goals, including change propagation [15],
model synchronization [16], bidirectional model transfor-
mation [17], [18], incremental model transformation [19] or
model finding [20], each with particular terminology. Thus,
there is the need for a unifying taxonomy that allows prac-
titioners to properly compare their work with that arising
from different disciplines. To be rigorous and exhaustive,
such classification scheme must necessarily emerge from a
systematic review of the literature relevant to the model
repair problem [21].

Yet, to the best of our knowledge, the most rigorous
study to date on consistency management, including incon-
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sistency handling, is still the survey by Spanoudakis and
Zisman [2], which, based on previous definitions from [1]
and [22], surveyed and analyzed existing approaches at the
time. A more recent classification of model repair techniques
is presented in [23], addressing the flexibility, usability and
extensibility of the approaches. However not every facet of
the model repair problem is addressed, like the behavior of
the repair procedure or the different mechanisms through
which the user can control it. Moreover, its development
was not based on a systematic review of the state-of-the-art.

Classification schemes have been proposed for related
areas like model transformation [24], model synchroniza-
tion [16] and bidirectional transformation [25]. While some
facets of model repair overlap with facets from those disci-
plines, there are various topics that are specific to the former
and that are not addressed by those studies.

1.3 Goals and Contributions

Motivated by the heterogeneity of approaches to model
repair, this paper explores this landscape and proposes
a structured taxonomy for their classification, based on a
systematic literature review of the area.

We adopt the term of model repair as the focus of the
study because we feel that it best defines the topic which
we aim to address: techniques that handle inconsistency
by acting upon software models. Here we assume a broad
definition of model, encompassing any artifact that abstracts
certain portions of a software system. This excludes from the
study the detection of the inconsistencies and their causes,
techniques that avoid the introduction of inconsistencies
by enforcing consistent states, and techniques that handle
inconsistencies by updating artifacts other than the models
(e.g., the meta-models and associated constraints).

Following other successful classification schemes of
MDE techniques (e.g., [24] for model transformation), we
present our classification alternatives as feature models [26],
diagrams developed with the goal of modeling alternative
configurations in software product lines. This allows the
presentation of the identified characteristics in a structured
and formal way, rendering their dependencies explicit.

This unifying taxonomy is the main contribution of this
paper, which will allow researchers and tool developers
to properly locate novel approaches in the context of the
state-of-the-art of the area. As a secondary contribution we
provide the exhaustive classification of the studies collected
during the literature review under this taxonomy [27]. We
expect that this will aid researchers in identifying gaps in the
field by detecting under-explored features or feature com-
binations representing potentially interesting approaches.
Lastly, we present a detailed classification and comparison
of three modern approaches to model repair to demonstrate
the impact of the feature selection. Hopefully this will pro-
vide software engineering practitioners with some insight
when choosing a model repair approach for their particular
application domain.

This remainder of paper is structured as follows. Sec-
tion 2 starts by presenting and formalizing the model repair
problem, in order to clarify the artifacts that are to be
classified by the taxonomy. Section 3 presents the resulting
feature-based taxonomy under which model repair tech-
niques can be classified, as well as an overview of the
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Fig. 1. Simplified meta-model for class and sequence diagrams.

methodology employed to select the primary studies and
extract from them the selected features. This methodology is
further detailed in the Appendix. This taxonomy is used in
Section 4 to classify and compare three modern techniques.
Lastly, Section 5 draws conclusions and final remarks.

2 MODEL REPAIR

This section presents and formalizes the problem of model
repair, the target of this study. The scheme allows us to
concretely identify the artifacts that are to be classified by
each facet of the taxonomy.

2.1 Overview

To provide an overview of the model repair problem and
illustrate the vastness of features that model repair tech-
niques may implement, this section introduces a couple
of examples, inspired by state-of-the-art approaches to the
problem [9], [10], [28].

While many approaches to model repair are designed
to focus on particular classes of models (e.g., UML dia-
grams [29]), most modern approaches are meta-model in-
dependent: they allow the designers to restrict the model
domain space on which they act, improving their versatility.
This is achieved by defining well-formedness rules using
meta-modeling languages provided by popular modeling
frameworks like OMG’s Model-driven Architecture (MDA) or
the Eclipse Modeling Framework (EMF). Fig. 1 depicts one
such meta-model, for designing very simplified versions of
class and sequence diagrams.

Although meta-models define which model instances are
considered well-formed, there are a number of structural
and behavioral properties that cannot be captured by meta-
models alone. Thus, they are usually annotated with ad-
ditional intra- and inter-model constraints that restrict the
internal structure of individual model instances and their re-
lationship with others, respectively. Ideally, the user should
be allowed to define such constraints, typically using the
well-established MDA’s OCL [30] or other similar constraint
language. One such constraint over class diagrams is that
class generalization links must be acyclic. In OCL, this can
be defined as follows for the meta-model depicted in Fig. 1:

context Class acyclic_generalization:

not self.closure(general)->includes(self)
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(a) Initial model instance.

wait() : void

 

Process

connect() : void

 

Streamer

(b) Updated model instance.

Fig. 2. Inconsistency in a class diagram.

Consider, as an example, the class diagram from Fig. 2a
conforming to the meta-model from Fig. 1, depicting a
tentative first version of the structure of a video on de-
mand (VOD) system (inspired by [9]), consistent under the
acyclic_generalization constraint. Then, assume that
at some point one of the developers, maybe oblivious of the
whole inheritance tree or maybe disagreeing with previous
design decisions, updated that model instance to the version
depicted in Fig. 2b, by introducing a new generalization
link (colored red), giving rise to a violation that breaks
acyclic_generalization. Since user updates can ev-
idence conflicting interpretations of the requirements, in-
consistencies should not be forbidden but rather detected,
diagnosed and handled when deemed necessary.

There are a variety of updates that can be applied to
the model instances to handle inconsistencies and amelio-
rate the consistency level of the environment. However,
the alternatives generated by the model repair procedures
are necessarily restricted by design choices that render the
problem manageable. Should a single repair alternative be
generated, even if the rational behind the choice is not clear
to the user, or should the enumeration be exhaustive at
the risk of overwhelming the user? Should the procedure
attempt to infer all required information to repair the model
instance or generate abstract plans that must be instantiated
by the user? The process is also dependent on the amount of
information available. Should the modeling tools work in an
online setting and record the user actions that lead to viola-
tions, allowing more accurate repair alternatives? Moreover,
the ability of the tool to consider domain-specific informa-
tion provides additional complexity. Should the procedure
be able to handle constraints specified by the stakeholders?
Should the supported repair actions be defined by the
stakeholders? Finally, all these design choices must also take
into consideration the ability of the user to customize the
procedure so that the generated alternatives prove useful.
Should this be achieved by asking the user to provide repair
hints or simply assigning priorities to different constraints
or parts of the model? Should user input be collected at
static time or should the repair procedure be interactive?

The problem becomes more complex when various con-
straints interfere with each other, which is the frequently
the case. Consider the coexistence of class and sequence
diagrams, supported by the meta-model depicted in Fig. 1.
Besides internal consistency of the diagrams, consistency
between them must also be maintained because some data
contained in the two diagrams overlaps: messages refer to
operations that must be available in the target lifeline’s class.
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(a) Initial model instances.
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(b) Updated model instances.

Fig. 3. Inconsistency between the diagrams.

Since we have assumed that both kinds of diagrams share
the same meta-model (much like UML diagrams), this kind
of properties can still be defined as regular OCL constraints.
This one in particular would take the shape:

context Message message_operation:

self.target.class.operations->

exists(o | o.name = self.name)

These constraints must coexist with those over the indi-
vidual diagrams. For instance, another constraint that must
hold in class diagrams is that the operations defined within
a class must have unique names:

context Class unique_operations:

self.operations->

forall(x,y | x.name = y.name => x = y)

The class and sequence diagrams from Fig. 3a are consis-
tent under the constraints that have been defined. However,
if the two user updates depicted in Fig. 3b were simultane-
ously applied to these model instances – the introduction of
a new operation and a new message (both colored red) – vio-
lations would be introduced for both message_operation
and unique_operations.

When attempting to remove the violation of the
message_operation constraint, the developer should be
aware of the impact that each of the acceptable repair
updates has on the other constraints. Fig. 4 depicts sev-
eral possible repair updates that can be applied to the
class diagram or to the sequence diagram that remove the
message_operation violation. However, some of these
repair updates have (possibly undesirable) side effects: the
update applied in Fig. 4a also solves the violation caused by
the unique_operations – a positive side effect – while
the one applied in Fig. 4c introduces a new violation by
breaking acyclic_generalization – a negative side ef-
fect. Either way, it is important that the user is aware of these
side effects when choosing the fix to be applied, and thus
model repair procedures should somehow consider all con-
straints when generating the repair updates. In this example
it is also manifest that the number of valid repair updates
can quickly become too large for the user to handle. Thus, a
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variety of techniques have been proposed that try to balance
the automation provided by the repair procedures and the
user input required to reduce the number of generated
repair updates. This input includes, for instance, requiring
the definition of repair hints for each specified constraint,
assigning different priorities to those constraints or parts of
the model, or even disabling some edit operations.

As techniques were developed to handle more com-
plex application domains, more specialized mechanisms
to manage their consistency emerged. Such is the case of
techniques designed to manage the consistency of mod-
els spread across heterogeneous modeling frameworks. A
classical example of such scenario is the object-relational
mapping, concerned with keeping class diagrams consistent
with relational database schemas, so that data conforming
to the former can be persisted in databases conforming to
the latter. In such cases, unlike the UML sequence and class
diagrams of the previous example, overlapping information
can not be directly detected, and thus dedicated mecha-
nisms to define inter-model consistency are required, like
defining traceability links or consistency relations, as advocated
in MDA’s QVT Relations [31]. Dedicated to manage inter-
model consistency, such techniques often disregard intra-
model constraints altogether.

It is easy to envision the complexity of model repair pro-
cedures over a considerable number of model instances and
inter-related constraints, giving rise to multiple violations
and an overwhelming number of acceptable repair updates.
The goal of this paper is to interpret the myriad of solutions
that have been proposed to address this kind of problems
under a unifying framework.

2.2 Formalization

In order to properly classify model repair techniques, one
must first formally define the artifacts from the MDE en-
vironment that are relevant in that context. In particular,
the shape and characteristics of these artifacts has a direct
impact on which functionalities a model repair framework
may possess, as well as the functional properties of the
comprising procedures. This section presents such scheme.

We assume that a meta-model M defines a set of well-
formed model instances m ∈ M , which the model repair
technique may allow the user to define through a meta-
modeling language. The domain space of a model repair
approach is defined by k meta-models M1, ...,Mk. In that
sense, each state of the MDE environment is comprised by
k model instances m1, . . . ,mk that conform to M1, ...,Mk,
a fact denoted by (m1, . . . ,mk) ∈ M1 × · · · × Mk. In
practice, this product of meta-models can be seen as a single
composed meta-model M , to which the tuple (m1, . . . ,mk)
(usually abbreviated as m) conforms. The shape and proper-
ties of M in a model repair approach essentially determine
the design space on which both the user and the repair
procedures may act.

Although M defines the structural consistency of model
instances, semantic properties must be enforced by addi-
tional constraints defined over the meta-models. Depending
on the technique, these may take different shapes and varied
expressiveness (e.g., intra- vs. inter-model constraints). We
denote the universe of constraints supported by a model

repair technique by C. Only a subset of model instances
from M is considered consistent under a constraint c ∈ C;
for the other model instances there is at least a violation
to c. There is usually a set of constraints {c1, . . . , cl} ⊆ C
specified in the MDE environment, which may or not have
been defined by the user, which are abbreviated as c. The
notion of inconsistency considered in this study is imposed
by these constraints (as opposed to inconsistency rising due
to uncertainty or partial knowledge, for example). This is
not necessarily a limitation since formalization imposes no
restriction over the expressiveness of these constraints. The
shape of constraints C determines the kind of properties that
the framework will be able to handle, while the support to
specify them affects the user’s ability to customize it.

Prior to being handled, inconsistencies must be detected
and diagnosed. Since inconsistencies are introduced by the
different stakeholders as the models evolve, information
regarding the performed user updates may help the checking
and repair procedures execute quicker and produce more
accurate results. In the simplest case they amount to the
model instances resulting from the user update, but they
may also contain additional information, like the edit ac-
tions applied by the user. We denote the universe of user
updates supported by each approach by U . In general, each
user update u ∈ U contains at least information about
the updated post-state model instances m

′ ∈ M , which
can be retrieved by post(u). For instance, in frameworks
that record the user’s edit actions, user updates may be
represented by a pair (m, s), where m is the state of the
environment prior to the update and s denotes the applied
edit actions. In such cases, the post-state model instances
are retrieved by applying s to m, i.e., post(m, s) = s(m).
If available, we denote the operation that retrieves the state
of the environment prior to a user update u by pre(u) ∈ M .
The information contained in U directly affects the accuracy
and predictability of the repair procedures.

