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ABSTRACT

Human activity recognition is important for many applica-
tions. This paper describes a human activity recognition
framework based on feature selection techniques. The ob-
jective is to identify the most important features to recog-
nize human activities. We first design a set of new features
(called physical features) based on the physical parameters
of human motion to augment the commonly used statistical
features. To systematically analyze the impact of the phys-
ical features on the performance of the recognition system,
a single-layer feature selection framework is developed. Ex-
perimental results indicate that physical features are always
among the top features selected by different feature selection
methods and the recognition accuracy is generally improved
to 90%, or 8% better than when only statistical features are
used. Moreover, we show that the performance is further
improved by 3.8% by extending the single-layer framework
to a multi-layer framework which takes advantage of the in-
herent structure of human activities and performs feature
selection and classification in a hierarchical manner.
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1. INTRODUCTION

Human activity recognition using wearable sensors has re-
ceived increasing attention due to a wide range of potential
applications, including long term physical fitness monitor-
ing, sleep quality monitoring, rehabilitation, and intelligent
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assistance for people with cognitive disorders [1] [2]. Recent
work involves prototyping wearable sensor systems, building
human activity datasets, and developing pattern recognition
and machine learning algorithms to model and recognize hu-
man activities. In this paper, we focus on feature selection
and pattern recognition algorithms that improve human ac-
tivity classification performance.

It is well understood that high quality features are es-
sential to improve the classification accuracy of any pattern
recognition system. In human activity recognition, features
such as mean, variance, correlation, and FFT coefficients
computed from mechanical motion measurements are com-
monly used [3]. To perform classification, one naive idea
is to pool all available features into one vector used as in-
put to the classifier. The disadvantage here is that some
features may be irrelevant or redundant, and do not pro-
vide new information to improve the classification accuracy.
Some features might even confuse the classifier rather than
help discriminate various activities. What is worse, due to
the “curse of dimensionality”, the performance may degrade
sharply as more features are added when there is not enough
training data to reliably learn all the parameters of the ac-
tivity models [4]. Therefore, to achieve the best classifica-
tion performance, the dimensionality of the feature vector
should be as small as possible, keeping only the most salient
and complementary features. In addition, keeping the di-
mensionality small could reduce the computational cost such
that the recognition algorithms can be implemented and run
on lightweight wearable devices such as mobile phones.

The two main techniques that are used to identify impor-
tant features and reduce dimensionality in pattern recogni-
tion are: (1) feature transformation - creating new features
based on transformations or combinations of the original ex-
tracted feature set; and (2) feature selection - selecting the
best subset of the original extracted feature set [5]. Both of
them have been used in the wearable sensor community for
recognizing various human activities. One common strategy
is to apply either feature transformation or feature selection
to get a fixed set of features for the whole set of activities
to be recognized. For example, in [6], a correlation-based
feature selection method was used to select a subset of fea-
tures. A 87% classification accuracy was achieved when us-
ing the top eight features selected to classify six basic human
activities. In [7], researchers identified energy as the least
significant feature among all the five available features by
using a sequential backward elimination method. In [8], the
authors applied three feature selection methods: Relief-F,
Simba, and mRMR to assess the relevance of features for



discriminating 15 different activities. All these three meth-
ods achieved similar performance. The other strategy as-
sumes that different activities may be characterized by dif-
ferent sets of features. In [9], by performing cluster analy-
sis, Huynh et al. showed that the classification performance
could be improved by selecting features and window lengths
for each activity separately. Lester et al. in [10] also demon-
strated that a feature’s usefulness depends on the specific
activity to be inferred. They applied a modified version of
AdaBoost [11] to select the top 50 features and then learn
an ensemble of discriminative static classifiers based on the
selected features for each activity. They found that the se-
lected features were different for different activities.

