
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3115911, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Feature Fusion based Indicator for
Training-free Neural Architecture Search

LINH-TAM TRAN1, MUHAMMAD SALMAN ALI 1, and SUNG-HO BAE1, (Member, IEEE)
1
Department of Computer Science and Engineering, Kyung Hee University, Yongin 17104, Republic of Korea (e-mail: tamlt@khu.ac.kr, salmanali@khu.ac.kr,

shbae@khu.ac.kr)

Corresponding author: Sung-Ho Bae (e-mail: shbae@khu.ac.kr).

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the

Ministry of Science, ICT & Future Planning (2018R1C1B3008159).

ABSTRACT Neural Architecture Search Without Training (NASWOT) has been proposed recently

to replace the conventional Neural Architecture Search (NAS). Pioneer works only deploy one or two

indicator(s) to search. Nevertheless, the quantitative assessment for indicators is not fully studied and

evaluated. In this paper, we first review several indicators, which are used to evaluate the network in a

training-free manner, including the correlation of Jacobian, the output sensitivity, the number of linear

regions, and the condition number of the neural tangent kernel. Our observation is that each indicator is

responsible for characterizing a network in a specific aspect and there is no single indicator that achieves

good performance in all cases, e.g. highly correlated with the test accuracy. This motivated us to develop

a novel indicator where all properties of a network are taken into account. To obtain better indicator that

can consider various characteristics of networks in a harmonized form, we propose a Fusion Indicator (FI).

Specifically, the proposed FI is formed by combining multiple indicators in a weighted sum manner. We

minimize the mean squared error loss between the predicted and actual accuracy of networks to acquire

the weights. Moreover, as the conventional training-free NAS researches used limited metrics to evaluate

the quality of indicators, we introduce more desirable metrics that can evaluate the quality of training-free

NAS indicator in terms of fidelity, correlation and rank-order similarity between the predicted quality value

and actual accuracy of networks. That is, we introduce the Pearson Linear Coefficient Correlation (PLCC),

the Root Mean Square Error (RMSE), the Spearman Rank-Order Correlation Coefficient (SROCC), and

Kendall Rank-Order Correlation Coefficient (KROCC). Extensive experiments on NAS-Bench-101 and

NAS-Bench-201 demonstrate the effectiveness of our FI, outperforming existing methods by a large margin.

INDEX TERMS Neural architecture search, training-free neural architecture search, fusion indicator,

evaluation metrics

I. INTRODUCTION

D
EEP neural networks (DNNs) have shown remarkable

performance on various computer vision tasks. Since

the success of AlexNet on ImageNet [1] classification task

in 2012 [2], many high-performance networks have been

introduced [3][4][5] where these networks have been de-

signed by experts. However, manual design is not an optimal

choice especially when the network goes deeper. Moreover,

the process for designing these networks requires immense

time and effort. To reduce the cost of designing the network,

researchers have studied to automate the process, leading to

Neural Architecture Search (NAS). Instead of designing the

architecture, experts design the search algorithms that find

good candidates (e.g., the number of layers, filters and types

of activation, etc,.) on a given search space.

NAS is able to discover superior architecture on various

computer vision tasks such as image classification [6][7][8],

object detection [9][10] . However, it suffers from several

limitations. Firstly, the search cost is extremely high. It

takes years of reinforcement learning (RL) [6] to search for

networks which achieve state-of-the-art accuracy on large-

scale dataset such as ImageNet. The most expensive part in

RL approach is the training from scratch of child networks.

To alleviate this limitation, subsequent works have suggested

to search on smaller configuration (e.g., cell) [11], performed

with shared weights [12], search on a continuous search

space for NAS [7], or incorporate Bi-layer parallel training

[13].

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3115911, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

𝑭𝒖𝒔𝒊𝒐𝒏

Our Fusion Indicator for Training-Free NAS

NAS Algorithm

Eigenvalue

of NTK

𝑆! 𝑆" 𝑆# 𝑆$

+

+

CJ NLR CNNTK OS

𝑤! 𝑤" 𝑤# 𝑤$

𝑏𝑖𝑎𝑠

Multiplication

Addition

FIGURE 1. The illustration of the proposed Fusion Indicator. CJ, NLR,

CNNTK, OS are the four training-free indicators. Each indicator represents a

single characteristic of a network. In the Fusion Indicator, each standalone

indicator contributes a certain property for ranking the neural network.

Secondly, there has a barrier to apply NAS to practical ap-

plications. That is, we need to search for a new network when

the environment (e.g target task or hardware) is changed. For

example, the architecture found on this dataset may not work

well on others [14], or the latency for a same network is

different when being executed on different hardware devices

[15]. Moreover, the budget for searching is still high (e.g

hours of GPU).

In order to search for best architecture in a short period

time (e.g., a few minutes), NAS without training (NAS-

WOT) [16] is introduced. Specifically, NASWOT proposed a

training-free indicator that predicts the score which is highly

correlated with the actual accuracy of a network, guiding the

search process. Because the step to calculate this indicator

does not require any training of networks, the total cost

for NAS reduces significantly. With its simplicity, they have

first demonstrated the possibility of performing NAS without

involving any training.

Meanwhile, there have been growing works on deep learn-

ing theory that enables us to understand the behavior of

DNNs [17][18][19][20][21][22][23]. TE-NAS [24] has made

the first attempt to apply the indicators derived from theo-

retical works for revealing network characteristics, namely

trainability and the expressivity, for training-free NAS. Dif-

ferent from [16], the search algorithm of TE-NAS is inspired

by pruning-from-scratch.

Training-free NAS can replace the conventional NAS algo-

rithms. However, prior works suffer from several limitations.

