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Abstract. In many current medical applications of image analysis, objects are detected and delimited 
by boundary curves or surfaces. Yet the most effective multivariate statistics available pertain to 
labeled points (landmarks) only. In the finite-dimensional feature space that landmarks support, 
each case of a data set is equivalent to a deformation map deriving it from the average form. This 
paper introduces a new extension of the finite-dimensional spline-based approach for incorporating 
edge information. In this implementation edgels are restricted to landmark loci: they are interpreted 
as pairs of landmarks at infinitesimal separation in a specific direction. The effect of changing edge 
direction is a singular perturbation of the thin-plate spline for the landmarks alone. An appropriate 
normalization yields a basis for image deformations corresponding to changes of edge direction 
without landmark movement; this basis complements the basis of landmark deformations ignoring 
edge information. We derive explicit formulas for these edge warps, evaluate the quadratic form 
expressing bending energies of their formal combinations, and show the resulting spectrum of edge 
features in typical scenes. These expressions will aid all investigations into medical images that entail 
comparisons of anatomical scene analyses to a normative or typical form. 
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1 Introduction 

Thin-plate splines originated in a nineteenth- 
century problem of continuum mechanics, the 
bending of a thin metal plate subject to stresses 
normal to its rest position. The mathematics of 
this problem, which involves solution of the bi- 
harmonic equation under diverse boundary con- 
ditions, was adapted for interpolation theory by 
Duchon [1] and Meinguet [2], and shortly there- 
after it was introduced into computer graphics 
by Terzopoulos and his colleagues [3], [4]. Most 
recently, these splines have been introduced into 
morphometrics, the biometrics of shape, where 
they have revolutionized statistical analysis and 
visualization for one type of data peculiar to 
that field. 

A landmark is a point having not only a Carte- 
sian location in a picture plane but also a ho- 
mologous (biologically corresponding) point in 

every other picture of a data set. One familiar 
example of such a point is the bridge of the 
nose in photographs of the human face in pro- 
file. The thin-plate-spline interpolant supplies 
a smooth surface through any combination of 
heights over any combination of knots in a base 
plane. Applications to morphometrics regard 
the coordinates of any one set of landmark lo- 
cations as if they were heights above the picture 
of the landmark locations in any other form. 
The relation between any two configurations 
of correspondingly labeled landmark locations 
combines two thin-plate splines on the same set 
of knots, which are taken as the locations of the 
landmarks in one of the forms. One of these 
splines uses as its heights the x coordinates of 
the landmark locations in a second configura- 
tion, and the other spline uses for its heights the 
y coordinates of that same second set of land- 
marks. There results a model of the landmark 
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rearrangement as a deformation that takes the 
whole of the picture plane of one of the sets of 
landmarks onto the picture plane of the other, a 
mapping in which every pair of correspondingly 
labeled landmarks corresponds and that is pleas- 
antly (indeed, optimally) smooth in between. 

The splines not only supply a visualization of 
the interpolation, a solution of D'Arcy Thomp- 
son's old "problem of Cartesian transformation" 
[5], but also structure the multivariate shape 

space of the landmark locations by rotating it 
to a very useful new basis that is a function 
of the typical landmark configuration. Two di- 
mensions of the space of landmark shapes are 
reserved to represent the affine transformations, 
or uniform shears, maps whose derivatives are 
the same everywhere; the remaining dimensions 
span the transformations having derivatives that 
vary from point to point of the interpolating 
map. Any thin-plate spline has a bending en- 

ergy, the (idealized) physical energy required to 
bend an infinite, infinitely thin metal plate into 
the specified form from an initially fiat con- 
figuration. By extension, any deformation of 
a landmark configuration modeled in this way 
has a bending energy, the sum of the ener- 
gies of its two plates. A useful set of features 
into which deformations may be decomposed is 
the set of principal warps, eigenfunctions of 
the bending energy with respect to summed 
squared landmark displacement in the picture 
plane. Because relative vertical displacement 
between adjacent landmarks requires less energy 
as the landmarks are separated, these eigenvec- 
tors emerge ordered by an effective geometric 
scale for each feature. A recent monograph [6] 
explains this approach to biometrics in consid- 
erable detail. 