In this paper, we focus on feature design and evaluation
based on feature selection techniques. The rationale to use
feature selection is that the selected features retain their
original meanings that we believe are important for better
understanding of human activities. And our goal is to iden-
tify the most important features to recognize various human
activities. The contributions of this work are listed here: we
first design a new set of features (called physical features)
based on the physical parameters of human motion. We
expect these features to represent motion more accurately
and concisely than commonly used statistical features such
as mean and variance. Then, we use both statistical and
physical features in a single-layer feature selection and clas-
sification framework to systematically analyze and evaluate
their impact on the performance of the recognition system
for the whole set of activities to be recognized. To further
improve the recognition performance, we follow the ideas
from [9] and [10] to extend the single-layer framework to a
multi-layer framework that selects the most important fea-
tures for different activities in a hierarchical manner.

The paper is organized as follows. Section 2 introduces
the sensing platform and dataset used in this study. Sec-
tion 3 defines the statistical and physical features. Section 4
describes the feature selection techniques. Section 5 and 6
present the design and evaluation of the single-layer and
multi-layer hierarchical feature selection and classification
frameworks respectively. Finally, Section 7 summarizes this
work and establishes directions for future work.

2. SENSING PLATFORM AND DATASET

For this work, data is recorded using an off-the-shelf multi-
modal sensing platform called MotionNode [12]. MotionN-
ode is a 6-DOF inertial measurement unit (IMU) specifi-
cally designed for human motion sensing applications. It
integrates a 3-axis accelerometer, a 3-axis gyroscope, and a
3-axis magnetometer. In this work, only the data sampled
from the accelerometer and gyroscope is considered. The
measurement range for each axis of accelerometer and gyro-
scope is +£6¢g and +500dps respectively. The sampling rates
for both accelerometer and gyroscope are set to 100 Hz.

Six participants with different gender, age, height, and
weight are recruited to perform nine types of activities: walk
forward, walk left, walk right, go upstairs, go downstairs,
jump up, run, stand, and sit. These activities correspond
to the most common activities in people’s daily life and are
useful for both elder care and personal fitness applications.
During data collection, a MotionNode is attached firmly
onto the participant’s right front hip. Each participant per-
forms five trials for each activity on different days at various
indoor and outdoor locations without supervision.

3. FEATURE DESIGN

3.1 Activity Model

In this paper, we model each activity based on the sliding-
window strategy. Specifically, we divide the continuous sen-
sor streams into fixed length windows. By choosing a proper
window length, we assume that all the information of each
activity can be extracted from each single window. The
information is then transformed into a feature vector by
computing various features over the sensor data within each
window. Here, a window of length 2 seconds with a 50%
overlap is used. We now describe two sets of features we
incorporated in our recognition framework.

3.2 Statistical Features

The first set of features are statistical features computed
from each axis (channel) of both accelerometer and gyro-
scope. Table 1 shows the list of statistical features we con-
sider in this work. Some of them have been intensively in-
vestigated in previous studies and proved to be useful for ac-
tivity recognition [3] [7] [9]. For example, variance has been
proved to achieve consistently high accuracy to differentiate
activities such as walking, jogging, and hopping [9]. Cor-
relation between each pair of sensor axes helps differentiate
activities that involve translation in single dimension such as
walking and running from the ones that involve translation
in multi-dimension such as stair climbing [7]. We also con-
sider statistical features that have been successfully applied
in similar recognition problems. Examples are zero crossing
rate, mean crossing rate, and first-order derivative. These
features have been heavily used in human speech recognition
and handwriting recognition problems.

3.3 Physical Features

The second set of features are called physical features,
which are derived based on our physical interpretations of
human motion. In this work, MotionNode is placed at the
subject’s front right hip, oriented so the = axis points to the
ground and is perpendicular to the plane formed by y and z
axes. We assume that the sensor location and orientation are
known a priori. Some of our physical features are computed
and optimized based on this prior knowledge. Although this
assumption limits the generalization of our physical features
to be applied to other locations and orientations to some
extent, it simplifies the problem and allows us to focus on
designing features with strong physical meanings so as to
better describe human motion®.