Given a user update, a consistency checking procedure will
test whether the resulting model instances are consistent for
a provided set of constraints. The information reported by
these procedures may be as simple as a boolean value, or
more structured information, like a set of detected viola-
tions. We denote the universe of these reports by I , which is
instantiated by each approach. Such checking reports can be
compared for their “inconsistency level”, e.g., when some
violations are handled, the environment becomes “more
consistent” but may still not be “fully consistent”. Following
the approach proposed by Stevens [32], we assume these
inconsistency levels to form a partially ordered set (I,⊑).
In general, but not necessarily, this partially ordered set has
a least element denoting the highest level of consistency for
the environment, which will be denoted by ⊥I .

Definition 1 (consistency checking). A consistency checking
procedure CHECK : PC → U → I calculates the inconsis-
tency level i ∈ I for an update u ∈ U under constraints
c ⊆ C, which is denoted by i = CHECKc u.

The features of the CHECK procedure and the information
contained in the detected I levels, not only affect the
user’s ability to understand and control the behavior of
the framework, but also define the information available to
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Fig. 4. Possible repair updates for the inconsistency between the diagrams.

the subsequent repair procedure when generating possible
repair updates.

Model repair procedures are deployed when the stake-
holders wish to decrease the level of inconsistency of the
environment. Again, the generated repair updates may con-
tain varied information, from simple model instances to a
set of edit operations. The universe of repair updates of each
model repair approach is denoted by R. The information
contained in the repair updates R is not necessarily the
same as the user updates U , e.g., approaches may consider
only the post-state of user updates but still propose edit
sequences as repair updates. It is however assumed that
from a repair update r ∈ R and a user update u ∈ U that
led to the current model instances, an update u′ ∈ U can be
derived that applies r to u (otherwise, the consistency check-
ing procedure could not be executed after the application of
repair updates). For instance, if u is simply represented by
the post-state of the environment after a user update, and r

is a set of edit operations, the updated u′ can be retrieved
by applying the r operations to the u update. We denote
this operation by r(u) ∈ U . As expected, if U contains the
pre-state of the environment, then pre(r(u)) = post(u).

The repair procedure may return a set of alternative
repair updates. Moreover, it may access the checking pro-
cedure, and retrieve the inconsistency levels I of the model
instances. This allows the repair procedure, for instance, to
access the set of detected violations, if the CHECK procedure
supports such reports.

Definition 2 (model repair). A model repair procedure
REPAIR : PC → U → PR calculates repair updates r ∈ R
for a user update u ∈ U under constraints c ⊆ C, which
is denoted by r ∈ REPAIRc u.

The behavior of the REPAIR procedure is fundamental to
define the overall characteristics of the repair framework,
while the shape of the produced repair updates R affects its
flexibility and effectiveness.

The generated repair updates do not necessarily recover
full consistency, although they are expected to ameliorate
the inconsistency level of the environment. The relation
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Fig. 5. Generic scheme for model repair.

between the checking and repair procedures, as well as the
properties and enumeration of the generated repair updates,
are dependent on the concrete model repair approach, and
are key feature to define the functionalities of the frame-
work.

Fig. 5 presents an overview of our generic scheme for
model repair. User updates u are applied to an existing
model instance m0, consisting of a tuple of model instances,
from which the modified model instance m is obtained, and
to which the checking procedure assigns an inconsistency
level i. Given a user update u, and with access to the
checking procedure, the repair procedure generates a set of
possible repair updates r, which, when applied to u, result
in an update u′ from which the repaired model instances
m

′ can be obtained, and whose inconsistency level i′ is
expected to be at least the same as the one of u. (The pre

operations are grayed out because the updates may not store
that information.)

3 FEATURE-BASED TAXONOMY

This section presents the identified classification features
for model repair approaches, that instantiate the abstract
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Fig. 6. Protocol development process (adapted from [34]).

artifacts defined in Section 2.2, the mechanisms available to
the user to customize them, and the behavior of the checking
and repair procedures, as well as an overview of the of the
methodology employed to collect the primary studies and
extract the structured taxonomy.

3.1 Methodology

Our research methodology is inspired by guidelines pro-
posed for systematic literature reviews in software engineer-
ing, which aim to identify, evaluate and interpret all avail-
able research relevant to a particular topic area, or phe-
nomenon of interest [21]. One of the objectives of such
review is to provide a classification framework that allows
researchers to appropriately position new research activi-
ties [21], which is the goal of our study. Nonetheless, since
we do not exactly aim to to establish the state of evidence
of the area, but rather to identify the features of existing
approaches, our methodology shares characteristics with
systematic mapping studies [33] as well.

Systematic reviews rely on a predefined review protocol
for the selection of the primary studies (the review itself
being a secondary study), that should ensure rigor and com-
pleteness of the process, as well as enable repeatability. Our
protocol, depicted in Fig. 6, was inspired by previous sys-
tematic reviews on other topics of software engineering [34],
[35] and is detailed in the Appendix.

Briefly, we started the process by defining the research
questions that guide this study. Then we defined the search
strategy employed to select the primary studies, backed
by pivot searches that helped identify relevant search key-
words and venues. We then specified the selection criteria
used to obtain the definitive list of primary studies consid-
ered in our study and defined how the relevant data would
be extracted from these studies, also backed up by pilot
data extractions. Finally, we defined the procedure through
which this data would be effectively synthesized into the
structured taxonomy and presented in the shape of feature
models, the main contribution of this work. The last two
steps followed guidelines for thematic synthesis in software
engineering [36]. The classification of the primary studies
under the resulting features is publicly available [27].

The formalization of the model repair problem in Sec-
tion 2 identified several artifacts whose features characterize
each particular approach. The research questions aim pre-

cisely to explore alternative instantiations to these artifacts
in the existing literature.

RQ1 What are the domain spaces on which ap-
proaches act, and how is the user able to cus-
tomize them?

RQ2 What kind of constraints are supported by the
approaches, and how are they specified?

RQ3 What kind of information regarding the user
updates is expected from the approaches?

RQ4 What is the role of the checking procedure in the
overall process, and what kind of information is
reported?

RQ5 What is the overall behavior of the repair pro-
cedure, and what is the shape of the generated
repair updates?

RQ5.1 How can the user affect the behavior of the
approaches and how are the alternative repair
updates reported?

RQ5.2 What kind of semantic properties are guaran-
teed by the approaches?

Concretely, RQ1 refers to the specification of domain
space M , RQ2 to the universe of constraints C and RQ3
to the universe of user updates U . RQ4 addresses how the
checking procedure CHECK relates with the repair proce-
dure and the shape of the reports I . RQ5 refers to behavior
of the repair procedure REPAIR and the universe of repair
updates R. Due to the importance of this procedure, we
detail two further questions, regarding the interaction of the
user with the repair procedure (RQ5.1) and the semantic
properties guaranteed by the procedures (RQ5.2).

The resulting taxonomy for model repair approaches
is organized under these 5 main branches, arising from
the research questions and addressing different artifacts.
We opted to present the resulting taxonomy as feature
models. These are typically represented diagrammatically,
following the notation from Table 1. A child feature may
only be selected by an approach if its parent is also selected.
Children features may either be mandatory (if the parent
feature is selected, so must be the child), optional (if the
parent feature is selected, the child may or not be selected)
or arranged in or groups (if the parent is selected, at least one
feature of the group must be selected) or xor groups (if the
parent feature is selected, exactly one feature of the group
must be selected). Every feature model has a root feature
that is always present in every configuration, and may
contain reference features which simply point to other feature
models. Finally, feature models may also be annotated with
requires and excludes constraints that allow the enforcement
of cross-tree dependencies.

The top-level feature model is depicted in Fig. 7, with
Repair Technique as its root, and a mandatory child feature for
every main classification facet, referencing a separate and
detailed feature model, which are explored in the succeed-
ing sections. This division is purely for aesthetic purposes,
and the various trees could be composed into a single one
by connecting the reference features with the roots of the
matching diagrams.
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F

Mandatory feature Or group

F

Optional feature Xor group

F

Root feature F1 ⇒ F2 Requires constraint

F ➤

Reference feature F1 ⇒ ¬F2 Excludes constraint

TABLE 1
Feature model definition.

Repair 
Technique

Domain ➤ Constraint ➤ Repair ➤Update ➤ Check ➤

Fig. 7. Model repair features.

3.2 Domain

These features address the model domain space M of the
technique, i.e., which model instances the technique is able
to handle, as well as whether the user is able to customize
such space (RQ1). The alternatives are explored below and
depicted in the diagram from Fig. 8, referenced from the
main diagram from Fig. 7.

3.2.1 Formalism

Apart from early human-centered approaches, that do not
propose automated systems to manage consistency and
consider informally defined artifacts, procedures CHECK

and REPAIR are designed to handle model instances m from
M represented using particular formalisms. The detected
formalisms include logical representations in some abstract
formal specification language [7], [9], [11], [37], [38], [39],
[40], [41], [42], [43], tree-like data structures [44], [45], [46],
[47], [48], object-oriented specifications [10], [13], [14], [15],
[49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59],
support for relational data structures [20], [28], [60], [61] or
graphs [12], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71],
[72], [73], [74], [75], [76], [77], [78], [79]. These features are
organized in a xor-group since our study showed that the
selection of the formalism is exclusive.

The chosen formalism is tightly connected with the kind
of properties that the technique is able to check. For instance,
reachability properties are more easily handled in relational
or graph data structures. However, the reason behind the
choice of formalism tends to be ability to use previously
developed techniques in the model repair approach. This
is patent in the fact that most techniques based on graph
formalism are built over Triple Graph Grammars (TGG) [80]
techniques, or that those based on logical formalisms rely
on well-defined search procedures to deploy the repair
procedure.

Note that, although related, this feature is not directly re-
stricted by the technical space on which model instances are

designed (Section 3.2.3), which can be internally converted
to the underlying formalism by the modeling framework.
For instance, techniques acting upon the MDA technical
space embed UML models into relational or graph struc-
tures. Nonetheless, formalisms not closely related to the
technical space may be loose relevant information regarding
the application domain, which may be preserved by those
over an object-oriented formalism, for instance.

3.2.2 Meta-model Independent

Model repair approaches may aim to be independent of the
application domain. Such meta-model independent techniques
may optionally provide the users with mechanisms to define
the well-formedness rules of the model instances [7], [9],
[10], [14], [20], [28], [37], [38], [39], [41], [44], [48], [51],
[54], [55], [56], [57], [58], [59], [60], [63], [64], [65], [66],
[67], [68], [69], [70], [71], [72], [73], [74], [75], [76], [77],
[78], i.e., the domain space M . This task may be delegated
to different agents of the MDE process. For instance, in
the ViewPoints framework [81] there are two well-defined
roles: the designer of the viewpoint, that defines the meta-
model, the constraints and the repair plans, and the owner
of the viewpoint, that manages the view according to the
designer’s rules.

Meta-model independent techniques are more customiz-
able and have wider applicability than those whose meta-
model is fixed. Techniques with fixed meta-models are
designed to act on specific domains, like those proposed
to manage the consistency of specific UML diagrams. While
with more limited applicability, knowing the shape of the
model instances a priori may allow the technique to have im-
proved effectiveness and efficiency. Moreover, meta-model
independent techniques are necessarily more laborious to
the user, as not only must the meta-model be defined, but
also any constraint that is to be checked over the models,
since there cannot be hard-coded constraints for undefined
meta-models (Section 3.3.1).

3.2.3 Technical Space

This feature defines the technical space in which the user is
expected to specify the various artifacts of the MDE devel-
opment environment. These may be built around standard
languages/architectures like XML [45], [47], MDA [12], [15],
[40], [43], [52], [53], [55], [58], [61], [69], [73], [74], [79] or
EMF [12], [15], [40], [43], [52], [53], [55], [58], [61], [69], [73],
[74], [79], or other specific to the proposed technique [7], [9],
[10], [11], [13], [20], [38], [39], [44], [46], [48], [49], [50], [51],
[56], [59], [60], [62], [64], [66], [67], [68], [70], [71], [72], [75],
[76], [77], [78], [82]. The analyzed studies show that this is
an exclusive group of features.