In supplying a natural basis of features for 
the statistical space of landmark shapes near 
a mean form, the splines allow a tremendous 
expansion of morphometric technology for this 
special sort of data. The affine component and 
the principal warps of an observed sample of 
forms not only permit statistical tests of group 
differences, correlations, and the like but also 
supply a suggestive range of descriptions of any 
effects of group or other cause of deformation 
that might be suspected. 

But the elegant algebra and multivariate statis- 
tics of the feature space yielded by the splines 
come at high cost: one's data must be re- 
stricted to discrete-point information, landmark 
locations only. In either morphometrics or im- 
age processing, one is accustomed to enriching 
data so discrete by information from edges or 
outlines. Such information typically is used to 
process and summarize medical images, to ordi- 
nate sets of biological forms and the like. Out- 
lines have a multivariate statistics all their own, 
based on various primitive measures of distance 
between forms that do not much accord with 
notions of biological correspondence. Further- 
more, it is typically much easier for automatic 
algorithms to acquire outlines than to acquire 
landmark locations; also, the outline methods 
can apply in contexts, such as pattern recogni- 
tion of military or industrial scenes, to which the 
biological notion of homology (true anatomical 
correspondence) is irrelevant. 

Thus although the multivariate methods for 
analysis of landmark locations are remarkably 
powerful, the data to which they apply are 
not typical of most applications of image anal- 
ysis. It would seem desirable to bridge this gap 
by adapting the multivariate statistics of land- 
mark locations to the richer data sets that are 
achievable by automatic or semiautomatic im- 
age processing. 

The methods of this paper extend the image- 
warping technology of landmark locations, in 
particular its powerful subspaces of features and 
its tools for rigorous averaging, to incorporate 
some outline information typical of the broader 
range of applications of image analysis. We 
will show, in a variety of preliminary demon- 
strations, that the landmark-driven methods and 
the outline-driven methods may be firmly welded 
together by extending the thin-plate-spline for- 
malism beyond landmark data to incorporate 
edge information at landmarks. This combina- 
tion of landmark information and edge infor- 
mation uses the latter to augment the feature 
space describing the landmarks; approaches to 
the synthesis by the opposite route, augmenting 
edge descriptors by landmark information, have 
thus far proved unavailing. The main attraction 
of the landmark analyses, the linearized low- 
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dimensional feature sets they span, will apply 
to the additional features of edge information 
as well. 

2 T h i n - P l a t e  S p l i n e s  a s  D e f o r m a t i o n s  

This section briefly reviews the formulation 
of the relatively more familiar thin-plate-spline 
(TPS) interpolant that we shall shortly perturb. 
For more details of this approach, see [6] and [7]. 

Let U be the function U(x,  y) = 1 2 + v =) 
log(x = + yZ) = r e log r, and let Pi = (xi,  yl), i = 

1, . . . ,  k, be k points in the plane. U is a funda- 
mental solution of the biharmonic equation: we 
have A e U  = 6(0,0), where 5 here is Kronecker's 
function, zero everywhere except at the origin 
but with integral equal to 1, and A = is the it- 
erated Laplacian (O=/Ox = + Oe/Oy=) 2. It can be 
shown [8] that the equation of a thin, uniform 
metal plate originally flat and now bent by ver- 
tical displacements at various points is A e U  = 0 

except at points where forces are applied. The 
equation presumes that displacements normal 
to the rest position of the plate are sufficiently 
small that strains in the plane of the plate itself, 
and their energy, can be ignored. This equation 
has been solved under a great variety of schemes 
of strain and support. The application to image 
analysis, however, rests on a scenario with no 
equivalent in the world of real plates: the dis- 
placement of an infinitely extended metal plate 
at a finite series of discrete points in a world 
wholly lacking in gravity. It was a great discovery 
in interpolation theory [1], [2] that the equation 
of so unreal a plate may be integrated as a finite 
sum of copies of the kernel function U, along 
with an affine term for a tilt at infinity, by a 

matrix manipulation of extraordinary simplicity. 