[16] only uses one indicator, namely correlation Jacobian of

a batch of images agumented with Cutout [25], by taking

one characteristic (robustness to the input perturbation) of the

network into account. As [16] uses only one indicator, it can-

not represent other aspects of the network such as trainability

or expressivity. So, it turns out to have limited performance in

correlation between predicted score and actual accuracy. [24]

deals with this problem by using two indicators. However, the

score (criterion for selecting the best network) is calculated

with the sum of two ranks from each indicator, meaning that

the two indicators have the same importance. However, this

does not guarantee the optimal solution because different

indicators may have different behaviors and contributions to

the final scores in different importance.

To solve this problem, this paper investigate several

training-free indicators and harmonizes them in a fusion

framework. The FI is capable of measuring the performance

of networks under various aspects. Instead of treating all

indicators equally, we propose a simple training approach

to find the appropriate weights for each indicator. The main

contributions of the paper can be summarized as below:

• We first collect and analyze several indicators that can

be used to estimate the network’s performance without

training. The collected four indicators are the correla-

tion of Jacobian (CJ), output sensitivity (OS), condition

number of Neural Tangent Kernel (CNNTK), and the

number of Linear Regions (NLR).

• We propose a FI which is a combination of output from

multiple indicators with learned weights. The proposed

indicator benefits from various properties of a network

such as trainability, expressivity, generalibility and ro-

bustness against perturbation.

• We introduce new quantitative metrics to measure good-

ness of indicators for training-free NAS.

The rest of the paper is organized as follows. Section II

introduces several related works. Section III presents the FI.

Section IV demonstrates the experimental results. Section V

is the conclusion of the paper.

II. RELATED WORKS

A. NEURAL ARCHITECTURE SEARCH

Neural architecture search (NAS) has attracted much atten-

tions nowadays because of the ability to discover superior

architectures automatically. However, most NAS algorithms

require a huge amount of resources.

The earliest works on NAS were based on reinforcement

learning [6][11][26][27]. In [6], a controller was trained to

generate the network’s configuration which were used to

construct the network. The exhaustive training and evaluation

of child-network and the macro search (e.g searching the

entire network) made this method unaffordable for practical

applications. Particularly, the method in [6] used 800 GPUs

and finished the searching phase in 28 days. To deal with this

limitation, [11] searched for cells (i.e., normal cell and reduc-

tion cell). These were stacked to build the complete network.

The method achieved 11.2x less search cost than [6]. Another

type of NAS algorithm was based on evolutionary algorithms

[28][29][30], reduced the search cost to weeks of GPUs.

Many attempts have been made to perform NAS just in

a few hours [12][7][14][31]. Especially ENAS [12] allowed

sharing the weights among candidates. Thus, the most expen-

sive part in the searching phase was eliminated. DARTS [7]

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3115911, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

proposed to search in a differentiable manner. During search-

ing, a supernet was trained and the network was obtained by

removing operators which has a low weight.

B. TRAINING-FREE NEURAL ARCHITECTURE SEARCH

Conventional NAS algorithms required a heavy search cost

which is unafforadble to most applications especially for

training the candidate networks. Therefore, if the perfor-

mance of architectures is predicted without any training,

the budget for NAS can be reduced significantly. [16] was

the first to demonstrate the feasibility of performing NAS

without any training. The authors in [16] empirically found

the positive correlation between the correlation of Jacobian

matrix among augmented input images and the network’s

performance. Thus, they suggested using this indicator to

score the quality of the networks. Finally, NAS in [16] was

performed with a simple search strategy based on Random

Search where the indicator is used to replace the training

process with simple prediction of the quality in a network.

This work opened a new direction for NAS where one can uti-

lize some indicators to estimate the network’s performance.

However, the major drawback of this method is that the whole

framework relies on a single indicator which only captures

one characteristic of a network.

TE-NAS [24] leveraged two training-free indicators, that

is, NLR and CNNTK. The NLR is used to measure the

expressivity of DNNs [22] [21]. The CNNTK measures the

trainability of DNNs [23]. Based on these two indicators,

they proposed a pruning-based algorithm to perform the

search. Particularly, the criterion for prunning was based on

the sum of two ranks measured by NLR and of CNNTK. The

process was repeated until a certain stopping criteria was met.

In summary, the above works [16][24] focus on perform-

ing NAS without involving any training by leveraging several

training-free indicators. The search algorithm is based on

random or pruning approach. Although training-free NAS

has demonstrated a potential alternative for conventional

NAS algorithms, naively summing the ranks in [24] does not

reflect the importance of each indicator. In order to solve

the aforementioned limitation, first, we consider multiple

indicators where each indicator can express different charac-

teristic of a network. Overall, there are four indicators in our

Fusion method. Second, instead of assigning an equal weight

for each indicator in a weighted sum manner, we adopt a

training approach to find appropriate weights. This way we

can highlight the important of each indicator. Furthermore,

we perform extensive evaluation for the indicators in a sys-

tematic manner.

C. NAS BENCHMARKS

Reproducible and benchmarking NAS datasets are the most

important factors for comparing the algorithms. There have

been a lot of efforts to develop a benchmark dataset [32][33].

Particularly, NAS-Bench-101[32] has made the first effort

to build a dataset for benchmarking NAS. There are 423k

architectures in this dataset. Each architecture is trained on

CIFAR-10 under the same hyper-parameters. NAS-Bench-

101 provides the test accuracy of all architectures on this

search space.

NAS-Bench-201[33] extends NAS-Bench-101[32] by

adding more operators (i.e., None and skip-connect), sup-

porting more NAS algorithms (i.e., differentiable NAS), and

evaluating on more datasets (i.e., CIFAR-100 and ImageNet-

16-120 [34]). The network in NAS-Bench-201 is a cell-based

structure where the cell is defined as a densely-connected

directed acyclic graph with 4 nodes. With this configuration,

the total architecture in NAS-Bench-201 is 15625. All net-

works are trained under the same settings. Specifically, they

are trained from scratch with Nesterov momentum SGD for

200 epochs. The initial learning rate is 0.1 and is decayed

with cosine annealing. The weight decay is set to 0.0005 and

the batch size is 256.

