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Abstract Intelligent Transportation Systems
need methods to automatically monitor the road
traffic, and especially track vehicles. Most research
has concentrated on highways. Traffic in intersec-
tions is more variable, with multiple entrance and
exit regions. This paper describes an extension to
intersections of the feature-tracking algorithm de-
scribed in [1]. Vehicle features are rarely tracked
from their entrance in the field of view to their exit.
Our algorithm can accommodate the problem caused
by the disruption of feature tracks. It is evaluated
on video sequences recorded on four different inter-
sections.
Keywords: intelligent transportation systems, ve-
hicle tracking, features, intersection

1 Introduction

Among the most important research in Intelligent
Transportation Systems (ITS) is the development of
systems that automatically monitor the traffic flow
on the roads. Rather than being based on aggre-
gated flow analysis, these systems should provide de-
tailed data about each vehicle, such as its position
and speed in time. These systems would be use-
ful in reducing the workload of human operators, in
improving our understanding of traffic and in allevi-
ating such dire problems as congestion and collisions
that plague the road networks [12].

Monitoring based on video sensors has a num-
ber of advantages. First, they are easy to use and
install, especially when compared to magnetic loop
detectors, which are the most common traffic sen-
sor and require digging up the road surface. Sec-
ond, video sensors offer the possibility to get rich
description of traffic parameters and to track vehi-
cles. Third, large areas can be covered with a small
number of video sensors. Fourth, the price of image
acquisition devices and powerful computers is rapidly
falling. Video sensors allow to collect rich informa-
tion and achieve detailed traffic analyses at the level

of the vehicle.

Highways have attracted considerable attention,
as they carry much of the traffic, at the expense of
other parts of the road network. There is much more
demand for highways, as the number of dedicated
commercial systems shows it. Intersections consti-
tute a crucial part of the road network, especially
with respect to traffic safety. This is where vehi-
cles from different origins converge. Many collisions
occur in intersections, and their accurate monitoring
would help understand the processes that lead to col-
lisions and address the failures of the road system.
Maurin et al. state in [10] that despite significant
advances in traffic sensors and algorithms, modern
monitoring systems cannot effectively handle busy
intersections.

Figure 1: Illustration of an intersection with mixed
traffic, vehicles and pedestrians, on the major and
minor roads.

For all its advantages, video data is difficult to in-
terpret. Vehicle tracking in intersections entails new
problems with respect to highways, which are related
to the highly variable structure of the junctions, the
presence of multiple flows of the vehicles with turn-
ing movements, the mixed traffic that ranges from



pedestrians to lorries and vehicles that stop at traffic
lights. Specific classification and occlusion manage-
ment techniques are required. Other common prob-
lems are global illumination variations, multiple ob-
ject tracking and shadow handling.

Among the many approaches to tracking in video
data, the feature-tracking approach has distinct ad-
vantages, the main one being to be robust to partial
occlusions. The most renowned feature-based track-
ing algorithm was proposed by Beymer et al. in [1].
It is however only applied to highway portions, with
a given entrance region where vehicles are detected
and a given exit region, and mostly straight complete
feature tracks in-between.

This paper describes a feature-based tracking al-
gorithm which extends the approach of [1] to inter-
sections, with multiple entrance and exit regions,
variable trajectories and possible feature track dis-
ruption. The related work and various tracking
methods are presented in the next section. The ap-
proach of [1] and our adaptation is described in sec-
tion 3. The results of the evaluation on multiple
traffic sequences are commented in section 4.

2 Related Work

There are four main approaches for object tracking,
which are sometimes combined in so-called hybrid
approaches [5].

2.1 3D Model-based tracking

Model-based tracking exploits the a priori knowl-
edge of typical objects in a given scene, e.g. cars
in a traffic scene, especially with parametric three-
dimensional object models [6]. These methods local-
ize and recognize vehicles by matching a projected
model to the image data. This allows the recover-
ing of trajectories and models (hence the orientation,
contrary to most other methods) with high accuracy
for a small number of vehicles, and even to address
the problem of partial occlusion

The most serious weakness is the reliance on de-
tailed geometric object models. It is unrealistic to
expect to be able to have detailed models for all ve-
hicles that could be found on the roadway.