It should be noted that the way to compute physical fea-
tures is different from statistical features. For statistical
features, each feature is extracted from each sensor axis
(channel) individually. In comparison, most of the physi-
cal features are extracted from multiple sensor channels. In
other words, sensor fusion is performed at feature level for
physical features. In the rest of this section, we explain the
physical features in great detail.

We have developed an algorithm to automatically identify
the orientation of the sensing device. Based on this algo-
rithm, any orientation can be virtually oriented to a pre-
defined orientation. Since this algorithm is not the focus
of this paper, we describe the algorithm elsewhere. Please
contact the authors for details of the algorithm if interested.



Feature

Description

Mean The DC component (average value) of the signal over the window

Median The median signal value over the window
Standard Deviation Measure of the spreadness of the signal over the window
Variance The square of standard deviation

Root Mean Square

The quadratic mean value of the signal over the window

Averaged derivatives

The mean value of the first order derivatives of the signal over the window

Skewness

The degree of asymmetry of the sensor signal distribution

Kurtosis

The degree of peakedness of the sensor signal distribution

Interquartile Range

Measure of the statistical dispersion, being equal to the difference between
the 75th and the 25th percentiles of the signal over the window

Zero Crossing Rate

The total number of times the signal changes from positive to negative or back
or vice versa normalized by the window length

Mean Crossing Rate

The total number of times the signal changes from below average to above average
or vice versa normalized by the window length

Pairwise Correlation

Correlation between two axes (channels) of each sensor and different sensors

Spectral Entropy

Measure of the distribution of frequency components

Table 1: Statistical features with symbols and brief descriptions

1. Movement Intensity (MI): MI is defined as

MI() = \Jaw (2 +ay (0% +az (1, (1)

the Euclidean norm of the total acceleration vector af-

ter removing the static gravitational acceleration, where
az (t), ay (t), and a. (t) represent the t*" acceleration

sample of the z, y, and z axis in each window respec-

tively. This feature is independent of the orientation

of the sensing device, and measures the instantaneous

intensity of human movements at index t. We do not

use MI directly. Instead, we compute the mean (AI)

and variance (VI) of MI over the window and use them

as two features given by

1 T
Al = — <Z MI(t)> (2)
T t=1

T
VI= % (Z(Ml(t) - AI)2> (3)
t=1

where 7' is the window length.

. Normalized Signal Magnitude Area (SMA): SMA
is defined as

1 T T T
904 1 (S lor 01+ o 01 + Sl 01 0
t=1 t=1 t=1

the acceleration magnitude summed over three axes
within each window normalized by the window length.
This feature has been used in previous studies and is
regarded as an indirect estimation of energy expendi-
ture [13] [14] [15].

. Eigenvalues of Dominant Directions (EVA): Wh-
en a subject jumps, a large acceleration component
along the vertical direction is expected. Likewise, when
a subject runs forward, there should be a large accel-
eration component along the heading direction and a
relatively large acceleration component along the ver-
tical direction. To capture these effects, we calculate
the covariance matrix of the acceleration data along x,
y, and z axis in each window. The eigenvectors of the
covariance matrix correspond to the dominant direc-
tions along which intensive human motion occurs. The

o

eigenvalues measure the corresponding relative motion
magnitude along the directions. In this work, we use
the top two eigenvalues as our features, corresponding
to the relative motion magnitude along the vertical di-
rection and the heading direction respectively.

Correlation between Acceleration along Grav-
ity and Heading Directions (CAGH): Given the
location and orientation of the sensing device described,
the gravity direction is approximately parallel to x
axis, and the subject’s heading direction when walking
is a combination of y and z axes. We first derive the
Euclidean norm of the total acceleration vector along
the heading direction, and then calculate the corre-
lation coefficient between the acceleration in gravity
direction and the derived acceleration along heading
direction as our feature.