In our work, we utilise NAS-Bench-101 and NAS-Bench-

201 to demonstrate the effectiveness of the proposed FI on all

classification tasks in the dataset.

III. METHOD

The motivation of training-free NAS is to select high-

performance potential networks from a search space without

any training. In order to design a better indicator, we study

several methods that can evaluate some characteristics of the

network before training, i.e., CJ, OS, NLR, and CNNTK. In

this section, we will first summarize these methods and then

explain our proposed FI.

A. TRAINING-FREE INDICATORS

To understand the neural network (NN) behavior, we use CJ,

OS, NLR, and CNNTK. These methods provide essential

knowledge for characterizing NNs.

1) Robustness against perturbation via CJ

In order to score a network at an initial state, [16] designs

CJ that computes the correlation of activations of a network

with a mini-batch of n augmented images. Specifically, to

compute the score, CJ first calculates the derivative of output

y with respect to input x of this batch:

J =

(

∂y(x1)

∂x
,
∂y(x2)

∂x
, ...,

∂y(xn)

∂x

)

. (1)

Then we calculate the correlation for this Jacobian matrix
∑

J and count the number of entries that are smaller than

a predefined threshold (β). Thus, the score for Jacobian is

defined as:

SCJ =
∑

i,j

✶
(

0 < (
∑

J)i,j < β
)

, (2)

where ✶ is the indicator function.

2) Generalization via OS

For improving the network’s generalization ability, authors

in [35] proposed an ensemble approach called OS that can

estimate the degree of generalization power of a network.

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3115911, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Forouzesh et. el. [17] further extended the results of [35]

where the goal is to study the relation between the sensitivity

and generalization in NNs. For determining the sensitivity of

the network, external noise is added to the input. Let x be the

input vector, θ be the parameters of a NN fθ, and ε be the

noise which is sampled from a uniform distribution, then the

error err is defined as:

erry = fθ(x+ ε)− fθ(x). (3)

The averaged error is calculated as below:

erry =
1

N

N
∑

n=1

errny , (4)

where N is the number of classes and errny indicates the n-th

value of erry . The sensitivity of an NN can be measured by

computing the variance of the output error. To this end, the

score of sensitivity is formulated as:

SOS = V ar[X], (5)

where X is the vector of averaged error for M samples and

V ar is the variance.

3) Expressivity of neural network via NLR

To answer why deep networks outperform a shallow network,

[36] analyzes the deep ReLU networks with respect to their

complexity. They have shown that, given the same computa-

tional resources, a deep network can divide the input space

into many regions than a shallow one. Motivated by [36],

[21] provided an in-depth analysis on NLR for convolution

neural networks (CNNs). Following [24], NLR can be used to

measure the expressivity of NNs. Let N be a ReLU CNN and

θ be the parameters of N sampled from some distributions.

The score for NLR can then be calculated as:

SNLR = #{R(P ; θ) : R(P ; θ) 6= ∅ for some P}, (6)

where R(·) is the region corresponding to P and θ, and is

defined as:

R(P ; θ) := {x0 ∈ R
C×H×W :

z(x0; θ) · P (z) > 0, ∀z ∈ N},
(7)

where z(x0; θ) is the pre-activation of a neuron z and P is an

activation pattern such that P (z) ∈ {−1, 1} for each neuron

z in N .

4) Trainability of neural networks via CNNTK

In [20] a new tool was proposed to help understand the behav-

ior of DNNs during training, which is called NTK. It has been

proved that using NTK, we can obtain the time evolution of

linearized NNs at time t without running gradient descent:

µt(Xtrain) = (Id − e−ηΘ̂train,traint)Ytrain, (8)

where µt(x) = E[zLi (x)] is the expected outputs of infinitely

wide network, zLi is the output of i-th neuron in the last layer

L, η is the learning rate, and Θ̂train,train is the NTK between

two training inputs. Xtrain and Ytrain are the input and target

which are drawn from the training set. Id is a constant. The

trainability of NNs is studied in [23]. Let λi be the i-th
eigenvalue in the D diagonal matrix and U be the unitary

matrix of Θ̂train,train, i.e., Θ̂train,train = UDU−1. Then Eq. (8)

can be rewritten as:

µ̃t(Xtrain)i = (Id − e−ηλit)Ỹtrain,i, (9)

where µ̃t(Xtrain)i = Uµt(Xtrain) and Ỹtrain,i = UYtrain.

Let λ0 and λm be the minimum and maximum eigen-

values of Θ̂train,train. In Eq. (9), the maximum learning rate

scales as η ∼ 2/λ0 in [37]. Thus, the smallest eigenvalue

will converge exponentially at a rate given by 1/k, where

k = λ0/λm and is the condition number. If the condition

number of the NTK diverges, the network is untrainable. In

our work, we inverse the condition number of NTK such that

with a higher value, we can get better trainability. Thus, the

score for trainability can be written as:

SCNNTK =
1

k
. (10)

B. FUSION INDICATOR

In order to evaluate NNs without any training, the process

requires a powerful indicator for correctly characterizing the

network. Each indicator has its purpose and significance

in specifying our model. Using these indicators separately

makes them ineffective and weak since they only characterize

the network with a specific factor hence inculcating a certain

bias in the network. Thus, this motivates us to design the FI

where all indicators are combined. Let S be the set of training

free indicators (e.g., SCJ, SNLR, SCNNTK, SOS), our score for

FI is defined as:

SFI =
n
∑

i=1

wiSi + b, (11)

where n is the total indicators, b is the bias, wi and Si are the

weight and the score using i-th indicator in S . The overview

of the proposed Fusion Indicator is demonstrated in Figure 1.