2.2 Region-based tracking

The idea in region- or blob-based tracking is to
identify connected regions of the image, blobs, as-
sociated with each vehicle. Regions are often ob-
tained through background subtraction, for which
many methods exist, and then tracked over time us-
ing information provided by the entire region (mo-
tion, size, color, shape, texture, centroid). Many ap-

proaches use Kalman filters for that purpose [9, 10,
14, 15].

Region-based tracking is computationally effi-
cient and works well in free-flowing traffic. However,
under congested traffic conditions, vehicles partially
occlude one another instead of being spatially iso-
lated, which makes the task of segmenting individual
vehicles difficult. Such vehicles will become grouped
together as one large blob in the foreground image.
These methods cannot usually cope with complex
deformation or a cluttered background.

2.3 Contour-based tracking

Contour-based tracking is dual to the region-based
approach. The contour of a moving object is repre-
sented by a ”snake” which is updated dynamically.
It relies on the boundary curves of the moving ob-
ject. For example, it is efficient to track pedestrians
by selecting the contour of a human’s head.

These algorithms provide more efficient descrip-
tion of objects than do region-based algorithms, and
the computational complexity is reduced. However,
the inability to segment vehicles that are partially
occluded remains. If a separate contour could be ini-
tialized for each vehicle, the tracking could be done
even in the presence of partial occlusion. For all
methods, initialization is one of the major problems.

2.4 Feature-based tracking

Feature-based tracking abandons the idea of tracking
objects as a whole, but instead tracks features such
as distinguishable points or lines on the object. Even
in the presence of partial occlusion, some of the fea-
tures of the moving object remain visible, so it may
overcome the problem. Furthermore, the same algo-
rithm can be used for tracking in daylight, twilight
or night-time conditions, as well as different traffic
conditions. It is self-regulating because it selects the
most salient features under the given conditions (e.g.
window corners, bumper edges... during the day and
tail lights at night).

Tracking features is done through well developed
methods such as Kalman filtering and the Kanade-
Lucas-Tomasi Feature Tracker [2]. Since a vehicle
can have multiple features, the next problem is the
grouping or clustering of features, i.e. deciding what
set of features belongs to the same object. The main
cues for grouping are spatial proximity and common
motion. These algorithms can adapt successfully and
rapidly, allowing real-time processing and tracking of
multiple objects in dense traffic.



3 Feature-based tracking in in-

tersections

As far as we know, the main approaches for inter-
sections are not feature-based, but mainly region-
based [7, 10, 11, 15]. However, feature-based track-
ing is preferred since it can handle partial occlusions,
which is a major problem in intersections [7]. Feature
tracking is addressed by the robust Kanade-Lucas-
Tomasi feature tracker [2]. The system input is a set
of feature tracks, i.e. temporal series of coordinates,
and the problem is to group them to generate vehicle
hypotheses. Using the assumption that road surfaces
are flat and that vehicle motions are parallel to the
road plane, the world coordinates of the features can
be retrieved by computing an homography between
the image coordinates and the world coordinates.

3.1 Grouping features

Some approaches group the features independently
in each frame [3, 8]. A simple grouping method grows
nearest neighbor groups based on the distance and
motion of features [3]. This is improved in [8] by
using more sophisticated motion segmentation algo-
rithms such as Normalized Cuts [13]. These solutions
however lack temporal consistency, which makes the
extracted trajectories noisy (See Figure 2).
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Figure 2: Illustration of the noise problem with
methods that group features in each frame inde-
pendently. The resulting trajectory of the centroid
(the white dot) of the feature group (the black dots)
shows a wrong vehicle movement.

Other approaches [1] improve the resulting tra-
jectories by using the whole feature tracks provided
by their reliable feature tracking method. The con-
straint of common motion over trajectory lifetimes
is used as the central cue for grouping. Features
that are seen rigidly moving together are grouped
together. The vehicle segmentation is achieved by
integrating the spatial information over as many im-
age frames as possible. To fool the algorithm, the
two vehicles would have to have identical motions
during the entire time they were being tracked.