Let the knots of the spline (later to be the 
landmarks at which we are calibrating the defor- 
mation of one biological form into another) be 
at points Pi, i = 1 , . . . ,  k, in one single image. 
By writing Uij = U ( P i  - Pj),  build up matrices (o 

K Uel 0 ...  
= . ". . , ( 1 )  

\ 1 gk2 "'" 

x l  

x2 Y2 
Q = . . , (2) 

xk Yk 

and 

L =  (QK T Q)O , (k + 3) × (k + 3), (3) 

where O is a 3 x 3 matrix of zeros. The thin- 
plate spline f ( P )  having heights (values) hi at 
points P~. = (xi, yi), i = 1, . . . ,  k, is the function 

k 

f ( P )  = E w i U ( P  - Pi) + ao + axx + ayy, (4) 
i=1 

where 

W = ( w l  "'" Wk ao ax % ) T = L - ! y  

(5) 
with 

Y =  (hi h2 ".. hk 0 0 0) T. (6) 

Note that the w's multiply copies of the kernel 
function U = r 2 log r evaluated with respect to 

each landmark in turn, whereas the coefficients 
a0, a,, a u calibrate the function at infinity. 

Then the function f ( P )  has three crucial prop- 
erties: 

1. f ( P i )  = hi for all i. (The function f inter- 
polates the heights hi at the landmarks P~.) 
This is guaranteed by the first k rows of L. 

2. The function f has the minimum bending 
energy of all functions that interpolate the 
heights hi in that way: the minimum of 

+ 2 \axay]  + \aye]  j '  

(7) 
where the integral is taken over the entire 
picture plane. 

3. The value of this bending energy is 

_~_.~WTKW = 1 w T  " Y 

= ~--TyTL-~tY, (8) 
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where Lk 1 is the k x k upper-left submatrix 
of L -1. This value is zero precisely when 
the given heights are consistent with a linear 
surface f(x, y) = ao+axx+ayy over the knots; 
in that case the w's are all zero. 

The spectrum of L~ -1 is of considerable practi- 
cal interest in connection with biometrical anal- 
ysis. It is of rank k - 3  only; the three annihilated 
dimensions span the space of surfaces that are 
linear over the knots. The remaining k - 3  dimen- 
sions are spanned by the principal warps of the 
landmark configuration. These come in a hier- 
archy of effective geometric scales. Typically, the 
largest represents the shift of one whole diago- 
nal of the landmark configuration upward and 
the other downward, or, if the configuration is 
relatively elongated in one direction, this largest 
warp represents a bending of the splined surface 
along that long axis. Subsequent principal warps 
refer to aspects of the spline that are smaller and 
smaller in scale, until the very smallest encodes 
the discrepancy of heights in the smallest trian- 
gle of landmarks with respect to all the others. 
These eigenfunctions are very strongly depen- 
dent on the mean landmark configuration. 

In the application to images we compute two 
of these splined surfaces, one for the x coor- 
dinates of the landmarks in a second form and 
one for the y coordinates. The resulting map 
(fx(P), fu(P)) is now a deformation of one pic- 
ture onto the other that maps landmarks onto 
their homologues and has the minimum bend- 
ing energy of any such interpolant. (In this 
context one may think of bending energy as 
a sort of information, the extent to which the 
affine derivative of the interpolant varies from 
location to location). The affine part of the 
map is now an ordinary shear, which can be 
represented by its principal strains in the usual 
way; the nonlinear part now comprises one mul- 
tiple of each principal warp in the x direction 
and another in the y direction. The result is 
to project each principal warp into the picture 
plane as a partial warp, a 2-vector expressing its 
relative extent and direction, as it displaces all 
landmarks in parallel by multiples of the height 
of the corresponding principal warp. 

Samples of homologous landmark configura- 
tions can be reduced to deformations of a stan- 

dard, or of their average, in this way, and bio- 
statistical analysis of effects on these shapes can 
proceed by any familiar multivariate technique 
as applied to the scores on these partial warps. 
Figure 1 shows a typical TPS interpolant for a 
configuration of six landmarks in two positions 
of no particular symmetry. 