We hypothesize that our proposed FI can take all indica-

tors’ advantage and make our training-free framework more

reliable. We want our FI to reflect our network’s accuracy

closely. We are interested in minimizing the difference be-

tween the score and the accuracy. Specifically, we minimize

the following loss function:

L = MSE(SFI, Acc), (12)

where MSE is the mean squared error. SFI and Acc in Eq.

(12) denote the score and the accuracy of a network. Thus,

our SFI is the predicted accuracy of a network. The model

parameters in Eq. (11) are trained with the stochastic gradient

descent (SGD) method. Note that it is prohibitive to use

support vector regression or linear regression in this case

since there are a huge numbers of samples in NAS-Bench-

101/202 datasets.

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3115911, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 2. The plots of the score for all architectures in NAS-Bench-201 against the test accuracies on CIFAR-10, CIFAR-100, and ImageNet-16-120. For better

visualization, the score is scaled to the range of 0 and 1. The best fitting curve is shown in green line. The Kendall Tau values show a strong correlation for all

indicators.

IV. EXPERIMENTAL RESULTS

A. TRAINING-FREE INDICATOR ASSESSMENT

We use four metrics to evaluate the performance of the

indicator. The first two metrics are the Spearman Rank-

Order Correlation Coefficient (SROCC) and the Kendall

Rank-Order Correlation Coefficient (KROCC). The third

metric and the fourth metric are the Pearson Linear Corre-

lation Coefficient (PLCC) and the Root Mean Square Error

(RMSE) between the score and the accuracy after nonlinear

regression. The first two metrics measure the prediction

monotonicity of the indicator while the third one measures

the linear correlation between the actual accuracy and the

predicted one. These quality assessment metrics are made

for evaluating such characteristics (fidelity and correlation)

and are widely used in practice [38][39][40]. To compute

PLCC and RMSE, we apply the following logistic function

as suggested in [41]:

f(x) = β1

(

1

2
− 1

1 + eβ2(x−β3)

)

+ β4x+ β5, (13)

where x is the score (predicted accuracy) and βi(i =
1, 2, 3, 4, 5) are the set of parameters that minimize the least

squares error between the output from indicator and the

network’s accuracy.

Since our FI is a learning-based method, the optimal w
may not generalize well on other test data. To prevent over-

TABLE 1. Performance of several training-free indicators measured on

CIFAR-10 of NAS-Bench-101. The first, second, and third ranked

performances are highlighted in blue, red, and black bold, respectively.

Indicator PLCC RMSE SROCC KROCC

CJ 0.4882 0.0355 0.6423 0.4658

NLR 0.2371 0.0395 0.3887 0.2699

CNNTK 0.2506 0.0394 0.4045 0.2788

OS 0.2238 0.0396 0.3889 0.2664

FI2 0.4935 0.0353 0.6961 0.5140

FI3 0.4931 0.0353 0.6956 0.5136

FI4 0.4922 0.0353 0.6947 0.5128

fitting, we use n-fold cross-validation. Specifically, we use

5-fold cross-validation and average the results obtained from

5 folds to get the overall performance. In all experiments,

we run the 5-fold cross-validation 10 times and average the

results to obtain the final performance.

B. RESULTS ON NAS-BENCH-101

We compare the performance of our FI and standalone in-

dicators, i.e. CJ, NLR, CNNTK, OS on CIFAR-10 of NAS-

Bench-101 search space. Because we have four indicators,

there are 11 combinations for our FI. FI2 means two in-

dicators are used and so on. We use {CJ, OS} for FI2,

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3115911, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2. Performance of several training-free indicators measured on CIFAR-10, CIFAR-100, and ImageNet-16-120 of NAS-Bench-201 search space. The first,

second, and third ranked performances are highlighted in blue, red, and black bold, respectively.

Indicator
CIFAR-10 CIFAR-100 ImageNet-16-120

PLCC RMSE SROCC KROCC PLCC RMSE SROCC KROCC PLCC RMSE SROCC KROCC

CJ 0.5146 0.1109 0.7400 0.5280 0.5918 0.0981 0.7420 0.5308 0.7839 0.0591 0.7161 0.5288

NLR 0.7997 0.0777 0.7107 0.5245 0.8002 0.0730 0.7196 0.5295 0.8180 0.0547 0.7246 0.5378

CNNTK 0.9534 0.0390 0.7308 0.5389 0.8963 0.0540 0.7447 0.5542 0.7452 0.0634 0.6026 0.4279

OS 0.9466 0.0417 0.8027 0.6109 0.8729 0.0594 0.7856 0.5976 0.8362 0.0522 0.7705 0.5834

FI2 0.9587 0.0363 0.8756 0.6965 0.9195 0.0477 0.8687 0.6867 0.9039 0.0406 0.8494 0.6753

FI3 0.9613 0.0354 0.8770 0.6992 0.9220 0.0470 0.8731 0.6940 0.9133 0.0386 0.8481 0.6744

FI4 0.9596 0.0362 0.8800 0.7017 0.9209 0.0473 0.8775 0.6987 0.9185 0.0375 0.8607 0.6935

FIGURE 3. Scatter plots of predicted score, FI4, against the accuracy for each fold on CIFAR-10, CIFAR-100, and ImageNet-16-120 of NAS-Bench-201 search

space. The best fitting curve is shown in green line.

{CJ, CNNTK, OS} for FI3, and {CJ, NLR, CNNTK, OS}
for FI4. We refer the reader to the Ablation section for the

performance of other combinations. The results are shown in

Table 1.

As shown in Table 1, the proposed FI outperforms other in-

dicators significantly in all performance assessment methods.

Notably, our FI achieves 5% higher KROCC and SROCC

than the CJ-based single indicator [16]. Compared to NLR,

CNNTK and OS, the proposed FI has around 24% and 30%
higher KROCC and SROCC, respectively. Additionally, it is

worth noting that increasing the number of indicator does not

improve the performance on NAS-Bench-101. One possible

reason for this is that there are only three operations (i.e., 3x3

convolution, 1x1 convolution, 3x3 max pool) in the search

space. This reduces the diversity of the network architectures

even though NAS-Bench-101 contains more architectures

than NAS-Bench-201. As a result, several indicators do not

contribute to the overall performance.