Averaged Velocity along Heading Direction (AVH):

AVH is approximated by first calculating the averaged
velocities along y and z axes over the window, and then
computing the Euclidean norm of those two velocities.

Averaged Velocity along Gravity Direction (AVG):

AVG is computed by averaging the instantaneous ve-
locity along the gravity direction at each time ¢ over
the window. The instantaneous velocity at each time ¢
is calculated through numerical integration of the ac-
celeration along gravity direction.

Averaged Rotation Angles related to Gravity
Direction (ARATG): ARATG calculates the cumu-
lative rotation angles around gravity direction. The
cumulative sum is then divided by the window length
for normalization. Since sensors are at the subject’s
front right hip, this feature captures the rotation move-
ment of the human torso around gravity direction.

Dominant Frequency (DF'): The dominant frequen-
cy is defined as the frequency corresponding to the
maximum of the squared discrete FF'T component mag-
nitudes of the signal from each sensor axis.

Energy (ENERGY): Energy is calculated as the
sum of the squared discrete FFT component magni-
tudes of the signal from each sensor axis. The sum is
then divided by the window length for normalization.
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Figure 1: Scatter Plots in 2D Feature Space

The DC component of the FFT is excluded in this sum
since it is already measured by the mean feature.

10. Averaged Acceleration Energy (AAE): AAE is
defined as the mean value of the energy over three
acceleration axes.

11. Averaged Rotation Energy (ARE): ARE is de-
fined as the mean value of the energy over three gyro-
scope axes.

To explore the performance and correlation between fea-
tures, a series of scatter plots in 2D feature space are shown
in Figure 1. The horizontal and vertical axes represent two
different features. Points in different colors represent differ-
ent activities. In Figure 1(a), the relation between standard
deviation and energy is described by a parabolic curve as ex-
pected. In Figure 1(b), the straight line along the diagonal
means that SMA is highly correlated to the mean value of
movement intensity (AI). This observation indicates that the
l1-norm (SMA) and l2-norm (AI) of the acceleration signals
in each window are quite equivalent. Thus using both SMA
and Al is redundant. From the performance point of view,
Figure 1(c) illustrates that the ARATG feature successfully
partitions the data samples from walk-forward (red), walk-
left (green), and walk-right (blue) into three isolated clus-
ters, with each cluster containing data samples roughly from
one single activity class. Finally, the scatter plot in Fig-
ure 1(d) demonstrates the discrimination power of the two
eigenvalue features to differentiate walking (red), running
(green), and jumping (blue). The vertical axis represents
the eigenvalues along the gravity direction. As expected, the
eigenvalues (relative motion magnitude) of jumping and run-
ning are larger than walking. The horizontal axis illustrates
the eigenvalues along the heading direction. Since the speed
of running is normally higher than walking, the relative mo-
tion magnitude of running along the heading direction is
higher compared to walking. The eigenvalues of jumping
are in the middle. This observation can be explained by
the fact that normally people can not jump straight up and
there is always a forwarding momentum exerted by human
body when people jump. This forwarding momentum turns
out to be larger when people jump than they walk.

3.4 Feature Normalization

Because the scale factors and units of the features de-
scribed above are different, before we proceed to the feature

selection stage, we normalize all the features to zero mean
and unit variance using

fruw 7,U« (5)

(o2

fnormalized =

where ¢ and o are the empirical mean and standard devia-
tion of a particular feature across all activity classes.

4. FEATURE SELECTION

The feature computation in the last section yields a to-
tal of 110 features including 87 statistical features and 23
physical features. To systematically assess the usefulness
and identify the most important features for discriminating
different activities, feature selection techniques are used. In
general, feature selection techniques can be grouped into
three categories: filter methods, wrapper methods and em-
bedded methods [16]. This categorization is based on dif-
ferent ways to combine the feature selection search with the
construction of the classification model. In our work, one fil-
ter method and two wrapper methods were investigated and
are summarized here. These methods are selected due to
their high popularity and usefulness in many pattern recog-
nition and machine learning problems.