3 For a Single Edge-Element 

3.1 An Intuitive Approach 

We wish to investigate the behavior of the 
preceding interpolant when one landmark ap- 
proaches infinitesimally close to another along 
a straight line. Figure 2 shows a configuration 
of six landmarks: four in the form of a square, 
invariant in locations between the panels, and 
two others that are displaced between left and 
right images. The segment between them lies 
horizontally in the left-hand configuration, but it 
is sheared to a dip of 45 ° at the right. The trans- 
formation grid shows how the shearing of this 
segment is propagated outward and is damped 
by the vertices of the square. In fact, it is 
slightly overdamped: beyond the boundary of 
the original square, the spline interpolant tends 
not to the identity map but to a gentle shear 
at infinity having the opposite sense (that is, 
upward, not downward, toward the right). But 
note that that boundary is not explicitly involved 
in the computation of the spline. 

Figure 3, introducing a series of steadily 
shorter segment lengths 6, reduces the sepa- 
ration between the inner landmarks by a factor 
of 4 and also centers the one on the left. The 
separation is now 6 = 0.1 (in arbitrary units). 
The slope of the segment linking the two inner 
landmarks on the right is, of course, 45 ° . 

If we now halve the separation of the inner 
landmarks (figure 4(a)), we see that whereas the 
slope of the segment on the right is still 45 °, 
the relaxation of the induced shear has already 
set in at the separation of 0.1 representing the 
(fixed) grid spacing. The first grid intersection 
to the lower right of the center lies distinctly 
above the slope of the interlandmark segment 
at scale 5 = 0.05. To generate the correct cor- 
rection at separation 0.1, we must shear the 
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Fig. 1. 
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segment of length 0.05 downward by an angle 
whose tangent, as determined by numerical ex- 
perimentation, should be about 1.3 (figure 4(b)). 

As we continue to drive the exact spline map 
by shorter and shorter edges, the exact shear 
near the center relaxes more and more visi- 
bly. Figure 5(a) shows the spline beginning 
with a separation of 5 = 0.01, and figure 5(b) 
shows the shearing of the same segment by 
tan-l (log 0.01/ log 0.1). It is this latter spline 
that reproduces the correct shearing at separa- 
tion 0.1. Similarly, figure 6(a) shows the exact 
spline for a central segment of length 6 = 0.0001 

(of course, we can no longer see that there are 
two landmarks there), and figure 6(b) shows 
the effect of a shearing by the angle of tangent 
4 (= log0.0001/log0.1). 

This factor of the log edge length owes to the 
scaling of the kernel U(r)  = r 2 log r to a lower 
order than r z near 0. (The following argument 
will be made quite rigorous in the next sec- 
tion). If the interpolant is to leave the corners 
of the square unmoved; it cannot have large 
coefficients for the terms of the spline centered 
at those landmarks. Hence the difference of 5 
in the y coordinates of the images of the two 
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central points must be managed mainly by equal 

and opposite coefficients applying to the terms 

U(r-) and U ( ~ -  (6, 0)). That is, our interpolant 

is dominated by c[U(r-)- U(~-(6, 0))] for some 

constant c. At ~' = (0, 0) and ~" = (6, 0) these 

are q:c62 log6. Hence the value of c is nearly 

(26 log 6) -1. Far from (0, 0) (for instance, at the 

end of that grid segment of fixed length 0.1), 

the evaluate 6 - 1 ( U ( ~ -  U(~'-  (6, 0)) approaches 

VU(r) in the horizontal direction. The remain- 

ing factor of 0og6)  -1 is the one we noticed we 
had to correct in figures 4(a), 5(a), and 6(a). 

With this factor of log 6 included, as ~ ~ 0 

the slope of the interpolant grows without limit 

along (6, 0), just like that of the actual function 

VU(r) = r(21ogr + 1), but the apparent slope 

along finite segments (like those composing this 
grid) converges quickly. 

3.2 An Algebraic Development 

Now let us do all this quite formally, still for 
the special case of a shear (now upward to 

simplify signs) of an originally horizontal edgel. 