C. RESULTS ON NAS-BENCH-201

We further evaluate the performance of training-free indi-

cators on NAS-Bench-201. We use {CNNTK, OS} for FI2,

{NLR, CNNTK, OS} for FI3, and all indicators for FI4.

The performance measured by PLCC, RMSE, SROCC, and

KROCC for all competitors on this dataset are shown in

Table 2.

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3115911, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 3. Performance of FI4 on NAS-Bench-201, measured by KROCC

Weight CIFAR-10 CIFAR-100 ImageNet-16-120

wCIFAR-10 - 0.7099 0.6904

wCIFAR-100 0.6855 - 0.6789

wImageNet-16-120 0.6712 0.6871 -

TABLE 4. KROCC of indicators with different weight sampling methods on

CIFAR-10 of NAS-Bench-201

Indicator Uniform Kaiming Normal

CJ 0.5208 0.4080 0.3263

NLR 0.5245 0.5220 0.5190

CNNTK 0.5389 0.5040 0.4373

OS - - 0.6109

From Table 2, it can be seen that the proposed FI outper-

forms standalone indicators in all performance assessment

methods for all datasets on NAS-Bench-201. It is worth

noting that OS performs the best compared to CJ, NLR, and

CNNTK. On CIFAR-10, FI2 has 7.29% and 8.58% higher

SROCC and KROCC than OS. Adding more indicators to

our FI further increases the performance. Specifically, FI3 has

7.43% and 8.85% SROCC and KROCC improvement over

OS. When using all indicators, FI4 reaches its peak with 0.88

and 0.7017 SROCC and KROCC, respectively.

On CIFAR-100, our FI performs consistently well. Stan-

dalone indicator achieves less than 0.8 SROCC and 0.6

KROCC. By contrast, the proposed FI obtains more than 0.86

SROCC and 0.68 KROCC. On ImageNet-16-120, we can see

that FI4 has the best performance for all assessment metrics.

Compared to OS, FI4 has 9% and 11% higher SROCC and

KROCC.

Additionally, we illustrate the scatter plots of the predicted

scores versus the accuracy measured by CJ, NLR, CNNTK,

and OS in Figure 2. We show the test accuracy with respect to

the score of CJ, NLR, CNNTK, and OS in the first, second,

third, and fourth column of Figure 2, respectively. We also

show the scatter plots of FI4 for 5-fold cross-validation (CV)

in Figure 3. Each column in Figure 3 represents the test ac-

curacy with respect to the score of each fold, namely Fold-1,

Fold-2, Fold-3, Fold-4, and Fold-5 in CV. In both figures, the

green line is the best fitting curve. Figure 2 demonstrates that

the OS indicator has a higher correlation than others. From

Figure 3, we can see that there is a very strong correlation

between the predicted score and the accuracy when using the

proposed FI.

In summary, the performance of our FI improves consis-

tently when adding more indicators. This may come from

the diversity of the search space. Besides the three operations

used in [32], NAS-Bench-201 uses two more operators, zero

and skip-connect, which makes the search space richer. Thus,

the proposed FI can fully utilize all characteristics of a

network to evaluate the network correctly.

FIGURE 4. Performance of Aging Evolution using different training-free

indicators on CIFAR-100 with NAS-Bench-201 search space. The black dot

horizontal line is the best test accuracy on this benchmark.

D. CROSS DATASETS TEST FOR FI

We perform cross dataset tests to verify the generalizability

of our FI for different datasets. To do this, we obtain the

weights for the FI trained on one dataset (e.g., CIFAR-

10) and evaluate it on other datasets. For example, we use

the score evaluated on CIFAR-10 to train the weight for

the FI and use the same weights to perform testing on

CIFAR-100 and ImageNet-16-120. We denote the weight

obtained from CIFAR-10, CIFAR-100, and ImageNet-16-

120 as wCIFAR-10, wCIFAR-100, and wImageNet-16-120, respectively.

The performance results are listed in Table 3.

As shown in Table 3, we can see that the proposed FI

achieves a high KROCC. For all datasets, the value of

KROCC is greater than 0.67. The weights obtained on one

dataset are highly compatible with other datasets. This shows

the generality and robustness of our approach.

E. IMPROVING NAS WITHOUT TRAINING USING

FUSION INDICATOR

The ultimate goal of NAS without Training is to replace the

heavy cost of training candidate networks with inexpensive

ones (e.g., CJ, NLR...). In order to demonstrate the effec-

tiveness of training-free indicators, we incorporate the score

from training-free indicator into Aging Evolution (AE), an

evolutionary algorithm for NAS [42]. We replace the network

accuracy obtained from the network training step (train

and evaluation in [42]) with the predicted score from the

indicator. For the mutation phase, the network which has the

highest predicted score is selected as a parent. After mutation,

the child network is scored using the indicator. Finally, the

output is the network which has the highest predicted score.

We choose the AE algorithm due to its simplicity.

We compare the performance of AE using CJ, NLR, CN-

NTK, OS, and the proposed FI4 on CIFAR-100 with NAS-

Bench-201 search space. We evaluate around 300 networks.

We run the experiment 100 times and show the average re-

sults in Figure 4. As demonstrated in Figure 4, it is clear that

the proposed FI achieves higher test accuracy for the network

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3115911, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 5. Comparison with different combination of indicators for FI on

CIFAR-10, measured by KROCC.