The selection technical space defines the concrete model
syntax that the technique is able to process, like XML,
XMI, UML, or a technique-specific language. These concrete
model instances are translated by the technique into their
representation in the underlying formalism (Section 3.2.1).
For meta-model independent techniques, this feature also
specifies the meta-modeling language through which the
user should specify the meta-models. Under MDA, these are
expected to follow the MOF [83] standard, and those under
EMF, Ecore1. Again, techniques may not support standard

1. http://eclipse.org/modeling/emf/

http://eclipse.org/modeling/emf/


0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620145, IEEE

Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 8

Formalism

Domain

Meta-model 
Independent

Bounded

Logical Relational
Object-
oriented

GraphTree-like Pairwise
Controlled 

Update

Multi-model

XML EMFMDA Other

Technical 
Space

Fig. 8. Domain features.

meta-modeling languages, and require the user to define
them through technique-specific mechanisms. If the user is
allowed to define or customize constraints (Section 3.3.1),
this feature defines the language in which he is able to do so.
Typically this amounts to some version of MDA’s OCL, that
is also used in EMF, or it can be designed specifically for the
technique. In techniques with support for inter-model con-
straints (Section 3.3.2), standard languages include MDA’s
QVT [31].

The use of standardized technical spaces is essential if
the model repair technique is to be integrated into the reg-
ular MDE development process. Techniques using specific
languages are usually prototype tools that rely on a manual
translation of the model instances.

3.2.4 Bounded

Techniques may assume a bounded universe of model ele-
ments, so that the repair procedure can be more manageable
[13], [20], [28], [39], [42], [60], [61]2. Such is the case of
techniques that do not allow the creation of new elements,
and thus are inherently bounded by the elements present in
the current inconsistent state.

Some techniques impose a bounded universe in order
to avoid handling possible negative side effects that may
arise when of new elements are created. As an alternative,
many repair techniques opt to create instead abstract ele-
ments, that are to be instantiated by the user a posteriori
(Section 3.6.2). In others, the bounded universe is imposed
by the underlying procedure, like those relying on bounded
solvers. This process can however be opaque to the user, by
iteratively introducing new model elements in the universe
as the process executes.

3.2.5 Multi-model

Model repair techniques may optionally be designed with
particular concerns regarding inter-model consistency and
provide dedicated support for multi-model scenarios [7], [11],
[14], [28], [37], [38], [43], [44], [47], [48], [49], [50], [51], [52],
[53], [54], [55], [56], [57], [59], [60], [63], [64], [65], [66], [67],
[68], [69], [71], [72], [73], [74], [75], [76], [77], [78], [82]. In
such cases, each state m ∈ M is comprised by a tuple of
model instances (m1, . . . ,mk). Such is the case of techniques
that were developed to manage consistency in development
environments with multiple views, for model synchroniza-
tion and bidirectional and multidirectional transformations.

2. Note that the domain being classified is effectively the search space
available to the repair procedure.

In contrast, techniques may be defined to manage the inter-
nal consistency of a single model, in which case a state m

consists of a single model instance m.

Multi-model approaches focus on handling inter-model
constraints (Section 3.3.2), which usually take different
shapes than those used for intra-model consistency (Sec-
tion 3.3.3). As a consequence, such approaches often dis-
regard the internal consistency of the individual model
instances, possibly leading to overall inconsistent states.
Multi-model techniques may impose restrictions on the
supported user updates (controlled update, below). More-
over, the model instances affected by the generated repair
updates may also be restricted or customizable by the user
(Section 3.7.2). Bidirectional transformations are a typical ex-
ample of such techniques, where user updates are restricted
to a source model instance, and the generated repair updates
restricted to a target model instance.

Techniques without dedicated multi-model support may
still handle coexisting models by merging the various model
instances (and associated meta-models) into a “dummy”
model conforming to a single meta-model, and express-
ing their seemingly inter-model constraints as that meta-
model’s intra-model constraints (Section 3.3.2). Specifying
inter-model consistency as an internal constraint may how-
ever prove to be more cumbersome. This is common in
techniques that manage the consistency between different
UML diagrams, since they share the same meta-model, as
in the example from Section 2.1. In our taxonomy, such
domain spaces are not considered multi-model (nor their
constraints inter-model). Techniques without native support
for multi-model domain spaces may simulate the controlled
repair updates provided by multi-model techniques through
distinguished constraints (Section 3.3.1) – by temporarily
introducing a constraint that restricts the state of one of the
model instances – or by assigning higher weights to certain
model instances (Section 3.7.2) – promoting updates over
the other model instances – if these features are supported.

Since multi-model techniques are quite common, we
identified two additional optional features that such tech-
niques may employ.

Controlled Update: Approaches with support for mul-
tiple models may optionally force the user to update the
model instances in a controlled manner, typically only al-
lowing updates over a single model instance so that the
update propagation to the others is more easily managed
[38], [49], [54], [55], [57], [60], [63], [65], [66], [72], [73], [76],
[77], [78]. This is common in bidirectional transformation
or incremental transformation techniques, where the repair
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updates are themselves focused on a single model: allowing
concurrent updates could lead to conflicts that could not be
resolved. Such techniques are less suitable for distributed
and heterogeneous MDE development environments, since
the different stakeholders are expected to update the various
model instances concurrently.

Pairwise: Multi-model techniques may optionally fo-
cus on pairwise consistency management, since managing
the consistency between only two model instances is more
manageable [28], [38], [44], [48], [49], [51], [54], [55], [56],
[57], [59], [63], [64], [65], [66], [68], [69], [71], [72], [73], [75],
[76], [77], [78]. Such is the case of bidirectional transforma-
tion techniques or those built over TGGs. Pairwise consis-
tency management is sometimes employed in environments
with multiple models by only addressing the consistency
between pairs of model instances at a time, in order to sim-
plify the problem. Although this renders the problem more
manageable, not every constraint between multiple models
can be decomposed into a set of binary constraints [60].

3.3 Constraint

These features address the expressiveness imposed by the
constraint universe C and how the constraints c are drawn
from C in the modeling framework (RQ2), the former en-
tailing the class of problems that may be addressed by
the technique and the latter its general applicability. These
design choices are explored below and depicted in Fig. 9,
which is referenced from the main diagram from Fig. 7.
For techniques with decoupled checking procedures (Sec-
tion 3.5.1), these features are assumed to regard those of the
associated checker, if identified by the authors.

3.3.1 Specification

Similar to the meta-model (Section 3.2.2), techniques may
either have the set of constraints c hard-coded [11], [12], [13],
[40], [42], [43], [46], [47], [49], [50], [52], [53], [61], [62], [82]
or provide the user with mechanisms to define or customize
them [7], [9], [10], [14], [15], [20], [28], [37], [38], [39], [41],
[44], [45], [48], [51], [54], [55], [56], [57], [58], [59], [60], [63],
[64], [65], [66], [68], [70], [71], [72], [73], [74], [75], [76], [77],
[78], [79]. Techniques may even provide a set of predefined
constraints but allow the user to extend them or restrict
them. As a consequence, we identify these two features as
an or-group, since their selection is not exclusive. Likewise
the meta-model, many modeling frameworks delegate such
tasks to a repair administrator, rendering the process opaque
to the software designer.

Techniques that do not allow the user to define the
constraints have limited applicability since they cannot be
easily adapted to different application domains. There are
typically paired with fixed meta-model techniques, where
both the meta-model and the constraints are fixed a priori
(techniques for managing consistency of UML diagrams
being the classical example). Nonetheless, techniques with
fixed meta-model may still allow the user to define the
constraints. Meta-model independent techniques, however,
may not have hard-coded constraints (as imposed by the
excludes clause in the diagram).

Our study also identified two additional optional fea-
tures that may be enforced by the model repair techniques in

order to ease the generation of repair updates, as presented
below.

Repair Hints: The model repair procedure may op-
tionally expect each constraint to be accompanied with repair
hints on how to generate the repair updates when violations
to that constraint are detected [7], [11], [12], [14], [43], [44],
[46], [47], [53], [54], [57], [58], [65], [67], [72], [73], [79]. This
contrasts with techniques where the repair procedures auto-
matically derive the repair updates from the constraints. The
extreme case occurs in rule-based approaches (Section 3.6.1)
where the repair procedure expects effective resolution rules
for the violations.

The definition of repair hints is often a laborious and
error-prone activity that does not provide totality or cor-
rectness guarantees, since the user may not be aware of
the possible side effects of the defined hints. Nonetheless,
it is also the most direct mechanism through which the
user may control the behavior of the repair procedure, one
that is tightly coupled with the definition of the constraint.
Repair hints do not necessarily reduce the enumeration of
repair updates to a single alternative (Section 3.7.1), since
the technique may allow multiple repair hints to be defined
for each constraint.

Distinguished: Techniques may optionally support the
definition of distinguished constraints that instruct the repair
procedure to focus them in detriment of the remainder
constraints of the environment [7], [9], [10], [11], [12], [13],
[14], [15], [28], [39], [41], [43], [44], [45], [46], [47], [50], [52],
[53], [54], [56], [58], [62], [65], [67], [69], [70], [75], [79], [82].
As an example, some techniques allow the user to focus
on intra-model constraints and instruct the repair proce-
dure to temporarily disregard the inter-model constraints.
Distinguished constraints usually give rise to composite
inconsistency reports (Section 3.5.3), independently check-
ing the distinguished constraint holds and the remainder
constraints of the environment.

We purposely identify this feature as distinct from the
prioritization of constraints (Section 3.7.2). Granted, the two
features are somehow related, and constraint prioritization
could, to a degree, simulate the behavior of distinguished
constraints. However, even with different priorities the re-
pair procedure could still consider every constraint and
their interaction. In contrast, distinguished constraints are
effectively treated differently, and the procedure may, for
instance, focus on certain constraints while discarding the
others, or consider them for side effects only. This is par-
ticularly patent in the violation selection feature presented
below. Incremental techniques (Section 3.6.1), which rely on
information from the previous executions, may not be able
to support this kind of constraints.

The most common occurrence of distinguished con-
straints arises in techniques that allow the user to select a
specific violation to be handled [7], [10], [11], [12], [13], [14],
[39], [41], [43], [44], [45], [46], [47], [50], [52], [53], [54], [56],
[62], [65], [67], [69], [70], [75], [79], [82]. Violation selection
is only available in techniques whose checking procedure
reports at least the set of detected violations (Section 3.5.3),
as made explicit in the diagram. In such cases, the composite
report typically assesses whether the selected violation was
effectively removed, and the impact of that repair update
on the other constraints of the environment. Since typical
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Fig. 9. Constraint features.

constraint languages like OCL do not allow the specifica-
tion of constraints at the model level, violation selection is
performed through mechanisms internal to the technique.

This kind of approaches may be more scalable than those
attempting to handle all inconsistencies at once by follow-
ing a spirit of toleration. Rule-based approaches typically
handle a single violation at a time, since the resolution
rules are usually defined per constraint. They also provide
a direct mechanism through which the user may affect the
behavior of the repair procedure. However, they may also
be oblivious of possible negative side effects, which may
undermine the correctness of the procedure.

3.3.2 Kind

General-purpose model repair techniques act on intra-model
constraints, interpreting the environment as a single model
restricted by internal constraints [9], [10], [12], [13], [15], [20],
[28], [37], [39], [40], [41], [42], [43], [45], [46], [53], [58], [61],
[62], [70], [79]. Nonetheless, techniques that support multi-
model domain spaces (Section 3.2.5) typically support the
definition of inter-model constraints that define the relation-
ship between two or more models [7], [11], [14], [28], [37],
[38], [43], [44], [47], [48], [49], [50], [51], [52], [53], [54], [55],
[56], [57], [59], [60], [63], [64], [65], [66], [67], [68], [69], [71],
[72], [73], [74], [75], [76], [77], [78], [82]. While some of these
focus on inter-model consistency and disregard the intra-
model constraints, some approaches do consider both kinds
of constraints. For that reason this feature is presented as an
or-group.

The shape of the constraints (Section 3.3.3) is related
but not exactly defined by this feature. In fact, both logical
constraints and pattern matching can be used to define
both intra- and inter-model constraints. Other shapes (trace-
ability links, consistency relations and transformations) are
however restricted to inter-model constraints. This depen-
dency is made explicit in the diagram. For approaches
supporting both kinds of constraints, their shape may not
be identical.

The impact of supporting inter-model constraints is sim-
ilar to the one of supporting multi-model domain spaces
natively (Section 3.2.5). Although the definition of this
kind of constraints is simplified, techniques with support
for them will often disregard intra-consistency constraints,
undermining the overall consistency of the environment.
Inter-model constraints can usually be simulated through

inter-model constrains, assuming a “dummy” meta-model
composed of the individual meta-models. In this way the
techniques would handle both intra- and inter-model con-
straints, but the definition of the latter would be more
laborious to the user.