Suppose we are using the formulas of section 2 
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to interpolate the y coordinate of maps like that 

in figures 4, 5 and 6. The k landmarks/'1"" P~ 

are fixed; the (k + 1)st is separated from Pk by 

a small vector 5" = (5, 0). The matrices K and 

L and the vectors Y and W are as in section 2, 

w i t h Y = ( y ~  y2 -" yk 0 0 0) T. 

To extend the spline to incorporate an ad- 

ditional landmark P~+i = (x~+i, yk+l) = (xk + 

5, yk), construct a new matrix inversion problem 

by bordering the matrix L rather than inserting 

a column internally: write 

MT (9) 

for 

M = (U1T4S U2T+- S .. .  

U£-;T 1 xk+l yk+l) r. (10) 

We seek the (k + 1)-landmark spline represented 

by L ' - I Y  ' for Y'  = ( y T  hk+l) T. L' is (k + 4) × 
(k+4),  y ,  is a column vector of length k+4,  and 

M i s  of length k + 3 .  Here hk+l =yk+l  + 6 =  

Yk + 5, the height of tbe right end of the edge] 

segment in the right-hand image. 

L '-1 may be computed from L -1 by using the 
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standard formula [9] 

L -1 0 0) 

x(F T - I ) ,  (11) 

where F = L-1M.  We apply the formula with 
D = 0, a scalar, and - I  = -1  to get 

( L  M )  -1 ( O  1 ~ )  1 
M T = _ MTff__IM 

x ( F 1 ) ( F T - 1 ) ;  (12) 

now F is a column vector of length k + 3. 
For 5 small we can approximate M by its 

differential: 

M = (UI~--- ~ U2~- ~ . . .  

U f f ~  1 Xk+l yk+l)  r 

= ( U l k  U2k . . .  

Ukk 1 xk  yk) T + M*, (13) 

where 

M*"~(g" VkU1 g' VkU2 
6" VkUk-1 5 2log6 0 5 0) T. 

(14) 

Here, VkUi stands for the gradient of U ( P -  Pi) 

evaluated at P = Pk, whereas 6 2 log 5 is the value 
UkU 7 itself. (Recall that Ukk = 0.) Also, write 

M ° = lim M*/6 
6- - ,0  

= ({.vku~ ~ ' . v k u 2  . . .  

{.VkUk-1 0 0 1 0) T, (15) 

where t '=  (1, 0), the unit vector in the direction 
of the edgel. 

Because (Ulk U2k " -  Ukk 
the kth column of L, we have 

F = L - 1 M  

= ( 0  0 ... 0 1 0 0 

1 xk yk)T i s  

O) T + L - 1 M  *, 

(16) 

for which we can substitute the limiting value 

F° ,~(0  0 ... 0 1 0 0 0) T 

+ 5 L - I M  °. (17) 

We further need to approximate that scalar re- 
ciprocal: 

M T L - 1 M  = MT((o 0 . . .  

0 1 0 0 0 ) T + L - 1 M  *) 

=((u~k u2k . . .  

Ukk 1 xk y~)+ M *T) 

× ( ( o  o . . .  

0 1 0 0 o ) T + L - 1 M  *) 

=Ukk+2(0 0 ... 

0 1 0 0 0)M* 

+ M*TL-1M * 

252 log 6 + 62(M°TL-1M °) 

= 62(21og5 + C), (18) 

say. (This is how the term in log 6 arises. That 
the term C = M° TL-1M ° interferes with exact 
proportionality to log5 is the reason that the 
scaling of slopes in figures 4(b), 5(b), and 6(b) 
is not quite perfect.) 

The thin-plate spline on all k + 1 landmarks 
is the (k + 4)-vector L ' - I Y  ' interpreted as the 
formula for a spline mapping. Define 

+(0  0 ... 0 1 0 0 0 - 1 )  T, 

(19) 

the term in Rao's formula (12) corresponding 
to the limit from (17). Then 

0 L'-IY''~ (Lo 1 O) (ykY,) 

52(2 tog 6 + C) yk + 6 

= ( 0  0 . . .  0 0 1 0) T 

1 
- F ' ( F ° ~ Y  - (y~ + 6)).  