Indicator NAS-Bench-201 NAS-Bench-101

CJ, NLR 0.6212 0.4685

CJ, CNNTK 0.5610 0.4651

CJ, OS 0.6583 0.5140

NLR, CNNTK 0.6312 0.3157

NLR, OS 0.6161 0.3025

CNNTK, OS 0.6965 0.3477

CJ, NLR, CNNTK 0.6492 0.4678

CJ, NLR, OS 0.6629 0.5136

CJ, CNNTK, OS 0.6990 0.5137

NLR, CNNTK, OS 0.6993 0.3463

CJ, NLR, CNNTK, OS 0.7016 0.5128

with the highest predicted score than others. Specifically,

NLR has the lowest test accuracy for the network with the

highest predicted score. The three indicators CJ, CNNTK,

and OS achieve comparable test accuracy. It is noticeable that

the proposed FI achieves much higher accuracy than others,

where we perform experiments 100 times for each case and

take an average of the 100 test accuracies.

F. ABLATION STUDIES

In this section, we study the behavior of the training-free

indicator. We investigate how weight initialization affects

performance. We also study the behavior of the proposed FI

when more training-free indicators are added.

1) How weight initialization methods effect performance?

When we develop an indicator for training-free NAS frame-

work, the most critical factor is how robust our indicator is.

At the initial state, our network is unstable. There are several

initialization methodologies for a network. However, in this

study, we assess the performance of training-free indicators

using the following initialization methods:

• Uniform distribution: For uniform distribution, the

weights are initialized from U(−
√
k,
√
k), where k =

groups/(Cin ∗∏1
i=0 k[i]).

• Normal distribution: The weights are sampled from

N (0, std2). For OS indicator, we only use the standard

normal distribution without any batch normalization as

mentioned in [17].

• Kaiming He: Following [43], the weights are sampled

from N (0, std2), where std = gain/fanmode1/2.

We compute KROCC for each indicator with different

weight sampling methods. Table 4 demonstrates the quan-

titative performance of each indicator for different weight

sampling methods. As shown in Table 4, the performance

of training-free indicators depends on how the weights are

sampled, especially for CJ. One possible explanation for this

is that the hypothesis of the Jacobian indicator requires the

same local linear operators, where the linear maps are the

Jacobian of augmented input x, should have low correlation.

This means that if any weight initialization method violates

the hypothesis, the Jacobian indicator will not work (e.g.,

strong correlation with different augmented input x).

2 3 4
Number of Indicators

0.50

0.63

0.77

0.90

Av
er

ag
e

Pe
rf

or
m

an
ce

SROCC
KROCC

FIGURE 5. Overall comparison for different combination of indicators

measured on CIFAR-10, NAS-Bench-201.

To avoid exhaustively computing all possible weight sam-

pling combinations for FI, we use a simple technique that

selects the best sampling method for each indicator. Thus,

uniform distribution is used for computing CJ, NLR, CN-

NTK and normal distribution is used for OS.

2) Number of indicators for FI

We also investigate the performance of our FI by combining

different indicators on CIFAR-10. There are 11 combinations

in total. The weights are sampled following the above anal-

ysis. KROCC is used to measure performance. We list the

results in Table 5.

From Table 5, it can be seen that on NAS-Bench-101

combining indicators further improves the performance. For

example, NLR, CNNTK, OS achieves around 0.27 KROCC

but combining them enhances the performance to 0.30 ∼ 0.34

KROCC. The best combination is {CJ, OS}.

On NAS-Bench-201, we observe that when two indicators

are used, the performance measured by KROCC has a high

standard deviation (e.g., the value of KROCC is ranging

from 0.5610 to 0.6965). On a search space that has higher

diversity (e.g., more operators), fusing more indicators helps

improve the performance of the network. Specifically, our

best KROCC increases from 0.6965 to 0.6993 and 0.7016

when three, and four indicators are used respectively. We find

that when using two indicators, the combination of CNNTK

and OS outperforms other combinations. Is is natural since

CNNTK and OS are the top-two standalone indicator. The

overall performance increases when more indicators are used.

The behaviour is consistent for all quality assessment meth-

ods. We can see that the best correlation is obtained when all

indicators are used. Figure 5 shows the trend of increasing

the number of indicators for FI on NAS-Bench-201 improves

the performance.

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3115911, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 6. The results from Shapiro-Wilk tests on CIFAR-10.

Indicator
ppp-value ppp-value

NAS-Bench-201 NAS-Bench-101

CJ 0 0

NLR 0 0

CNNTK 0 0

OS 0 0

FI2 0 0

FI3 0 0

FI4 0 0

If p-value>0.05, normal distribution

TABLE 7. The statistical significance matrix on CIFAR-10 with 95%

confidence. Each element in the table is a codeword for 2 symbols. The first

and second position in the symbol indicate the result of the hypothesis test on

NAS-Bench-201 and NAS-Bench-101.

Indicator CJ NLR CNNTK OS

CJ - - 11 11 11

NLR 11 - - 10 11

CNNTK 11 10 - - 11

OS 11 11 11 - -

FI2 11 11 11 11

FI3 11 11 11 11

FI4 11 11 11 11

0 means the indicator on the row is not significantly different
than the indicator on the column.
1 means the indicator on the row is significantly different
than the indicator on the column.

For comparing the difference in performance, we conduct

the statistical tests between the proposed Fusion Indicator

and the standalone one. We first define the absolute differ-

ence values between the predicted score ŷ (after nonlinear

regression) and the actual accuracy y as ∆ = |y − ŷ|. The

first test verifies the normality of ∆ and the second test

determines whether the ∆ from one indicator are statistically

indistinguishable from another indicator. The significance

level is 5% for both tests. We use Shapiro-Wilk test for

normality and the results (p-value) are shown in Table 6. For

the second test, Wilcoxon rank-sum is performed because

there is no normal distribution case as in Table 6. The results

for the second test are shown in Table 7. In most cases, the

indicators are statistically different from each other, except

for CNNTK versus NLR on NAS-Bench-101, which is not

different. In general, the proposed FI statistically improves

the performance.