Processing the whole feature tracks instead of the
features in each frames can be seen as a global clus-
tering of the feature tracks. Clustering a batch of
feature tracks collected over a given period of time
would be a difficult problem. This is tackled incre-
mentally by grouping all nearby features together
and then progressively segmenting the group over
time based on the common motion constraint, which
allows to use the method in real-time applications as
demonstrated in [1].

However, [1] deals only with highways, where
tracking is made easier by straight trajectories with
occasional lane changing, a given entrance region and
exit region, and complete tracks from the entrance
region to the exit region. In intersections, the tra-
jectories are more variable. Vehicles may stop before
crossing the intersection, or even on the approaches.
There are more than one detection and exit regions
(there are for example four entrance and exit regions
in the intersection displayed in Figure 1). In turning
maneuvers, the vehicle pose will change, and features
are often lost (see Figure 3). Feature tracks are also
disrupted by occlusion caused by other vehicles and
obstacles in the field of view such as poles (see Fig-
ure 4), trees...

Figure 3: Illustration of feature tracking disruption
as a vehicle is turning and its pose changes (displayed
upon the frame of the first feature detection). How-
ever, the features are correctly grouped as one vehicle
with our method.

In intersections, the feature tracks will often be
”partial” due to the disruption problems. Features
can be detected and lost anywhere in the field of
view. Systems for vehicle tracking in intersections
must address this problem. This is done by allow-
ing the connection of features wherever they are de-
tected.



Figure 4: Illustration of feature tracking disruption
caused by a pole (displayed upon the frame of the
first feature detection). However, the features are
correctly grouped as one vehicle with our method.

3.2 The algorithm

Some parameters have to be specified off-line. A spe-
cial step involves the computation of the homography
matrix, based on the geometric properties of the in-
tersection or information provided with the video se-
quences. The algorithm relies on world coordinates,
in which all the distances are computed. On the
contrary to [1], the entrance and exit regions are not
specified since feature grouping in intersections is not
based on these information.

Our algorithm is adapted from [1]. The feature
grouping is achieved by constructing a graph over
time. The vertices are feature tracks, edges are
grouping relationships between tracks and connected
components (feature groups) correspond to vehicle
hypotheses. For each image frame at time t,

1. Features detected at frame t are selected if they
are tracked for a minimum number of frames,
and if their overall displacement is large enough.
Each newly selected feature fi is connected to
the currently tracked features within a maxi-
mum distance threshold Dconnection.

2. For all pairs of connected features (fi, fj) that
are currently tracked, their distance di,j(t) is
computed and their minimum and maximum
distances are updated. The features are discon-
nected (i.e. the edge is broken in the graph)
if there is enough relative motion between the
features, formally if

maxt di,j(t)−mint di,j(t) > Dsegmentation (1)

where Dsegmentation is the feature segmentation
threshold.

3. The connected components in the graph are
identified. Each connected component, i.e. set
of feature tracks, is a vehicle hypothesis. If all
the features that compose a component are not
tracked anymore, the features are removed from
the graph and the characteristics of the vehi-
cle hypothesis are computed (centroid position,
speed vector, vehicle size).

Only the minimum and maximum distances be-
tween the connected features are stored and up-
dated at each time step, which reduces the computa-
tional complexity. The main parameters are the two
thresholds Dconnection and Dsegmentation. When fea-
tures are detected, they will be connected to many
other features. Vehicles are overgrouped then. As
vehicles move, features are segmented as their rela-
tive motion differs. When a connected component of
the graph is only composed of features that are not
tracked anymore, a vehicle hypothesis is generated.

The main difference with respect to [1] is that
there is no assumption with respect to entrance or
exit regions so that partial feature tracks can be used.
When features are detected or lost, this is taken into
account, even though they may not be located at this
time near the border of the field of view.

For that purpose, it must be ensured that the
common motion constraints between all connected
features can be correctly assessed. Once a feature
is not tracked anymore, there is no way to discon-
nect it from the features that are still tracked. To
avoid connecting features that don’t move together
but happen to be close when one is detected and the
other is about to be lost, the features need to be both
tracked over a minimum number of common frames.