62(2 log 6 + C) 

(20) 
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The first term is the identity spline f ( x ,  y) = 
y, and F ° T y  = Yk + 5 M ° T L - 1 Y  = yk + 

6M°T(o  0 . . .  0 0 1) r = Yk- Hence the 
correction term by which the map L ' - I Y  I differs 
from the identity spline is approximately 

1 1 

6(21og6 + C)  F '  ~ 21og6 + C 

o ooo  o/1 
(21) 

The first k coefficients apply to the h real land- 
marks, the next three apply to the affine part 
(1, z, and y), and the last applies to the (k + 1)st 
landmark at infinitesimal distance to the right 
of the kth landmark. 

Except in the &vicinity of Pk, the first term 
inside the square brackets in (21) is very nearly 
t'. VUk, the gradient of Uk in the direction of the 
edge. This term perturbs each landmark except 
the kth to a certain extent, and it also induces 
an affine term (a shear at infinity). The sec- 
ond term inside the square brackets in (21), 
the spline L - 1 M  ° o n  the first k landmarks, 
is the mapping that exactly cancels these un- 
wanted landmark shifts. (Notice that the terms 
of M °, VkUi,  are opposite in sense to the V~Uk 
of the first term.) Because C is not a function 
of 6, in the limit 6 ---, 0 the multiplication by 2 
log 6 cancels out the first factor (2 log 6 + 6') -1 
here, the factor that made the splines of figures 

f t 

• i 

(b) 

4(a), 5(a), and 6(a) too shallow. We may then 
draw the limiting form without specifying 6 at 
all, as in figure 7. Notice three characteristic 
features of such deformations: the typical r log r 
shape of the edge through the edge element, the 
damping of this perturbation at different rates 
along and perpendicular to the edge, and the 
induction of changes of affine derivative at the 
other landmarks. The edge scale 6 is not coded 
here at all. 

Figure 7 resembles one of Timoshenko's [10]; 
we have seen these clamped splines in no other 
published source. Figure 8 shows the same 
spline as the vertical plate the equation (4) of 
which we borrowed for our in-plane work. The 
intuition that clamping is required to obtain the 
bending shown is equivalent to the observation 
that relation (21) is the limiting form deriving 
from a pair of landmarks at the middle of the 
plate, not a singleton. 

Although the dominant component t.VU(r-) of 
the edge term is a function only of the direction 
g, the presence of the other landmarks induces 
a further nonlinear part, encoded in the first 
k rows of L - 1 M  °. Figure 9 shows how these 
terms generally bend the edge kernel VU away 
from symmetry to leave landmarks invariant at 
whatever separations characterize their spacing, 
direction by direction. 

As noted in section 2, every thin-plate-spline 
interpolant minimizes a global bending energy, 
the integrated quadratic variation (7) of the x 
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and y components of the mapping separately. 
For the case of the single edgel, we can evaluate 
this energy surprisingly easily. Combining (8) 
and (21), we see that the bending energy of 
F ' / 6  is 

1 1 yi  
8~r 2 log 6 + C 

(22) 

We have 

Y' . (O . . .  1 0 0 0 - -1)T /6  = [Yk--(Yk+6)]/6 = --1 

(23) 

and 

= ( 0  . . .  0 1 )M ° = 0 .  

(24) 

Hence the bending energy of this simple unit 
shear is proportional to - (2  log 6+C) -1. Rewrit- 
ing that as 

1 1 

- 2  log , (25) 

we see the role of C = M ° T L - 1 M  ° as an 
e m b e d d e d n e s s - t h e  higher the value of C, the 
higher the bending energy of an edge shear of 
fixed vertical extent, whatever the value of 6. If a 
shear is at angle tan -1 s instead of 45 ° = tan -1 1, 
the bending energy scales as the square of the 
tangent, approximately -s2/(2  log 6 + C). 