G. THREAT TO VALIDITY

There can be a few factors that threaten the validity of this

research. We briefly list several potential threats:

• Search space: There are several search spaces which

are used in other NAS algorithms such as AmoebaNet

[42], FBNet [44]. The search space of NAS-Bench-

101/201 is much smaller than the aforementioned search

space.

• Dataset: Current NAS benchmark only uses small

dataset such as CIFAR-10, CIFAR-100, and reduced

ImageNet-16-120. Thus, it is common to ask whether

the training-free indicator works well on large-scale

datasets (e.g., ImageNet [1]).

• Bias in the experiment: Since the training-free indica-

tor evaluates the network before training, the score is

affected by the value of the network’s parameters.

Regarding the first and the second threats, there is no

benchmark dataset for these search spaces at the current state.

It is because training on a large-scale dataset requires a lot of

computational costs, as mentioned in [33]. Due to this reason,

most NAS benchmark datasets use smaller search spaces

and train the networks on a small dataset such as CIFAR-

10. However, we will validate the performance of training-

free indicators as well as the Fusion indicator once they

are available. In order to counter the last threat, we conduct

the experiments multiple times (i.e., 10 times) with different

random seeds and take the average as the final results. This

mitigates the influence of random weights on the results.

Extensive experiments on two recently released NAS-Bench-

101/201 confirm that the Fusion Indicator brings many bene-

fits in ranking the networks.

V. CONCLUSION

In this paper, we proposed a simple yet effective method

for training-free NAS, called FI. The core motivation of

our work is to harmonize several characteristics, including

correlation of Jacobian, the number of linear regions, the

condition number of the neural tangent kernel, and the out-

put sensitivity of a network in a weighted sum manner.

Through extensive experiments, our work demonstrated that

the proposed FI achieves a higher correlation between the

predicted score and the network’s accuracy than standalone

indicator in all quality assessment methods. The best combi-

nation on NAS-Bench-101 and NAS-Bench-201 is {CJ, OS}
and {CJ, NLR, CNNTK, OS}, respectively. The large search

space such as NAS-Bench-201 can fully use the characteris-

tics effectively because of the diversity in their search space.

Interestingly, we find that fusing only two indicators (e.g.,

{CNNTK, OS} on NAS-Bench-201) achieved comparable

performance to fuse four indicators.

We encourage the researchers in this field to discover more

characteristics of a network so that we can develop a power-

ful training-free indicator. The proposed FI can be applied

to query-based NAS algorithms such as random search or

evolutionary search easily. We plan to develop an efficient

search method that uses the proposed FI in our future work.

REFERENCES
[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei, “Imagenet: A large-scale hierarchical image database,”
in 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248–255, 2009.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet clas-
sification with deep convolutional neural networks,” in Ad-
vances in Neural Information Processing Systems (F. Pereira,

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3115911, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.),
vol. 25, Curran Associates, Inc., 2012.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” CoRR, vol. abs/1512.03385, 2015.

[4] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” 2018.

[5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Effi-
cient convolutional neural networks for mobile vision applica-
tions,” CoRR, vol. abs/1704.04861, 2017.

[6] B. Zoph and Q. V. Le, “Neural architecture search with rein-
forcement learning,” CoRR, vol. abs/1611.01578, 2016.

[7] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable
architecture search,” in International Conference on Learning
Representations, 2019.

[8] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler,
A. Howard, and Q. V. Le, “Mnasnet: Platform-aware neural ar-
chitecture search for mobile,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[9] B. Chen, G. Ghiasi, H. Liu, T.-Y. Lin, D. Kalenichenko,
H. Adam, and Q. V. Le, “Mnasfpn: Learning latency-aware
pyramid architecture for object detection on mobile devices,”
in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

[10] N. Wang, Y. Gao, H. Chen, P. Wang, Z. Tian, C. Shen, and
Y. Zhang, “Nas-fcos: Fast neural architecture search for object
detection,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

[11] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learn-
ing transferable architectures for scalable image recognition,”
CoRR, vol. abs/1707.07012, 2017.

[12] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean,
“Efficient neural architecture search via parameter sharing,”
CoRR, vol. abs/1802.03268, 2018.

[13] J. Chen, K. Li, K. Bilal, x. zhou, K. Li, and P. S. Yu, “A bi-
layered parallel training architecture for large-scale convolu-
tional neural networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 5, pp. 965–976, 2019.

[14] Y. Xu, L. Xie, X. Zhang, X. Chen, G. Qi, Q. Tian, and
H. Xiong, “PC-DARTS: partial channel connections for
memory-efficient differentiable architecture search,” CoRR,
vol. abs/1907.05737, 2019.

[15] C. Li, Z. Yu, Y. Fu, Y. Zhang, Y. Zhao, H. You, Q. Yu,
Y. Wang, C. Hao, and Y. Lin, “{HW}-{nas}-bench: Hardware-
aware neural architecture search benchmark,” in International
Conference on Learning Representations, 2021.

[16] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley, “Neural
architecture search without training,” 2021.

[17] M. Forouzesh, F. Salehi, and P. Thiran, “Generalization com-
parison of deep neural networks via output sensitivity,” 2020.

[18] R. Novak, Y. Bahri, D. A. Abolafia, J. Pennington, and J. Sohl-
Dickstein, “Sensitivity and generalization in neural networks:
an empirical study,” 2018.

[19] K. Kawaguchi, L. P. Kaelbling, and Y. Bengio, “Generaliza-
tion in deep learning,” 2020.

[20] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel:
Convergence and generalization in neural networks,” CoRR,
vol. abs/1806.07572, 2018.

[21] H. Xiong, L. Huang, M. Yu, L. Liu, F. Zhu, and L. Shao,
“On the number of linear regions of convolutional neural net-
works,” in Proceedings of the 37th International Conference
on Machine Learning (H. D. III and A. Singh, eds.), vol. 119
of Proceedings of Machine Learning Research, pp. 10514–
10523, PMLR, 13–18 Jul 2020.