3.3.3 Shape

This feature determines the shape of the constraints sup-
ported by the model repair approach. The feature is encoded
as an or-group since approaches may support more than
one shape of constraints, particularly when they support
both intra- and inter-model constraints (Section 3.3.2). For
hard-coded constraints (Section 3.3.1) it may not be possible
to determine the shape of the constraints from the primary
studies alone. Note that approaches implementing the same
features may still be able to address different classes of
problems, since they may support constraints of varied
expressiveness.

Constraints are most commonly defined as logical predi-
cates [7], [9], [10], [11], [13], [14], [15], [20], [28], [39], [40],
[41], [42], [43], [45], [46], [52], [58], [61], [68], [75]. The
expressiveness of such constraints is typically that of first-
order logic, although they may be extended with other
operators like transitive closure to allow the specification
of reachability properties. These may also be used to define
inter-model consistency, assuming they are able to refer to
elements from different models.

Approaches built over graph data structures are often
based on pattern matching, most of the times enhanced
with negative application conditions (NACs) [12], [53], [54],
[62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72],
[74], [75], [76], [77], [79]. Pattern matching is well-suited to
specify structural properties but not behavioral ones. Thus,
to improve its expressiveness, some approaches allow the
patterns to be attached with additional attribute constraints
or imperative code snippets.

Techniques with dedicated support for inter-model con-
sistency may rely on the definition of traceability links that
connect elements from different model instances [7], [37],
[38], [44], [49], [51], [54], [55], [56], [63], [64], [65], [66], [68],
[69], [71], [72], [73], [74], [75], [76], [77], [82]. Constraints or
patterns may then be defined over the traceability links that
denote the notion of inter-model consistency (like TGGs),
although some techniques assume fixed constraints over
these links. The traceability links may either be explicitly de-
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fined by the user – by manually indicating which elements
correspond to each other – or be implicitly introduced either
by the repair rules or by calculation. The expressiveness of
such techniques depends on the ability to define properties
over traceability links, like constrains restricting their mul-
tiplicity.

Inter-model consistency without traceability links is
commonly defined through consistency relations, declarative
predicates that define which sets of model instances are
considered to be consistent with each other [28], [47], [49],
[51], [55], [59], [60], [73]. Finally, some frameworks assume
a notion of consistency that is implicitly defined by a
transformation [38], [48], [57], [59], [78]. This is typical in
multi-view frameworks with a reference model, from which
each view is calculated through transformation. In such
cases the model repair procedure addresses the view-update
problem [84], and usually relies on the bidirectionalization
of the transformation language.

The concrete syntax of the constraints is heavily depen-
dent on the chosen technical space (Section 3.2.3). Logical
constraints are commonly defined using some variant of
OCL [30] standardized in MDA. Since using OCL to define
inter-model constraints may be cumbersome, extensions
that natively support multi-model domain spaces are also
used, like Epsilon3 from the EMF. The QVT Relations [31]
from MDA is a standardized language for the definition
of consistency relations between multiple model instances.
Techniques relying on transformations to define the notion
of consistency may also support standard transformation
languages, like ATL4 from EMF. Often however, techniques
rely on internal formalisms to define the constraints.

In approaches requiring repair hints (Section 3.3.1) or
rule-based approaches (Section 3.6.1), the constraints may
need to be appended with additional information. In fact,
in some rule-based approaches the notion of constraint is
itself embedded in the definition of the repair rule (as a pre-
condition for its application). In such cases it may not even
be possible to check the consistency of constraints prior to
deploying the repair procedure (Section 3.5.2).

3.4 Update

These feature address the universe of the user updates U
(RQ3), which essentially defines what information is avail-
able to the model repair procedures regarding the evolution
of the models from the previous known state to the current
one. These are summarized in Fig. 10, which is referenced
from the diagram from Fig. 7.

3.4.1 Update Representation

The simplest approach to the user update facet is to be
purely state-based, where the repair procedure simply con-
siders the post-state of the user update (i.e., the current state
of the model instances), in which case user updates from U
simply amount to model instances m [7], [11], [12], [14],
[15], [20], [28], [37], [39], [40], [41], [43], [44], [45], [46], [47],
[48], [51], [52], [53], [56], [57], [60], [61], [62], [64], [67], [68],
[69], [70], [74], [75].

3. http://www.eclipse.org/epsilon/
4. http://www.eclipse.org/atl/

Update

Edit 
Sequence

Frame

Delta-basedState-based HistoryPre-state

Update 
Representation

Extra 
Information

Fig. 10. Update features.

The main advantage of state-based techniques is that the
modeling framework may be decoupled from the model
repair techniques. Since the performed user actions must
not be recorded, the model repair procedure needs only be
deployed using the current state of the environment when-
ever the stakeholders wish to ameliorate the consistency
level. The trade-off is reduced accuracy when compared
with delta-based operations (Section 3.4.2 below). Moreover,
they may prove to be less useful to the user because, by
being oblivious to the user’s action, repair procedures may
simply propose the undoing of those actions.

We assume that an approach is delta-based if it considers
any information regarding the user’s actions. As such, delta-
based approaches with information regarding the current
state of the environment are not considered state-based
(ergo the exclusive selection of these two features).

Delta-based: In contrast to state-based approaches,
delta-based approaches require information regarding the
user actions that led to the current state of the environment
[9], [10], [13], [38], [42], [49], [50], [54], [55], [58], [59],
[63], [65], [66], [71], [72], [73], [76], [77], [78], [79], [82].
These techniques are able to more easily identify problem-
atic portions of the model, but require the online tracking
of the user’s actions. This requires a dedicated modeling
framework, which may not be possible in heterogeneous
and distributed development environments. They may also
improve the overall efficiency of the technique, as they allow
the identification of which constraints need be reassessed
after the user update.

Nonetheless, delta-based approaches major benefit lies
in their ability to produce more predictable repair updates.
By having extra knowledge regarding the user actions,
techniques may are more accurate in the generation of repair
updates (being able, for instance, to distinguish between
modifications and removal/insertion of elements, which
may be impossible in the state-based setting).

We identified two main alternative techniques to record
delta-based user updates. Some techniques consider a frame
condition associated with the current state of the environ-
ment that indicates the portion of the model instances that
was effectively modified by the user, allowing the procedure
to diagnose inconsistencies more effectively [10], [13], [38],
[49], [63], [65], [66], [71], [72], [76], [77], [78]. Alternatively,
techniques may require the exact sequence of edit operations
that led to the current state of the environment [9], [42],

http://www.eclipse.org/epsilon/
http://www.eclipse.org/atl/
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[50], [54], [55], [58], [59], [73], [79], [82]. Within these, the
granularity of the individual actions may range from atomic
to complex operations.

Techniques with edit sequences as user updates may not
even have access to the current state of the environment,
mapping the user actions into repair actions directly. How-
ever, this is not necessarily the case, and approaches with
delta-based user updates may generate state-based repair
updates (Section 3.6.2), and vice-versa.

3.4.2 Extra Information

Both state- or delta-based may be optionally provided with
extra information regarding the evolution of the environ-
ment. Some are provided with the pre-state of the environ-
ment as additional information (i.e., the state m0 prior to
the user update) in order to more effectively determine the
impact of user updates [9], [43], [48], [49], [55], [58], [59],
[63], [65], [66], [71], [72], [73], [76], [77].

State-based techniques may attempt to derive delta-
based artifacts by comparing the pre- and post-state of the
environment, in order to deploy delta-based procedures.
However, there is no guarantee that the result will mirror
the effectively applied user actions. Delta-based approaches
with frame conditions may rely on the pre-state to deter-
mine elements that may have been deleted in the current
state.

Other approaches consider the complete history of the
evolution of the model instances, in which case the repair
procedure can access not only the most recent user up-
date, but also the complete historic [7], [9], [11], [42], [47],
[50], [63], [66], [68], [76], [77]. In state-based approaches
this amounts to a sequence of states, while in delta-based
approaches this historic logs the user’s actions.

The selection of this feature is independent from the
selection of the pre-state because delta-based approaches
may record a history of edit operations without storing any
state.

Techniques may allow the user to control the repair
procedure by rely on meta-data recorded in these logs
(Section 3.7.2), like authoring and versioning information.

3.5 Check

Check features regard the model repair technique’s reliance
on the checking procedure CHECK and the information
contained in the inconsistency reports I (RQ4). These design
options are depicted in the diagram from Fig. 11, referenced
from the one in Fig. 7. Since consistency checking is not the
focus of this study, these features focus mainly on classifying
relationship between the checking and repair procedures.

3.5.1 Decoupled

Model repair techniques may optionally be decoupled from
the consistency checking procedure [7], [9], [12], [15], [41],
[44], [52], [53], [56], [61]. Such techniques may rely on
external tools to detect violations to the constraints. Coupled
procedures in contrast use the checking procedure as a fun-
damental piece in the repair procedure – sometimes in ways
opaque to the user. Earlier techniques rely on the manual
identification of the violations by the users of the techniques,

Simple

Check

Boolean ViolationsNumber Goal

CheckonlyDecoupled Reporting

CompositeUser

Composite ⇒ Distinguished

Decoupled ⇒ Distinguished

Decoupled ⇒ Checkonly

Fig. 11. Check features.

which we interpret as a special kind of decoupled checking
procedures [44], [56].

Although this feature allows the repair procedure to
be extensible by deploying state-of-the-art checking proce-
dures, coupled checking procedures typically result in more
efficient techniques, since the repair procedure can exploit
the potential of the checking procedure.

Decoupled checking procedures usually report struc-
tured information, like goals or violations (Section 3.5.3),
that can then be processed by the repair procedure. A
typical example occurs in some rule-based approaches (Sec-
tion 3.6.1) that employ two classes of rules: check rules, that
detect the violations and introduce some token identifying
the violation, and repair rules, that detect such tokens and
act upon the violation. Another instance of a decoupled
procedure occurs in search-based approaches (Section 3.6.1),
where the checking procedure detects a set of elements
suspected to cause the inconsistency, which the repair pro-
cedure tries to remove from the model instances.

In decoupled approaches the checking procedure must
somehow pass the detected information to the model re-
pair procedure. In our scheme, this is performed through
distinguished constraints (Section 3.3.1), as made explicit in
the diagram. Although this feature is related to the ability
to perform checkonly executions (Section 3.5.2 below), we
shall see that there is not an explicit dependency between
the two.

3.5.2 Checkonly

Although not directly related to the problem of model re-
pair, it is important for the modeling framework to provide
the user with information regarding the inconsistency level
of the environment prior to the deployment of model repair
procedures. Thus, standards like QVT enforce both repair
and checkonly modes [7], [9], [10], [11], [12], [13], [14], [15],
[28], [39], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50],
[52], [53], [55], [56], [58], [59], [60], [62], [64], [67], [69],
[70], [73], [74], [75], [79], [82]. In techniques that allow the
selection of the violation to be handled (Section 3.3.1) such
functionality is fundamental to allow the user to inspect the
detected violations.

This feature is optional as some approaches do not have
a proper checkonly mode. For instance, in some rule-based
approaches (Section 3.6.1) the constraint may be simply
defined as the pre-condition of the resolution rule.
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The notion of coupled checking procedure (Section 3.5.1)
is distinct from this feature, although the two are related.
The best way to envision their relationship is through the
3 classes of rule-based approaches (Section 3.6.1) detected
during our study. In the simplest class techniques employ
repair rules only – the checking procedure is coupled to
these rules as a pre-condition and cannot be run in check-
only mode. In the second class, techniques employ both
check and repair rules, but these act independently of each
other – thus the checking procedure is still coupled to the
repair rules as a pre-condition, but the approach supports
checkonly mode. In the last class techniques emply both
check and repair rules, but the latter only act on tokens
introduced by the former when violations are detected –
thus they are decoupled and also support checkonly mode.
It seems however improbable that decoupled approaches
do not provide a checkonly mode, thus we enforce that
dependency in the diagram.

3.5.3 Reporting

This group feature classifies the information reported by the
checking procedure about the detected inconsistencies, i.e.,
the universe of inconsistency reports I . Techniques may just
expect a basic Boolean [20], [28], [37], [48], [55], [58], [59], [60],
[78] procedure that simply reports whether inconsistencies
were found. This is typical for solver-based approaches
(Section 3.6.1). Techniques may instead expect to know the
number of violations occurring in the current state [70]. Most
commonly, the checking procedure returns a set of violations
detected in the model instances [7], [10], [11], [12], [13], [14],
[15], [39], [40], [41], [43], [44], [45], [46], [47], [49], [50], [51],
[52], [53], [54], [56], [61], [62], [65], [66], [67], [68], [69], [70],
[71], [72], [73], [75], [76], [77], [79], [82]. The information
contained in each violations varies, commonly containing
information regarding which constraint is being broken and
the model elements involved. Techniques may also report a
goal that must be achieved by the repair procedure [9], [42].
These may be comprised by a formula that is suspected
to have rendered a constraint false – which the repair
procedure must make true – or simply contain information
regarding elements suspect of causing the inconsistency –
that must be removed – or missing model elements – that
must be created.