4.1 Feature Selection Methods

e Relief-F: Relief-F [17] is a popular filter method that
estimates the relevance of features according to how well
their values distinguish between the data points of the same
and different classes that are near each other. Specifically,
it computes a weight for each feature to quantify its merit.
This weight is updated for each of the data points presented,
according to the evaluation function:

N
w; = Z (IZ — nearmiss (:rj)i>2 — <a:z — nearhit (xj)l)? (6)

j=1

where w; represents the weight of the " feature, x{ repre-
sents the value of the i*" feature for data point 27, N rep-
resents the total number of data points, nearhit (xj) and
nearmiss (z’) denote the nearest point to z7 from the same
and different class respectively. The higher the weight is,
the more important is the feature. The major drawback of
Relief-F is that it does not consider feature dependencies
and therefore does not help remove redundant features.

e SFC (Wrapper Method based on Single Feature
Classification): In SFC [18], features are ranked based on



their individual classification performance. Features at the
top of the ranking list are selected as the final feature subset.
SFC is similar to Relief-F in the sense it can not capture
redundant features either. However, unlike Relief-F, SFC
uses the classifier’s classification accuracy as the metric for
feature evaluation.

e SF'S (Wrapper Method based on Sequential For-
ward Selection): In SFS [19], features are sequentially
added one by one. Specifically, if one feature is needed, the
feature with the best classification performance is selected.
If more than one feature is needed, we add one feature at
a time which in combination with the already selected fea-
tures achieve the best classification performance. Compared
to the two methods described earlier, the benefit of SF'S is
that it takes feature redundancy into consideration.

Let M represent the total number of features in the full
feature set and Ny represent the number of features to be
selected. Table 2 summarizes the computational costs of the
three feature selection methods, with numerical examples for
our case of M = 110. The computational cost is in the form
of either the number of times of calling the feature evaluation
function for filter methods, or the number of times of calling
the classification algorithm for wrapper methods. In order to
make this comparison more meaningful, the wrapper method
based on exhaustive search is also included.

NfZl Nf:2 Nf:3 Nf:n

Relief-F 110 111 111 M+1
SFC 110 111 111 M+ 1
SFS 110 219 327 | o(M?)

Exhaustive Search | 110 5995 | 215820 | O(2™)

Table 2: Comparison of computational cost of fea-
ture selection methods with 110 features.

4.2 Classifier

The choice of classifier is critical to feature selection. Since
the nature of feature selection problem is to select features
from a high dimensional space, in this work, we choose Sup-
port Vector Machines (SVMs) with a linear kernel to be our
learning machine. They have proved to be very effective in
handling high dimensional data [20]. In addition, we use
classification accuracy as our evaluation metric to assess the
effectiveness of feature selection methods listed above.

S. SINGLE-LAYER FEATURE SELECTION
AND CLASSIFICATION

As our first step to approach the problem of activity recog-
nition using feature selection, we adopt a single-layer feature
selection framework. That is, we take all activity classes into
consideration at one time. Our goal is to find the best dis-
criminating set of features for all activities.

5.1 Evaluation on Feature Selection Methods

To evaluate the effectiveness of the three feature selection
methods, we adopt a leave-one-subject-out cross validation
strategy. Specifically, we use the data from five subjects
as training examples to select features and build activity
models. Data from the left-out subject is used for testing.
This process iterates for every subject. The final result is
the averaged value across all the subjects.