A balance must be found between oversegmen-
tation and overgrouping. In our case, the choice
of Dconnection is more important since one should
not connect faraway features that move together but
don’t belong to the same vehicle. Only one feature
is enough to connect to separate vehicle hypotheses
and this should be avoided.

4 Experimental Results

The performance of the system is assessed on a va-
riety of video sequences, recorded on four different
intersections. The main sequences come from an
old set of examples used to train traffic conflict ob-
servers [12] (”Conflicts” set). Two other sequences
recorded on two different locations are taken from
the repository of the Institut fr Algorithmen und



Kognitive Systeme of the University of Karlsruhe1

(”Karlsruhe” set) and the last sequence can be found
on Vera Kettnaker’s former research webpage2, used
in [4] (”Cambridge” sequence). The lengths of the
sequences are given in Table 1. The ground truth
is not provided with these video sequences and the
results are assessed manually.

Sequences Length (frames)
Conflicts 5793
Karlsruhe 1050
Cambridge 1517

Table 1: Video sequences for evaluation, with their
length (number of frames).

No preprocessing was done to suppress shadows
or to stabilize occasional camera jitter. The param-
eter values were easily found by trial and error. As
world coordinates are used, the parameters are the
same for all sequences. Dconnection and Dsegmentation

were set respectively to 5 meters and 0.3 meters. The
Cambridge sequence is an exception because there is
no homography information with the sequence, and
the geometry of the intersection cannot be guessed
from the view. However, since the vehicle scale is
preserved in most of the field of view, a simple fac-
tor was applied to the image coordinates so that the
vehicle sizes were similar to the other sequences, and
the same parameters values could be employed.

The results are displayed in the table 2. A true
match is a matching between a vehicle and a group.
A false negative is an unmatched vehicle. An over-
grouping is counted if a group matches more than
one vehicle. A false positive is a unmatched group.
An oversegmentation is counted if a vehicle matches
more than one group. The overall results are satisfy-
ing, with an average percentage of correctly detected
vehicles of 88.4%. Consecutive tracking results are
shown in Figure 5. Other successful feature group-
ings under difficult conditions were displayed in the
Figures 3 and 4. Additional materials can be ac-
cessed online3.

Many errors occur in the far distance, where
small feature tracking inaccuracies imply larger er-
ror on the world coordinates. Other errors are caused
by camera jitter. Most pedestrians and two-wheels
are correctly tracked. There are more problems for
larger vehicles such as trucks and buses, that are of-
ten oversegmented. Overgrouping happens when two

1http://i21www.ira.uka.de/image sequences/
2http://www.cs.rpi.edu/∼kettnv/Research.htm
3http://www.confins.net/saunier/

vehicles move together or one feature is detected as
moving consistently with two other distinct groups.
More knowledge can be added to solve these prob-
lems, such as models of the vehicles, to begin with a
threshold on the vehicle sizes. However, this type of
model-based approach is rarely generic. Extra cues
can be based on background subtraction or direct
vehicle recognition.

Overgrouping or oversegmentation should be lim-
ited, but vehicles are still correctly detected when
these errors occur. These are less serious problems
than false positives or negatives, in which cases ve-
hicles are either falsely detected or missed. Many
applications can deal with a little oversegmentation
or overgrouping.

5 Conclusion

This paper has presented an extension to intersec-
tions of the well-known feature-tracking approach de-
scribed in [1]. Our method can handle partial feature
tracks and more complex scenes, with multiple en-
trance and exit regions. Its performance is assessed
on a variety of video sequences recorded on four dif-
ferent intersections. The algorithm will be improved
for better error handling. More cues can be added
for that purpose, for example based on background
subtraction and direct vehicle recognition.
Acknowledgements: We thank Stan Birchfield for
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ture tracker, and his student Neeraj Kanhere for
sharing their code and their valuable comments.
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Figure 5: Sequence of image frames with the vehicle tracks overlayed, every 31 frames, from left to right and

top to bottom.