For some techniques with coupled checking procedures
(Section 3.5.1) it may not be clear what the checking pro-
cedure reports. Such is the case of approaches where user
updates are simply mapped into repair updates.

Having information about individual violations allows
the user to selectively apply repair updates (Section 3.3.1),
unlike with less expressive reports. This is an explicit de-
pendency between the features.

Since the behavior of the partial order ⊑ over inconsis-
tency levels I is dependent on the information contained in
these reports, this feature is tightly connected with the cor-
rectness criteria that the repair technique may be expected to
follow (Section 3.8.2). In most cases, there is a single sensible
partial order. In boolean reports, this is simply defined as

i ⊑ i′ ≡ i ⇐ i′

just enforcing that a consistent state does not regress into an
inconsistent one, with the least element ⊥I = True. With
numerical reports, the partial order takes the shape

i ⊑ i′ ≡ i ≤ i′

where ≤ is the standard order over naturals, stating that the
number of inconsistencies at least does not increase, with
⊥I = 0. For the list of violations, it simply takes the shape

i ⊑ i′ ≡ i ⊆ i′

meaning that no new violations are introduced, with ⊥I =
{}, the empty set of violations. Goal reports may vary in
shape and content, thus the partial order will vary from
approach to approach.

Generally, model repair techniques expect a single kind
of inconsistency reports from the checking procedure. How-
ever, this group feature is encoded as an or-group due
to the possibility of composite reports with heterogeneous
information, as explained below.

Composite: The checking procedure may optionally
report a composite inconsistency level [7], [9], [10], [11], [12],
[13], [14], [28], [39], [43], [44], [45], [46], [47], [50], [52],
[53], [54], [56], [58], [62], [65], [67], [69], [70], [75], [79], [82].
These emerge from distinguished constraints (Section 3.3.1),
which are independently checked by the procedure. Typical
this occurs when the approach supports violation selection,
where inconsistency levels I take the shape I1 × I2, a pair
whose first element states whether the selected violation
was removed, and the second element provides information
regarding the remainder environment constraints, allowing
the user to be aware of possible side effects. Approaches
with distinguished classes of constraints (like intra- and
inter-model constraints) also result in composite reports.

In these composite reports there is more than a single
sensible partial order over each shape of I . Our study
identified three kinds of expected behavior in these cases. If
both components are deemed equally important, the partial
order takes the shape of the product order:

(i1, i2) ⊑ (i′
1
, i′

2
) ≡ i1 ⊑ i′

1
∧ i2 ⊑ i′

2

meaning that the inconsistency level is improved if either of
the components is. The least element of this partial ordered
set is simply (⊥I1

,⊥I2
). Under violation selection this par-

tial order is not very useful since it would allow the removal
of the selected violation or any of the others. A partial order
that prioritizes the amelioration of the first component is the
lexicographic order, under which improvements to the first
component allow arbitrary updates on the second one:

(i1, i2) ⊑ (i′
1
, i′

2
) ≡ i1 ⊏ i′

1
∨ (i1 = i′

1
∧ i2 ⊑ i′

2
)

In such case, the least element is still (⊥I1
,⊥I2

). Under vio-
lation selection this order allows the remainder violations to
deteriorate, allowing negative side effects, when removing
the selected one. Alternatively, techniques may prioritize the
improvement of the first component but disallow damage
to the second one. Under violation selection, such partial
orders represent techniques that forbid negative side effects:
the selected violation should be removed but avoiding the
introduction of new ones in the process.

The information reported for the distinguished con-
straint and the remainder constraints needs not be equal.
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For instance, some approaches are only concerned with not
increasing the number of violations caused by the remainder
constraints (even if they are not exactly the same occurring
in the initial state). This is the reason why the reporting
feature above is set as an or-group, and not as an exclusive
selection.

3.6 Repair

These features, depicted in Fig. 12 which is referenced from
Fig. 7, classify the overall behavior of the model repair
procedure REPAIR, as well as the universe of repair updates
R (RQ5), which are at the core of the model repair ap-
proach. Due to their relevancy, the enumeration of the repair
updates to the user (RQ5.1) and the functional semantics
guaranteed by the approach (RQ5.2) are explored separately
in Sections 3.7 and 3.8, respectively.

3.6.1 Core

This feature classifies the engine underlying the repair
generation procedure. Rule-based techniques rely on a set
of previously defined rules that are applied whenever an
inconsistency is detected [7], [11], [12], [13], [14], [41], [42],
[43], [46], [49], [50], [52], [53], [54], [56], [57], [62], [63], [64],
[65], [66], [67], [68], [69], [71], [72], [73], [74], [75], [76], [77],
[79], [82]. While providing full control over the resolution
of inconsistencies, it puts the weight on the designer that
must specify how constraints are fixed. Moreover, having
a fixed set of resolution rules greatly reduces the flexibility
of the technique. Generative approaches derive their trans-
formation rules from production rules that define what is a
well-formed model [63], [64], [66], [68], [71], [72], [74], [75],
[76], [77], [79]. The classical example of such approaches are
those based on graph grammars, where the repair rules are
derived from the grammar productions.

In contrast, syntactic techniques automatically derive
repair plans by syntactic analysis of the constraints [10],
[15], [45], [47], [48], [51], [55], [57], [58], [78]. Typically, these
repair plans are calculated at static-time and then instan-
tiated to concrete model instances at run-time when an
inconsistency is found. While these techniques may be able
to generate repair updates without user input, the number
of generated plans may become overwhelming for the user
to choose from. Syntactic techniques are also not well suited
to deal with multiple inconsistencies, nor inconsistencies
that affect a large portion of the model.

Search-based approaches interpret model repair as a
model search problem [9], [20], [28], [37], [38], [39], [40], [41],
[42], [60], [61], [70]. These are able to automatically find fully
consistent models (Section 3.8.2), but suffer from scalability
issues. Moreover, they are well-suited to fix inconsistencies
that affect a large portion of the model, like reachability
properties. Some approaches rely on off-the-shelf solvers to
search for consistent states [20], [28], [37], [41], [60], [61].
These solvers are oblivious of the application domain, and
may produce unpredictable solutions. In contrast, other
techniques rely on domain-specific search procedures that
rely on domain-specific knowledge, like heuristics and the
available edit operations, that allow a finer control on the
generation of repair updates [9], [38], [39], [40], [42], [70].

Some hybrid techniques are are built over more than one
of these features. Such is the case of rule-based approaches

that rely on search-based techniques to calculate repair plans
from those rules. Thus, the selection of features from this
group is not exclusive. Some earlier approaches are human-
centric, relying on the user to manually flag inconsistencies
and propose repair updates, focusing on the negotiation
and education between different stakeholders [11], [44], [46],
[49], [50], [56], [67], [82]. As expected, such approaches
provide little semantic guarantees (Section 3.8).

The selection of this feature directly or indirectly affects
most of the remainder features of the model repair ap-
proach. That impact is explored in the presentation of the
features throughout Section 3.

Incremental: Approaches may optionally be incremen-
tal and reuse data from previous checking or repair exe-
cutions, improving efficiency and localization of inconsis-
tencies [10], [13], [37], [38], [42], [49], [54], [55], [63], [64],
[65], [66], [68], [69], [71], [72], [73], [74], [75], [76], [77]. Such
techniques are typically deployed in an online setting so that
the required information is preserved between executions.
Thus, they are also typically delta-based (Section 3.4.2) so
that this information is more easily managed.

Incrementality can be essential to preserve the consis-
tency of the environment – as in the case of approaches that
rely on implicit inter-model traceability links calculated in
previous executions – or simply a mechanism to improve
efficiency – by storing the instantiations of the constraints
so that inconsistencies can be more efficiently checked and
repaired. Frameworks that record the whole evolution his-
tory of the model instances (Section 3.4.2) may also be seen
as incremental since this history may be used to guide the
generation of repair updates.

3.6.2 Repair Representation

This feature regards the actual information contained in
the repair updates R returned by the repair procedure. We
identified two exclusive features in this group. Those with
state-based repair updates simply return the newly generated
model instances [14], [20], [28], [37], [41], [43], [48], [49],
[51], [53], [54], [57], [59], [60], [61], [62], [64], [69], [73],
[78], [79]. In such cases, a repair update r ∈ R simply
amounts to new model instances m ∈ M . Other procedures
are operation-based, returning instead information regarding
how the model instances should be changed in order to
ameliorate the consistency level [7], [9], [10], [11], [12], [13],
[15], [38], [39], [40], [42], [44], [45], [46], [47], [50], [52], [55],
[56], [58], [63], [65], [66], [68], [70], [71], [72], [74], [75], [76],
[77], [82]. The shape of repair update r ∈ R in such cases
varies, as presented below.

Note that the information contained of repair updates
r ∈ R is not necessarily the same as the one of user updates
u ∈ U (Section 3.4). For instance, it is common for model
repair approaches to consider state-based user updates but
generate operation-based repair updates.

Operation-based: In operation-based approaches, a re-
pair update proposed to the user may take the shape of a
repair action, consisting of an atomic edit operation [7], [11],
[12], [13], [44], [46], [50], [52], [56], [58], [75], [82], or of a
repair plan, built from the sequential composition of valid
edit operations [9], [10], [15], [38], [39], [40], [42], [45], [47],
[55], [63], [65], [66], [68], [70], [71], [72], [74], [76], [77]. The set
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of valid edit operations that comprise these repair updates
is defined elsewhere (Section 3.6.3).

This notion is different from that of multiple repair
update alternatives (Section 3.7.1): in a repair plan the
multiple actions aim to solve the same inconsistency, while
the multiple enumeration of repair updates may represent
alternative solutions to the same inconsistency (which may
themselves be repair plans).

Content: The repair updates are also classified by
their content. In this context, they may either be concrete, in
which case they can be directly applied to the environment
[9], [10], [12], [13], [14], [15], [20], [28], [37], [39], [41], [43],
[45], [47], [48], [50], [51], [52], [53], [54], [55], [57], [58], [59],
[60], [61], [62], [63], [64], [65], [66], [68], [69], [70], [71], [72],
[73], [74], [75], [76], [77], [78], [79], [82], or abstract, requiring
input from the user to be instantiated [7], [9], [10], [11], [15],
[42], [44], [45], [46], [49], [50], [56], [62], [69], [82]. Most
model repair procedure generate concrete repair updates
when possible, and only occasionally abstract ones. Thus,
the selection of these features is not exclusive.

Abstract repair updates may occur when the update
requires a parameter that the model repair procedure is not
able (or was not designed) to provide, relying instead on
the user to define it. A typical example occurs when the
technique identifies that the value of a property must be
changed, but does not commit to a concrete new value. This
kind of procedure may undermine the correctness of the
procedure (Section 3.8.2) since the user may fail to handle
the inconsistency or introduce new ones (which may be
common as the complexity of the modeling environment
increases).

Our study show that both abstract and concrete repair
updates may be used in both state-based and operations-
based repair updates.

3.6.3 Edit Operations

This feature regards the set of edit operations available to
the repair procedure to calculate the repair update alter-
natives. For state-based repair updates (Section 3.6.2), and
typically in those solver-based (Section 3.6.1), this set may
be undefined, since the repair procedure simply searches
for consistent model instances [37], [44], [59], [61], [78].
In rule-based approaches, this set amounts to the repair
rules defined in the framework. In contrast, in syntactic and
other search-based approaches, this amounts to the set of

operations available to the procedure when traversing the
constraints or searching for solutions. These usually amount
simply to creation, modification and deletion operations,
although our study shows that some do not allow the
creation of elements.

Although in many techniques this set of valid edit opera-
tions is fixed [9], [10], [11], [12], [13], [15], [20], [38], [39], [40],
[42], [43], [46], [47], [48], [49], [50], [51], [52], [55], [56], [58],
[60], [62], [63], [64], [66], [67], [68], [69], [71], [72], [74], [75],
[76], [77], [82], the user may also be allowed to customize it,
either by being able to define the set of valid edit operations
or by disabling some of those predefined [7], [14], [28], [41],
[45], [53], [54], [57], [65], [70], [73], [79]. This is typical in
rule-based approaches and some syntactic approaches that
generate the repair updates for each constraint at static-time.

Techniques with a well-defined set of edit operations
may also allow the user to assign them different costs,
controlling the repair update generation in the process (Sec-
tion 3.7.2), and even disable certain operations by assigning
them high enough costs.

While techniques may use this set of edit operations to
return operation-based repair updates (Section 3.6.2) to the
user, this is not necessarily the case. For instance, techniques
may internally rely on a fixed set of edit operations but
still present state-based repair updates. In operation-based
repair updates these can be returned as atomic repair actions
or composed into repair plans.