Figure 2 shows the average testing classification error rates
as a function of the number of features selected, ranging
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Figure 2: Testing classification error rates as a func-
tion of the number of features selected by different
feature selection methods

from 5 to 110 (full set), with interval equal to 5. Each line
represents one feature selection method. The results show
that across three feature selection methods, the classification
errors taper off when 50 features are included, with approx-
imately a 10% misclassification rate achieved on average. If
we pick more features beyond the top 50, the performance
only varies slightly. This matches the results in Lester’s pre-
vious work [10]. If we look at each method individually, SF'S
performs the best in the sense that it achieves a 12% misclas-
sification rate by using the first five features. In comparison,
Relief-F is the worst since it gets a 47% misclassification rate
with five features. SFC ranks in the middle with a 17% mis-
classification rate. Besides the classification performance,
we record the averaged computational time of each method
and list them in Table 3. As expected, SFS has the highest
computational cost. SFC is computationally more expensive
than Relief-F since the classifier is invloved.

Algorithm | Averaged Computational Time (second)
Relief-F 87.5
SFC 112.4
SFS 2780

Table 3: Averaged computational time of different
feature selection methods

One interesting question to ask is whether the features
selected by feature selection methods are truly important
for our activity recognition problem. To answer this ques-
tion, we first remove the top 50 features selected by feature
selection methods in Figure 2. Then the same feature se-
lection procedure is re-performed on the remaining feature
set. Figure 3 shows the results. Across three methods, the
classification errors are 13% to 23% higher compared to Fig-
ure 2 when 50 features are selected. This indicates that the
top 50 features selected in Figure 2 contain more important
information than the remaining feature set.

5.2 Feature Profiling on the Selected Features

The top 50 features selected by each feature selection
method have been proven useful. To identify these features,
we perform feature profiling. Since we use the leave-one-
subject-out strategy on 6 subjects, not all the features se-
lected in each iteration are the same. Thus we combine the
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Figure 3: Sanity check on feature selection methods

top 50 features selected in each iteration, which results in a
total of 300 features with repetition for each method. The
results are shown in Table 4. The second column lists the
selected physical features. The third column lists the num-
bers and the percentages of physical features selected out
of 23 x 6 = 138 physical features in 6 iterations. The cor-
responding results for statistical features are listed in the
fourth column. For all three methods, although the num-
bers of selected physical features are less than statistical
features, the corresponding percentages are higher. Among
them, Relief-F selected the least number of physical features
whereas SFC selects the most. This observation indicates
that SFC considers physical features more critical in terms
of classification performance. Compared to SFC, the num-
ber of physical features selected by SE'S drops to 70. This
is because some physical features are highly correlated to
other features, so that SFS does not select the redundant
ones. For example, SMA is not selected since it is highly
correlated to Al (see Figure 1(b)). Likewise, the ENERGY
features from all sensor channels are not selected because
they are correlated to standard deviation (see Figure 1(a)).

Feature profiling gives the impression that the physical
features play a major role in differentiating different activi-
ties. To validate this point, we remove all the physical fea-
tures from the full feature set and perform feature selection
on statistical features only. The result is presented in Fig-
ure 4. For all three methods, the misclassification rates are
approximately 18% when the top 50 features are selected.
This is 8% higher than the rates when physical features are
included (see Figure 2). Based on all the results shown in
this section, we can conclude that our self-designed phys-

Algorithm Physical Features No.(%) of Physical | No.(%) of Statistical

Selected Features Selected Features Selected

ReliecEF | Al VI, AAB, SMA, 67 (48.6%) 233 (44.6%)
EVA(2), CAGH, AVH,
AVG, ARATG, DF

SFC AL VI, AAE, SMA,
EVA, AVH, ARATG,
ARE, ENERGY, DF

103 (74.6%) 197 (37.7%)

SFS AL VI, AAE, EVA,
CAGH, AVH, AVG,
ARATG, ARE, DF

70 (50.7%) 230 (44.1%)

Table 4: Top 50 feature profiling of different feature
selection methods

Performance of Feature Selection Algorithms Without Physical Features
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Figure 4: Testing classification error rates of feature
selection methods without physical features

ical features make a strong contribution and improve the
classification performance to a great extent.