[22] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-
Dickstein, “On the expressive power of deep neural networks,”

2017.
[23] L. Xiao, J. Pennington, and S. S. Schoenholz, “Disentan-

gling trainability and generalization in deep learning,” CoRR,
vol. abs/1912.13053, 2019.

[24] W. Chen, X. Gong, and Z. Wang, “Neural architecture search
on imagenet in four {gpu} hours: A theoretically inspired
perspective,” in International Conference on Learning Repre-
sentations, 2021.

[25] T. Devries and G. W. Taylor, “Improved regularization
of convolutional neural networks with cutout,” CoRR,
vol. abs/1708.04552, 2017.

[26] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural
network architectures using reinforcement learning,” CoRR,
vol. abs/1611.02167, 2016.

[27] Z. Zhong, J. Yan, W. Wu, J. Shao, and C. Liu, “Practi-
cal block-wise neural network architecture generation,” in
2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2423–2432, 2018.

[28] L. Xie and A. Yuille, “Genetic cnn,” in Proceedings of the
IEEE International Conference on Computer Vision (ICCV),
Oct 2017.

[29] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu,
J. Tan, Q. V. Le, and A. Kurakin, “Large-scale evolution of
image classifiers,” in Proceedings of the 34th International
Conference on Machine Learning (D. Precup and Y. W. Teh,
eds.), vol. 70 of Proceedings of Machine Learning Research,
pp. 2902–2911, PMLR, 06–11 Aug 2017.

[30] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-
objective neural architecture search via lamarckian evolu-
tion,” in International Conference on Learning Representa-
tions, 2019.

[31] X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive differen-
tiable architecture search: Bridging the depth gap between
search and evaluation,” CoRR, vol. abs/1904.12760, 2019.

[32] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy,
and F. Hutter, “Nas-bench-101: Towards reproducible neural
architecture search,” in ICML, pp. 7105–7114, 2019.

[33] X. Dong and Y. Yang, “Nas-bench-201: Extending the scope
of reproducible neural architecture search,” in International
Conference on Learning Representations, 2020.

[34] P. Chrabaszcz, I. Loshchilov, and F. Hutter, “A downsampled
variant of imagenet as an alternative to the CIFAR datasets,”
CoRR, vol. abs/1707.08819, 2017.

[35] J. Yang, X. Zeng, S. Zhong, and S. Wu, “Effective neu-
ral network ensemble approach for improving generalization
performance,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 24, no. 6, pp. 878–887, 2013.

[36] R. Pascanu, G. Montufar, and Y. Bengio, “On the number of
response regions of deep feed forward networks with piece-
wise linear activations,” 2014.

[37] J. Lee, L. Xiao, S. S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-
Dickstein, and J. Pennington, “Wide neural networks of any
depth evolve as linear models under gradient descent,” Journal
of Statistical Mechanics: Theory and Experiment, vol. 2020,
p. 124002, Dec 2020.

[38] L. Zhang, Y. Shen, and H. Li, “Vsi: A visual saliency-induced
index for perceptual image quality assessment,” IEEE Trans-
actions on Image Processing, vol. 23, no. 10, pp. 4270–4281,
2014.

[39] S.-H. Bae and M. Kim, “Dct-qm: A dct-based quality degra-
dation metric for image quality optimization problems,” IEEE
Transactions on Image Processing, vol. 25, no. 10, pp. 4916–
4930, 2016.

[40] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image
quality assessment: from error visibility to structural similar-
ity,” IEEE Transactions on Image Processing, vol. 13, no. 4,
pp. 600–612, 2004.

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3115911, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[41] H. Sheikh, M. Sabir, and A. Bovik, “A statistical evaluation
of recent full reference image quality assessment algorithms,”
IEEE Transactions on Image Processing, vol. 15, no. 11,
pp. 3440–3451, 2006.

[42] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized
evolution for image classifier architecture search,” CoRR,
vol. abs/1802.01548, 2018.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification,” CoRR, vol. abs/1502.01852, 2015.

[44] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian,
P. Vajda, Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware
efficient convnet design via differentiable neural architecture
search,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2019.

LINH-TAM TRAN received the Bachelor’s de-

gree from the Department of Computer Science

and Engineering, Ho Chi Minh City University

of Technology, Vietnam, in 2014, and the M.S

degree from Hongik University, Seoul, South Ko-

rea, in 2018. He is currently pursuing the Ph.D.

degree with the Department of Computer Science

and Engineering, Kyung Hee University, Suwon,

South Korea. His research interests include neural

architecture search for practical applications.

MUHAMMAD SALMAN ALI received his Bach-

elor’s degree in Computer Science from the Na-

tional University of Sciences and Technology

(NUST), Islamabad, Pakistan, in 2018. He is the

recipient of the gold medal for being a high-

achiever during his UG studies. Currently, he is

pursuing M.S. leading to a Ph.D. degree from

Kyung Hee University, South Korea. His research

interests include deep learning interpretation and

the effect of soft errors on deep neural networks.

SUNG-HO BAE received the B.S. degree from

Kyung Hee University, South Korea, in 2011,

and the M.S. and Ph.D. degrees from the Ko-

rea Advanced Institute of Science and Technol-

ogy (KAIST), Daejeon, South Korea, in 2012

and 2016, respectively. From 2016 to 2017, he

was a Post-Doctoral Associate with the Com-

puter Science and Artificial Intelligence Labora-

tory (CSAIL), Massachusetts Institute of Tech-

nology (MIT), MA, USA. Since 2017, he has

been an Assistant Professor with the Department of Computer Science

and Engineering, Kyung Hee University. He has been involved in model

compression/interpretation for deep neural networks and inverse problems

in image processing and computer vision.

VOLUME 4, 2016 11