3.7 Enumeration

This feature group defines the mechanism through which
repair updates R are selected and presented to the user by
the repair procedure REPAIR, as well how this mechanism
can be controlled (RQ5.1). These features are presented in
Fig. 13, which is referenced by the general repair diagram in
Fig. 12.

3.7.1 Output

Since the number of possible repair updates may be over-
whelming, to be manageable techniques usually restrict
themselves to a subset of the acceptable updates. This may
still amount to multiple repair alternatives [7], [9], [10], [11],
[12], [13], [14], [15], [20], [28], [37], [38], [39], [41], [44], [45],
[46], [47], [50], [52], [56], [60], [61], [62], [70], [71], [74], [75],
[82], although some are able to select single repair updates
[40], [42], [43], [48], [49], [51], [53], [54], [55], [57], [58], [59],
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[63], [64], [65], [66], [68], [72], [73], [76], [77], [78]. This feature
selection is exclusive.

Our studies show that single repair updates can be
returned by repair procedures following any of the core
mechanisms (Section 3.6.1) and repair update representa-
tion (Section 3.6.2). The means through which these repair
updates are selected may or not have been influenced by the
user, as will be shown below.

Complete: Techniques that return multiple repair up-
dates are said to be complete if they return every possible
repair update within the parameters of the execution (i.e.,
the bounds of the search space, the allowed edit operations
and any restriction imposed by the enforced semantic prop-
erties) [9], [10], [15], [20], [28], [37], [41], [45], [70]. Tech-
niques that are not complete may discard interesting repair
update alternatives or fail to handle certain inconsistencies.
Again, this feature does not seem to be directly dependent
on the selected core mechanism (Section 3.6.1): search-based
approaches can search the whole search space, rule-based
approaches may attempt to match ever every acceptable
rule, and syntactic approaches may generate every possible
alternative as the constraints are traversed.

3.7.2 Order

The set of the returned repair updates (Section 3.7.1), as
well as the order in which they are enumerated, must be
somehow selected by the repair procedures from the set of
acceptable ones. This order is always defined, and can be
embodied by a distance metric ∆ : U ×U → N over updates
which the procedure tries to minimize.

In procedures that return a single repair update, this or-
der determines which repair will be selected; in procedures
that return multiple repair update alternatives, it determines
the set of selected repair updates as well as the order in
which they are enumerated. While related to least-change
(Section 3.8.4), techniques with ordered repair enumeration
that are not complete (Section 3.7.1) are not necessarily least-
change, as the minimal repair update among the selected
ones may not be the minimal repair update overall.

Such order may be internally defined and opaque to the
user, which may render the procedure unpredictable [7],
[10], [11], [12], [13], [37], [38], [39], [40], [42], [43], [44], [45],

[47], [48], [50], [54], [55], [56], [58], [59], [61], [62], [63], [64],
[65], [66], [68], [69], [73], [75], [78], [79], [82]. This kind
of approaches include search-based procedures returning
an arbitrary repair update, e.g., the first found, or rule-
based approaches that provide no control on how the rule
application is selected, e.g., using some internal priory order
over rules that is hidden from the user (Section 3.6.1). Some
frameworks try to circumvent the unpredictability problem
arising from opaque orders by providing the complete enu-
meration of repair alternatives (Section 3.7.1).

Other approaches have this order on repair updates
predefined, rendering the technique more predictable [9], [14],
[15], [20], [28], [41], [46], [49], [52], [53], [57], [60], [70], [72],
[74]. Typically fixed metrics include the graph-edit distance,
that counts insertions and removals of model elements,
and operation-based distances, that count the number of
edit steps between two models, given a set of valid edit
operations (Section 3.6.3).

Parameterizable: Approaches with the enumeration
order either opaque or predefined may allow users to pa-
rameterize the distance function ∆, thus enabling them to
control the behavior of the repair procedure. For instance,
under graph-edit distance, this can be achieved by assigning
different weights to different parts of the meta-model [9],
[41]. This allows the user to prioritize repair updates over
certain types of model elements over others. Alternatively,
the weights may be assigned directly to the model elements,
prioritizing changes over concrete parts of the model in-
stances [7], [9], [28], [37], [38], [44], [48], [51], [54], [55], [63],
[64], [65], [66], [68], [72], [73], [74], [76], [77], [78]. An extreme
form of this feature is in area selection, in techniques that
allow the user to freeze portions of the model instances
(as in bidirectional transformation where one of the model
instances remains unchanged) [7], [28], [37], [38], [44], [48],
[51], [54], [55], [63], [64], [65], [66], [68], [72], [73], [74],
[76], [77], [78]. Instead of focusing on the models, the user
may instead be allowed to control the application of the
edit operations that comprise the repair updates (if these
are well-defined (Section 3.6.3), as imposed by the excludes
expression in the diagram) by attaching them with costs [9],
[15], [41], [70]. Users may also be able to assign different
priorities to the defined constraints, instructing the repair
procedure to focus on different classes of violations [52],
[74]. Finally, our study also found an approach where the
user is able to control the procedure by relying on some
additional meta-data from the environment, like authoring
and versioning information [9].

Although in general this parametrization effectively af-
fects the behavior of the repair procedure, some approaches
use such features to simply provide the user with additional
information regarding the impact of each possible repair
update. Such weights can also be used by the checking
procedure to return more informative reports.

Interactive: Techniques may rely on an interactive dia-
log with the user to refine the set of possible repair updates
[51], [53], [62], [64], [71], [73], [77]. Most of the times the goal
of the process is to select a single repair updates from the
set of those available.

This feature contrasts with the generation of abstract re-
pair updates (Section 3.6.2), where instead of an interactive
dialog, the procedure generates repair updates that must be
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Totality Stability Least-changeCorrectness

Least-change ⇒ ¬Opaque
Semantics

Fully 
Consistent

Consistency 
Improving

Well-behaved

Consistency Improving ⇒ Well-behaved

Fully Consistent ⇒ Consistency Improving

Fig. 14. Repair semantics features.

instantiated by the user posteriorly.

3.8 Semantics

This feature group explores the semantic properties that the
repair procedure REPAIR is guaranteed to follow (RQ5.2),
which are depicted in Fig. 14, referenced by the general
repair diagram in Fig. 12. These properties may be difficult
to assess, especially if dependent on user input, like in
interactive approaches. Thus, in our study we followed a
conservative approach and only assumed properties explic-
itly referred to by the authors of the primary studies.

Although our formalization of the semantic properties
of the model repair procedure is novel, they are inspired by
those proposed for constraint maintainers in the context of
bidirectional transformation [85].

3.8.1 Totality

A technique is said to be total if for every user update that
results in an inconsistent state, it is able to produce a repair
update (if there is one such repair update available for the
current model instances) [9], [10], [11], [12], [14], [15], [20],
[28], [37], [39], [41], [45], [47], [49], [54], [60], [63], [65], [69],
[71], [72], [76], [77], [82]. This property can be formalized,
for a set of constraints c and an update u, as follows:

(∃u′ ∈ U · pre(u′) = post(u) ∧ CHECKc u
′
⊏ CHECKc u) ⇒

(∃r ∈ REPAIRc u)

meaning that, if there is an update u′ from the current
state that reduces the level of inconsistency, then the repair
procedure will always return a repair update alternative. We
assume that if the updates do not preserve the information
regarding the pre-state, then pre(u′) = post(u) always
holds.

The most simple instantiation of this rule occurs in
purely state-based approaches for both user (Section 3.4.1)
and repair updates (Section 3.6.2) with a boolean checking
procedure (Section 3.5.3). For a model m, it takes the shape:

(∃m′ ∈ U · CHECKc m
′ = True) ⇒

(∃r ∈ REPAIRc m)

meaning that, if there exists a model that is consistent under
c, the repair procedure will return a model.

Search-based techniques (Section 3.6.1) are usually to-
tal, as they simply search for consistent model instances
(although some do interrupt the procedure after certain
thresholds). Rule-based techniques with only repair rules
are naturally total, as they act on the inconsistencies as

they are detected; rule-based techniques with both check
and repair rules are total is there is at least a repair rule
for each check rule. Syntactic techniques that focus on
single violations at a time are typically total, while those
that consider every inconsistency at once may encounter
conflicts and fail to produce a repair update. Approaches
with need for repair hints (Section 3.3.1) or user interaction
(Section 3.7.2) may fail if the user-defined resolutions do not
restore consistency.

3.8.2 Correctness

Since the goal of repair procedures is to remove inconsisten-
cies from the environment’s state, they must provide some
correctness guarantees. In fact, we have already defined
model repair (Def. 2) under the assumption this notion can
be formalized by a partial order ⊑ over inconsistency levels
I . Thus, the correctness of the model repair procedure is
always measured in relation to that ⊑. However, as seen
in Section 3.5.3, although for simple reports the shape of
I entails the partial order, for composite reports that is
not the case. Thus, there is the need to infer which is the
expected behavior of the technique from the description of
the technique.

Well-behaved: A model repair procedure is said to
be well-behaved if the inconsistency level at least does not
increase whenever one of these repair updates is applied
[7], [39], [43], [45], [47], [48], [49], [53], [69], [78], [82], i.e.,

∀r ∈ REPAIRc u · ¬(CHECKc u ⊏ CHECKc r(u))

This is the minimal correctness behavior expected from a
repair procedure. For instance, in boolean procedures, this
means not turning completely consistent environments into
inconsistent ones; in those reporting the detected violations
this forces procedures to not introduce new violations unless
some those already detected were removed. In procedures
with violation selection, this usually amounts to not intro-
ducing new violations if the selected one fails to be repaired.

Consistency Improving: Procedures that guarantee con-
sistency improving effectively ameliorate the state of the
environment, reducing its inconsistency level (unless it is
already at a minimum inconsistency level) [9], [10], [12],
[13], [14], [41], [42], [52], [54], [58], [62], [64], [65], [68], [70],
[74], [75], [79]. For a set of constraints c and update u, this
property can be specified as:

∀r ∈ REPAIRc u·

CHECKc r(u) ⊏ CHECKc u ∨ ¬∃i ∈ I · i ⊏ CHECKc r(u)

Consistency improving procedures are always well-
behaved. If there is a single minimal inconsistency level ⊥I ,
then it can be simplified as:

∀r ∈ REPAIRc u·

CHECKc r(u) ⊏ CHECKc u ∨ CHECKc r(u) = ⊥I

Under boolean checking procedures this property de-
generates into fully consistent procedures, defined below.
Under more expressive checking procedures, like those re-
porting a set of violations, this behavior may occur in tech-
niques that attempt to fix violations until a certain threshold
is reached. Under distinguished constraints (Section 3.3.1)
this is common in techniques that are only concerned with
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a certain class of constraints (e.g., techniques dedicated to
handle inter-model constraints may disregard intra-model
constraints), or those supporting violation selection that
effectively remove that violation (and may or not avoid side
effects on the remainder violations).

Fully Consistent: Procedures are said to be fully consis-
tent if they guarantee that the inconsistency level is always
reduced to a minimum [15], [20], [28], [37], [38], [40], [55],
[59], [60], [61], [63], [71], [72], [76], [77], i.e., for every update
u and set of constraints c:

∀r ∈ REPAIRc u · ¬∃i ∈ I · i ⊏ CHECKc r(u)

Fully consistent procedures are always consistency improv-
ing. In case there is a least element ⊥I in the inconsistency
level, the law degenerates into

∀r ∈ REPAIRc u · CHECKc r(u) = ⊥I

The impact of this property depends on the minimal
elements of the partially ordered set I . For instance, under
boolean checking procedures, this amounts to setting the
result to true, while under procedures that return a set of
violations, this amount to fixing every violation (including
possible negative side effects). This is the typical behavior of
search-based approaches, that resolve all consistencies at the
same time. In techniques with violation selection, this would
entail fixing not only the selected violation, but also every
other one identified, which would be against their essence.

Note that the definition of correctness is orthogonal
to totality: procedures that fail to produce repair updates
do not break correctness. In fact, some techniques enforce
correctness by simply failing if generated repair update fails
to ameliorate the consistency level.

Fully consistent procedures are not necessarily desirable,
as the model may need to undergo inconsistent states before
fully recovering consistency [7].