6. HIERARCHICAL FEATURE
SELECTION AND CLASSIFICATION

The major limitation of the single-layer framework stud-
ied in the previous section is that all activities are consid-
ered simultaneously. As a result, it may not scale well if the
number of activities to be recognized is large. To achieve
high scalability, we propose here a multi-layer feature se-
lection and classification framework. Specifically, we first
group activities into subsets based on our understanding of
the problem domain and then perform feature selection and
classification in a hierarchical manner. In this scenario, the
classifier in each layer considers a smaller number of activi-
ties. In addition, we now have the flexibility to use different
features for different classifiers/activity subsets, instead of
using the same feature set for all activity classes.

Figure 5 illustrates the structure of the hierarchical feature
selection and classification framework. Blue boxes repre-
sent meta-classes we create to group activity subsets. Green
boxes represent the nine types of activities to recognize. Now
the problem of recognizing nine activity classes is broken
down to seven distinct classification problems. The classi-
fier at the top layer distinguishes between two meta-classes:
static activity vs. dynamic activity. The static activity
meta-class includes standing and sitting while the dynamic
activity meta-class includes the remaining seven activities.
Then, on the second layer, walking-related activities (walk
forward, walk left, walk right, go upstairs, and go down-
stairs) are differentiated from jumping and running. Finally,
the classifiers at the third and fourth layer focus on recog-
nizing different activities related to walking.

To determine the best feature sets for classifiers at each
layer, SF'S is used due to its good performance. We follow
the same leave-one-subject-out cross validation strategy to
perform feature selection and classification at each layer. For
classifiers 1, 2, 3, and 6, the maximum classification accu-
racy achieved and the corresponding number of features se-
lected (in parentheses) are shown in Figure 5 in red. For the
remaining classifiers, the number of features selected when
achieving the maximum accuracy is greater than 50. To
lower the computational cost, we use instead the number of



features at which the classification accuracy reaches the first
local maximum. These parameters are shown in red and
in parentheses as before. Based on the structure and the
features selected at each layer, the averaged testing classifi-
cation accuracy of the overall multi-layer classifier is 93.1%.
This result is 3.8% higher than the accuracy achieved by the
single-layer classifier when the top 50 features are used.

Table 5 lists the selected physical features at each clas-
sifier that are the most important to differentiate different
activity subsets. For example, as expected, features Al and
VI are useful in differentiating static activity and dynamic
actiity at classifier 1 (C1). At C2, intensity-related features
such as VI, AAE, ARE are selected. AVH and CAGH are
also selected since walking, running, and jumping have dif-
ferent velocities and intensities along the heading direction.
At C4, the eigenvalues along both gravity and heading di-
rections are selected, matching the result in Figure 1(d). At
C6, ARATG is selected, matching the result in Figure 1(c).
Finally, at C7, both AVG and CAGH are selected since go-
ing upstairs and going downstairs exhibit different velocities
and intensities along the vertical direction.

Classifier | 1 2 3 4 5 6 7

Physical | AL, | VI, EVA(L), | AL | VL, EVA, | VI, AVG, | ARATG, | CAGH,
Features | VI | CAGH, AAE, AAE | CAGH ARATG, | CAGH AVG
Selected AVH, ARE CAGH

Table 5: The physical features selected at each layer

7. CONCLUSION AND FUTURE WORK

In this paper, a human activity recognition framework
based on feature selection techniques is presented. We ex-
amined three feature selection methods and found that the
sequential forward selection (SF'S) method achieved the best
performance compared to Relief-F and single feature clas-
sification (SFC) methods. In addition, we have demon-
strated that our self-designed physical features make sig-
nificant contributions to the recognition system. Finally,
we have shown that the feature selection framework with a
hierarchical structure improves the recognition performance
compared to the single-layer framework. However, the struc-
ture of the hierarchical framework, i.e. how the different
classes are arranged in meta-classes, is designed manually,
based on domain knowledge. Although this type of knowl-
edge may generally be helpful when designing recognition
systems, in our future work, we will explore methods to
learn the structure automatically in a data-driven manner.
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