3.8.3 Stability

A repair procedure is said to be stable if for every update that
does not result in an inconsistent state, it returns null repair
updates [7], [9], [10], [11], [12], [13], [14], [15], [20], [28], [39],
[41], [42], [43], [44], [45], [47], [48], [49], [50], [52], [53], [55],
[58], [59], [60], [61], [62], [63], [64], [66], [68], [69], [70], [72],
[74], [75], [76], [77], [78], [79], [82]. For a user update u and
constraints c, this property can be formulated as:

CHECKc u = ⊥I ⇒

∀r ∈ REPAIRc u · post(r(u)) = post(u)

In purely state-based approaches with boolean checking
procedures, this degenerates into the following property, for
a model m:

CHECKc m = True ⇒

∀r ∈ REPAIRc m · r(m) = m

Rule-based techniques are naturally stable, as the repair
rules are not applied unless inconsistencies are detected.
Techniques are not stable if they apply update procedures
regardless of the models being consistent. This is the case of
approaches that simply map edit operations from the user
updates into operations in the repair update.

3.8.4 Least-change

The principle of least-change requires repaired models to be
as close as possible to the original, according to the defined
order on updates ∆ : U × U → N ( Section 3.7.2) [9], [15],
[20], [28], [41], [47], [60]. Thus, this order order may not
be opaque, as is made explicit by the excludes expression
in the diagram, and is possibly customized by the user
(Section 3.7.2). This renders the approach more predictable
to the designer since the set of selected repair updates is
well-defined. However, while most approaches informally
and loosely approximate this intuition using ad hoc or
heuristic mechanisms, providing least-change guarantees is
a complex task. In general, this technique is formalized as
follows, for an update u and constraints c:

∀r ∈ REPAIRc u·

∀r′ ∈ R · CHECKc r
′(u) = CHECKc r(u) ⇒

∆(r(u), u) ≤ ∆(r′(u), u)

Meaning that, compared with the repair updates that are
equally consistent, the returned repair updates are closer to
the current state of the environment. In purely state-based
approaches, this degenerates into the following property, for
a model m and constraints c:

∀r ∈ REPAIRc m·

∀r′ ∈ R · CHECKc r(m) ⇒ CHECKc r
′(m) ⇒

∆(r(m),m) ≤ ∆(r′(m),m)

If the identity of indiscernibles holds for the distance
function (∆(m,m′) = 0 ≡ m = m′), then least-change
entails stability. Otherwise there are minimal updates other
than the null update.

3.9 Threats to validity

The scope of the search was restricted to general-purpose
software engineering venues. As a consequence, certain
studies that were developed under specific application do-
mains, but with possible general application, could have
been disregarded. Our pilot searches did not identify any
such study, since for every technique that was disregarded
we found an extended or adapted to general purpose tech-
niques that were published in the venues within our scope.

Some features not explicitly covered by the authors of
the primary studies may have been missed during data
extraction and synthesis. The iterative nature of the coding
process somehow tames this issue, since features detected
in succeeding primary studies trigger a new revision of the
previous studies focused on those newly identified features.

The major facet disregarded in the study regards the
deployment of the identified approaches. While these are
undoubtedly relevant, our pilot searches suggested that
most studies do not address the deployment of the tech-
niques, and those that do usually do not provide sufficient
information in the paper. Thus, rather than having an under-
explored facet, we chose to disregard deployment altogether
(other than the technical space of the techniques, which is
usually evident in the presentation).
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4 CLASSIFYING TECHNIQUES

In the previous section we presented the taxonomy de-
veloped from the systematic literature review. In this sec-
tion we classify a set of distinct model repair approaches
under this taxonomy as a proof of concept [9], [10], [28].
We selected these approaches because i) they are recent
approaches, based on modern, state-of-the-art techniques; ii)
the primary studies presenting them were detailed enough
to allow us classify with confidence most of the facets;
and iii) they follow different core approaches, resulting in
a varied selection of features. The goal is to demonstrate
that classifying techniques through our taxonomy helps in
obtaining structured and thorough descriptions which allow
a better understanding and clear comparison of different
approaches. Since some features may be difficult to assess
for the primary studies (due to lack of information or
ambiguity) our classification is conservative. The resulting
classification is summarized in Tables 2 and 3 and discussed
in the remainder of this section. Each of the columns rep-
resents a second-level feature. If that feature is optional,
it is identified whether it was (Y) or not (N) selected by
the approach; if the feature is mandatory, its selection is
omitted. Every optional children feature of those second-
level features selected by the approaches is also identified
in that column.

To better illustrate the differences between the tech-
niques, as well as the impact of the feature selection, we
design a simple running example on which they are ap-
plied. Since we could not access the implementations of all
these approaches, in order to define our profiles and infer
actual repair updates, we resorted to the explicit information
available in the literature and to our understanding of the
techniques after a thorough study.

The example (borrowed from [9]) represents a more
developed version of the VOD system and is composed
by the class and sequence diagrams shown in Figs. 15a
and 15b, respectively. The class diagram captures the struc-
ture of the system, while the sequence diagram describes the
steps required in the process of playing a movie. Recalling
constraint message_operation from Section 2.1, in order
for this model to be consistent, for every message in the
sequence diagram, there must exist an operation in the
class of the receiver lifeline, whose name equals that of
the message. Since there is no operation play in class
Streamer, and display d sends message play to streamer
st, this model is inconsistent. We only consider this single
constraint in isolation, the repair space not being subject
to any other restrictions, for instance related to some state
diagram or to the associations between classes.

4.1 The Badger Approach

Badger [9] is a regression planner, implemented in Prolog,
that generates repair plans for handling design model incon-
sistencies by applying the artificial intelligence technique of
automated planning [86]. This technique aims to generate
sequences of actions that lead from an initial state to a
state meeting a specific predefined goal. Requiring as input
a model and a set of inconsistencies, Badger performs a
regression planning by starting from the negation of these

 
 

User

+ select() : void
+ stop() : void
+ play() : void
+ draw() : void

 
Display

+ stream() : void
+ wait() : void
+ connect() : void

 
Streamer

1* 11

(a) UML class diagram.

u : User d : Display st : Streamer

1 : select

2 : connect

3 : play

4 : draw

(b) UML sequence diagram.

Fig. 15. Simple VOD system.

inconsistencies as the goal state, and searching backwards
to find a sequence of actions that reach the initial state.

Badger is based on a logical formalism, as model in-
stances and meta-models are represented by logic facts,
specified in a Prolog embedded Domain Specific Language
(eDSL). The technique provides rules for defining meta-
model elements, their properties and relationships, thus
being meta-model independent. However, by having the Pro-
log eDSL as its technical space (other) and not providing
any automated mechanism for the embedding of model
instances nor meta-models persisted in standard languages,
its integration into the MDE development process would
not be seamless. This contrasts with both Model/Analyzer
and Echo, which are deployed under standard technical
spaces. Constraints are also user definable in the eDSL as
intra-model logical constraints expressed in first-order logic
with transitive closure. Since these constraints are defined in
the same technical space as the model instances and meta-
models, rather than being attached to the meta-model, they
may refer to concrete model elements. In Badger, model
instances and user updates are indistinguishable since they
are not represented by the elements they contain, but rather
by sequences of edit operations. The entire history record is
kept (and also each pre-state), with authorship and version-
ing information attached to each edit step. This provides the
repair procedure with rich information that is not available
to those of Model/Analyzer nor Echo.

For detecting inconsistencies, Badger relies on a decoupled
checking procedure proposed in [87], which returns model-
level predicates corresponding to existing inconsistencies.
These predicates are then negated and set as the goal of
repair procedure.

Prolog’s built-in backtracking mechanism allows Badger
to generate multiple repair plans, each one consisting of a
set of repair actions that render the goal true. The core
of the procedure is a domain-specific planner based on a
recursive best-first search (RBFS) algorithm. Although this
is an improvement of the well-known A* algorithm, which
is known to be complete, it is not clear in the paper whether
Badger provides a complete enumeration of plans or not.
Badger has a fixed set of edit operations for creating and
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TABLE 2
Classification of the selected techniques for the domain, constraint and update facets.
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TABLE 3
Classification of the selected techniques for the check and repair facets.

deleting objects, as well as for creating, modifying and
deleting properties or references on those objects. A benefit
of using a search-based core is that the repair procedure
enumerates the repair plans under a parameterizable order,
which the user can control by tweaking the cost function
used by the planner algorithm. For instance, the metric can
be parameterized by assigning costs to edit operations, or
weights to meta-model and model elements. Area selection and
operation disabling can be achieved by assigning infinite
costs. Since the whole history is recorded, costs over meta-
data such as authors and versions can also be assigned.
This contrasts with Model/Analyzer, that does not allow
such customization, and with Echo, that allows the user to
customize the edit operations (which are fixed in Badger).
In order to avoid the multiplication of repair plans, for
modifying references only (other operations are concrete),
Badger resorts to temporary (abstract) elements which the
user must replace by concrete ones when effectively apply-
ing the repair plan. As a consequence, repair updates cannot
be automatically applied to the model instances, in contrast

to fully concrete repair updates like those of Echo.
Concerning semantics, Badger applies a consistency im-

proving procedure as it generates plans transforming the
erroneous model instance into one which does not have the
detected violation (negated in the desired goal). However,
by focusing in a single violation, it is not fully consistent,
since other violations may be introduced by the repair plans
(i.e., it is prone to negative side effects). Finally, the solution
function used by Badger, which verifies whether there are no
more unsatisfied literals in the desired goal, should ensure
the stability of the procedure.

By default, the repair plans generated by Badger are
ordered in terms of the number of actions they contain. For
the defined example, the following eight plans to remove
the violation are generated [9]:

1) modify reference target of message play
2) set property name of message play to stream

3) set property name of operation stream to play

4) set property name of message play to wait

5) set property name of operation wait to play



0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2620145, IEEE

Transactions on Software Engineering

TRANSACTIONS ON SOFTWARE ENGINEERING 21

6) set property name of message play to connect

7) set property name of operation connect to play

8) delete message play and its references source and
target

The parametrizable order results in alternative cost func-
tions, which change the order in which repair plans are
generated (disabling some if infinite costs are assigned). For
instance, if one were to set a higher priority to the sequence
diagram by assigning smaller costs to actions that create,
modify or delete an element belonging to it – allowed by
the operation costs feature – the order in which these plans
would be generated becomes 1, 2, 4, 6, 8, 3, 5 and 7.

Although most generated repair plans are concrete, the
first one, which suggests modifying reference target of
message play, is an example of an abstract repair update.
It avoids enumerating every lifeline, requiring the user to
choose one when applying the repair plan. This renders the
procedure more manageable by the user, at the cost of full
automation.

Despite removing previously detected inconsistencies,
Badger is not free from negative side effects. This is depicted
in plan 7, which removes the violation for message play but
introduces another violation of the same type for message
connect. This is characteristic of consistency improving
approaches with a loose order over the inconsistency levels,
that guarantee the repair of the selected violation but dis-
regard possible side effects. Considering the abstract syntax
presented in its paper for the class and sequence diagrams,
as well as all the types of repair actions supported by
Badger, the enumeration of the repair plans does not seem to
be complete. For instance, adding the missing operation to
class Streamer or modifying reference class of st, would
also be valid repair plans but are not generated.

4.2 The Model/Analyzer Approach

Model/Analyzer [10], [88] is a tool which follows an in-
cremental approach to model repair, mainly focusing on
efficiency. Using the syntactic structure of constraints, it
determines which specific parts of a model must be checked
and repaired. To achieve this, a form of profiling is used
to dynamically observe constraint instances5 during evalu-
ation in order to identify what model elements they must
assess [89]. Building upon this tracking mechanism, once a
constraint instance is evaluated, the tool is able to generate
a corresponding tree of repair actions.

Model/Analyzer is built over an object-oriented formal-
ism and, even though the underlying repair technique is
in theory applicable to any kind of models, the tool is
implemented for UML (MDA) diagrams only, not provid-
ing any meta-modeling functionalities. This contrasts with
Echo, which allows users to define meta-models through a
standard language. Badger also allows the user to define the
meta-models, but using an internal language. In the shape
of intra-model logical rules, constraints are user definable by
means of a generic language, called abstract rule language
(ARL), to which it is possible to map arbitrary constraint

5. A constraint instance corresponds to the evaluation of a constraint
for a particular element of its context. For instance, in the example one
would have one constraint instance per message.

languages, such as OCL. Once evaluated, the user is ex-
pected to select a specific violation to be fixed, instead of
handling all inconsistencies at once. For each instance of
each constraint, a consistency tree following its syntactic
structure is kept in memory and dynamically evaluated in
response to identified model updates (delta-based). When an
element changes due to a modification in the model, every
constraint instance having that element in its evaluation
scope is notified. This works as a frame condition indicating
the portion of the state that was effectively changed. Thus,
unlike Echo and Badger, this tool is able to effectively detect
elements that may cause violations.

This checking procedure is tightly coupled to the repair
mechanism. In fact, it is the core of the technique, the repair
procedure being built over it, and thus can be naturally run
in checkonly mode. A violation is reported for each constraint
instance that evaluates to false, an evaluated tree being
returned. Since the involved model elements are localized
through their leaves, one is able to understand where and
why they failed.

The repair procedure is based on the comparison of the
expected truth value of each consistency tree node, derived
from its parent (ultimately, that of the root being true), with
its actual observed valuation. Wherever these values differ,
a corresponding repair node is generated accordingly to the
type of consistency node (logical operator) and observed
valuations. Since there may be more than a way to modify
the valuation of a logical operator, alternative repair plans
are returned for each violation, consisting of sequences of
abstract and fixed edit operations (element creation, deletion,
and modification). This results in repair plans which also
follow the syntactic structure of the design constraint and
represent enumerations of multiple repair plans. These ab-
stract plans contrast with those generated by Badger, which
are possibly concrete. The order in which the repair alterna-
tives are enumerated is not well-defined and opaque to the
user, in contrast with Badger and Echo. As a consequence,
it is also not parameterizable by the user. The approach is
incremental because once an update is performed, only those
trees (and tree branches in particular) are evaluated which
are affected by that particular change.

Regarding semantics, the repair procedure is consistency
improving because it is guaranteed to remove the violation-
s/trees selected by the user. Yet, similarly to Badger, it
is not fully consistent because its goal is to remove only
the selected violation. However, it still provides stronger
guarantees than Badger since it checks for possible negative
side effects (i.e., it considers a stronger partial order on
inconsistency levels). Besides easily ensuring totality, this
approach is also stable, as the repair update generation only
occurs if the truth value of the consistency tree is false.

For the defined example, Model/Analyzer is expected to
produce seven alternative repair plans, each consisting of a
single repair action. Here we present the repair tree flattened
into a set of alternative repair plans6. Note that, unlike the
list of repair plans generated by Badger, here the alternative
plans are not ordered in any way clear to the user (i.e., this
internal order is opaque):

6. This is done for conciseness, and possible because the tree would
only include disjunction nodes.
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• modify reference target of message play
• modify reference target.class of message play
• add operation to target.class.operations of message

play

• modify property name of message play
• modify property name of operation stream

• modify property name of operation wait

• modify property name of operation connect

Repair plans are generated either to fix the ranges of
the quantifiers, or their predicates. In the former case, a
repair action is suggested for each property referenced on
the range’s expression, while in the latter case, a repair
subtree is calculated for each element contained in that
range. For message play in particular, the top three plans fix
the range of the existential quantifier, while the other four fix
its predicate. Note that modifying the class of the receiving
lifeline, as well as adding an operation to its current class
(respectively the second and third plan) are two particular
repair updates missing in Badger’s repair plans. However,
compared with that previous technique, this approach is
instead missing the possibility of deleting message play

itself. In fact, we did not find any information about how
Model/Analyzer handles additions and removals of context
elements, so the repair update enumeration might not be
complete.

Unlike Badger, where a plan may suggest a concrete
value to be assigned to some property, here all repair actions
are abstract. For instance, the action suggesting to add an
operation does not state whether this should be created
anew or should come from another class, nor any suggestion
to modify a name reveals what value should be used.

As a given tree is seen in isolation, one repair plan
may render (once instantiated) another tree inconsistent
(negative side effect). For instance, as Badger also suggests,
modifying property name of operation connect (last plan)
can only make message play consistent, if it also makes
message connect inconsistent. Nevertheless, the authors
stress that such potential side effects are detectable by
checking whether a repair action of a repair tree references
a model element belonging to the validation scope of other
trees. In this sense, although the technique is still consis-
tency improving (not every violation is removed), the order
imposed over inconsistency levels is stronger than that of
Badger.

4.3 The Echo Approach

Echo is a tool for consistency management based on the
relational model finder Alloy [90], developed on top of the
popular EMF. While initially built as a bidirectional model
transformation framework [28], it eventually evolved to also
handle intra-model consistency [91] and multidirectional
transformation [60]. Thus, Echo is able to check and repair
both inter- and intra-model consistency.

Since Echo’s kernel is the Alloy model finder, it is based
on a relational formalism. Both model instances – following
the standard structured language XMI – and meta-models
– defined in EMF’s Ecore meta-modeling language – are
processed into this formalism, rendering the technique meta-
model independent. Moreover, Echo has support for multi-
model environments, so multiple Ecore meta-models may be

provided. Although its core engine is bounded, the repair
procedure, presented below, guarantees that this feature is
hidden from the user. Constraints are user definable, either
through the embedding of OCL intra-model logical con-
straints as meta-model annotations, or through QVT-R spec-
ifications, a declarative language designed to specify inter-
model consistency relations between related models. It also has
support for the bidirectionalization of ATL transformations.
All these types of constraints are expressed in first-order
logic with transitive closure, and are also embedded into the
Alloy core. Echo is state-based since it simply considers the
post-state resulting from a user update. While this allows
the technique to be run offline – since it does not need
to record the user’s actions – it will render the technique
less accurate than Model/Analyzer or Badger which take
them into consideration. This also requires the procedure to
check the consistency of the whole model instance at every
execution.

The checking procedure is coupled to Echo and can be run
in checkonly mode: once model instances, meta-models and
the constraints are embedded into Alloy, its model checking
capabilities are used to check the consistency of the environ-
ment. Thus, the checking procedure is essentially boolean. As
a consequence, the user is not provided with much informa-
tion regarding what caused the inconsistencies, unlike for
instance Model/Analyzer that reports violations. However,
intra- and inter-model constraints are distinguished, with
Echo testing them independently, resulting in a composite
checking report.

The core of the repair procedure is similar to that of
the checking, but relying instead on Alloy’s model finding
capabilities, that relies on off-the-shelf SAT solvers. Thus it
is state-based, automatically calculates new model instances
that satisfy the constraints. Being built over model finding,
the procedure is naturally complete, enumerating multiple
model instances. Despite being state-based, the user is able
to customize the set of allowed edit operations that give rise
to the generated instances, thus controlling their generation.
Nonetheless, detecting what was effectively affected by the
repair update may not be trivial, unlike in Model/Analyzer
and Badger that calculate repair plans. However, contrary to
those approaches, Echo’s repair updates are always concrete,
which the tool converts into well-formed model instances.
When acting on multiple models, Echo allows the user to
select which of the model instances are to be affected by the
repair updates (area selection).

The tool follows the principle of least-change, which
is achieved by instructing the model finder to iteratively
search for model instances at an increasing distance. Two
predefined metrics are supported by Echo: graph-edit dis-
tance, that counts insertions and removals of atomic model
entities, or an operation-based distance that counts the
number of user-defined edit operations applied. The latter is
controlled through the definition of the valid edit operations
by the user. This contrasts with Badger, that allows the
customization of the distance metric by assigning different
weights to a fixed set of operations or model elements. Fi-
nally, due to its core based on model finding, this technique
is naturally total, fully consistent and stable. This correctness
guarantee is stronger than those of Badger and Model/An-
alyzer, that focus on removing a single violation. The trade-
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off is performance, since this procedure does not scale for
large model instances.

Regarding our example, it was encoded in Echo as an
intra-model consistency problem to be compared with the
other approaches, although the constraints could have de-
fined as inter-model. Since Echo’s repair updates are state-
based, new model instances are returned, rather than repair
actions or plans. One of the consequences of this feature
is that the user is not directly aware of the performed
updates. Fig. 16 shows the repair update alternatives for
this problem that are closest to the original model instance
– due to the least-change property – under regular graph-
edit distance, a predefined enumeration order. For model
instances at the same distance from the inconsistent model,
the order in which they are returned is arbitrary. Note that
only fully consistent model instances are returned (e.g.,
no alternative renames operation connect, as it is being
referred by another message), thus its characterization as
fully consistent. The creation of a new operation and the
deletion of the message are not among this initial set of
alternatives, because they are not at minimal distance from
the initial model instance. Nevertheless, once the minimal
ones are enumerated, Echo starts producing the next closest
ones, which would include those repair update alternatives,
resulting in a complete procedure. Note that renaming the
connect operation to play and changing the class of the
st lifeline, although embodying minimal updates, are not
produced by Echo, since they create negative side effects
and would render the environment inconsistent.

The order of the returned solutions can be parameter-
izable by defining the set valid edit operations (through
OCL pre- and post-conditions) and enforcing the operation-
based distance. For instance, defining only operations to
rename or delete messages, Echo would only return the
model instances from Figs. 16a, 16b and 16c, and one where
the message is deleted.

5 CONCLUSION

Inconsistency handling methods are vital to any software
development process within the increasingly adopted MDE
context. In this paper we propose a novel feature-based clas-
sification system for such techniques, that emerged from an
exhaustive and systematic review of the diverse landscape
of model repair, with the goal of allowing researchers and
practitioners from different disciplines to properly locate
and compare their work in a unifying framework. Sup-
ported by an underlying formalization of the problem of
model repair, this taxonomy comprises five major classifi-
cation facets, organized as hierarchical models that entail
acceptable feature combinations. These facets address the
shape of the relevant artifacts we set out to explore in this
study, as well as the role of the user in specifying and cus-
tomizing them. Despite the heterogeneity of the landscape
of model repair approaches, the proposed classification is
exhaustive and sufficiently flexible to classify existing ap-
proaches regarding these facets. The main relevant facet left
out of the study regards the deployment of the techniques.
We chose not to address such features due to the lack of
information regarding the effective implementation of the
approaches detected during the pilot searches.

The exhaustive classification of the primary studies se-
lected in the literature review, published online [27], pro-
vides a snapshot of the current state-of-the-art of model re-
pair approaches. Hopefully this can aid researchers and tool
developers in identifying interesting feature combinations
hitherto unexplored. For instance, each core mechanism of
the repair procedures has pros and cons, but they are usually
selected exclusively. Could hybrid approaches draw benefits
from the various mechanisms? In any case, answering such
questions would require the collection of additional infor-
mation, like the approaches’ performance and scalability,
which is outside the scope of this study. A quick glance
at the table in [27] also shows that most techniques do not
provide guarantees regarding the functional semantics of
the model repair procedures. This fact, allied to the lack
of information regarding the deployment of the techniques,
indicates that perhaps the area has yet to reach the desirable
level of maturity. We plan to keep this table up-to-date by
rigorously reviewing new techniques as they are proposed,
refining the taxonomy in the process with new methodolo-
gies if required, thus ensuring that it remains applicable and
complete.

We thoroughly classify and explore three modern ap-
proaches to model repair under the proposed taxonomy,
obtaining normative profiles which assist in understanding
the techniques, and, since drawn from a common view
point, make similarities and differences more obvious. The
techniques are compared and the impact of feature selection
is demonstrated by applying these techniques to a simple
example. Although this comparison did not address every
identified feature, we believe that the selected approaches
are indicative of their respective classes and provide an
overview of typical feature combinations. This, allied to the
presentation and discussion of the various features as they
are presented throughout the paper, should help MDE prac-
titioners perform more informed decisions when selecting
the model repair approach most suitable for their particular
needs.
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J. Greenyer, “A comparison of incremental Triple Graph Grammar
tools,” ECEASST, vol. 67, 2014.

[19] J. Etzlstorfer, A. Kusel, E. Kapsammer, P. Langer, W. Retschitzeg-
ger, J. Schoenboeck, W. Schwinger, and M. Wimmer, “A survey
on incremental model transformation approaches,” in Workshop on
Models and Evolution (ME 2013), ser. CEUR Workshop Proceedings,
vol. 1090. CEUR-WS, 2013, pp. 4–13.

[20] A. Cunha, N. Macedo, and T. Guimarães, “Target oriented rela-
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[74] A. Königs and A. Schürr, “MDI: A rule-based multi-document and
tool integration approach,” Software and System Modeling, vol. 5,
no. 4, pp. 349–368, 2006.
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synchronization with precedence Triple Graph Grammars,” in 6th
International Conference on Graph Transformations (ICGT 2012), ser.
LNCS, vol. 7562. Springer, 2012, pp. 401–415.

[77] F. Orejas and E. Pino, “Correctness of incremental model syn-
chronization with Triple Graph Grammars,” in 7th International
Conference on Theory and Practice of Model Transformations (ICMT
2014), ser. LNCS, vol. 8568. Springer, 2014, pp. 74–90.

[78] I. Sasano, Z. Hu, S. Hidaka, K. Inaba, H. Kato, and K. Nakano,
“Toward bidirectionalization of ATL with GRoundTram,” in 4th
International Conference on Theory and Practice of Model Transforma-
tions (ICMT 2011), ser. LNCS, vol. 6707. Springer, 2011, pp. 138–
151.

[79] R. Wagner, H. Giese, and U. Nickel, “A plug-in for flexible and
incremental consistency management,” in Workshop on Consistency
Problems in UML-based Software Development. Blekinge Institute of
Technology, 2003.
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