As set forth here, formula (21) applies only to 
the case of unit shears in an edgel that is orig- 
inally horizontal. Shearing by an angle other 
than tan -1 1 is, of course, managed by an ap- 
propriate multiple of this expression. It is easily 
verified [7] that the thin-plate-spline interpolant 
relating any pair of landmark configurations is 
appropriately covariant under rotation of either 
configuration separately. The covariance ex- 
tends to the limits of landmark configurations 
driving these edgel interpolants. Thus relation 
(21) actually applies to shears of edgels begin- 
ning at any orientation on the page. The ex- 
pression L - ~ M  ° transforms appropriately under 
rotations; one merely applies formula (21) to 
the Cartesian coordinate perpendicular to the 
edgel, leaving the coordinate along the edgel 
unchanged. This is shown algebraically in the 
context of an analysis of many edgels at once, 
to which we now turn. 

4 For Many Edgeis 

The procedure of the previous section can be 
carried out for many edgels at the same time. 
Whatever their positions and orientations, the 
limiting form of the warp may be expressed in 
a simple closed form. Although the derivation 
is an instructive generalization of that in the 
preceding section, some readers may wish to 
skip over it. Those readers need to know mainly 
that the interpolant is given by the spline of (33) 
with coefficients from (45), (47), (50), and (52) 
combined according to (51) and that the edgel 

bending-energy matrix N referred to in section 5 
below generalizes the embeddedness C of the 
single-edgel analysis according to (66). 
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4.1 Minimum-Energy Warp with Specified Finite 

Differences 

Let there be k landmark locations at P1, . . . ,  Pk, 
as before, and now let there be m > 0 edge spec- 
ifications. The j th  edge specification pertains 
to the direction t~ --- (tj,~, tj, y) = (cos0~, sin0j) 
through the iflh landmark P#. It will be use- 
ful to arrange these edge indices ij in a sparse 
matrix J having m rows of k elements, the j t h  
row having 1 in the iflh position and zeros else- 
where. In the analyses in this paper, no two 
values of ij can be the same (but see the re- 
mark at the end of subsection 4.3). We will first 
solve the problem of a scalar function (vertical 
thin plate) with specified heights h~ at the land- 
marks P/ and specified slopes sj along edges j ;  
then, in subsection 4.4 below, we will combine 
the solutions for x and y coordinates separately 
into a single plane deformation, just as in the 
formalism of the landmark-driven spline [6]. 

In this section only, we are somewhat free with 
matters of vector and matrix notation. The 
letter a will stand for any of several vectors 
(al, . . . ,  ak) T, b will stand for any of several m- 
vectors (bl, . . . ,  bin) T, and e will stand for any 
of several 3-vectors (cl, c2, c3) T. Subscripts 0 

and 1 (as in splines f0 and fl  or energies E0 
and El)  refer to landmark-driven terms and 
edge-driven modifications, respectively; thus a0 
is the k-vector a for the spline on landmarks 
only. Elements of vectors and matrices will often 
themselves be vectors or matrices. When 0 is 
used as a vector or matrix, its dimensions should 
likewise be understood from context. Subscripts 
or superscripts x and y will denote the usual 
Cartesian components  of R z. 

For any finite 5 the spline we seek is an exact 
spline on ( k + m )  landmarks. It therefore may be 
written out in full in a partitioning of equation 
(4): we have 

= - + - - 5 t j )  

i=1 j=l 

+ cl + c2x + c3y, (26) 

where z = (x, y) E R 2 and U(z) = [z1210g Izl. 
Using these points and images in the standard 
thin-plate-spline machinery, we convert equation 

(5) into one for a, b, and c: 

K K t 

K rr K" 
Q T  Q T  j T  + 5 V  T 

= h + S s  . 

0 

JQ + 5V 

0 

(27) 

In equation (27) the matrices K and Q are as 
in equations (1) and (2), and the new matrices 
V, K', K" are defined as follows: 

Ii 1 tlz ] V = " , (28) 

tm, x t ,u 

U(P1 - Pq - 6tl) . . .  U(P1 - PiT. - 6 t . J ]  

U(P2 P / t - 6 t l ) " ' "  U(P2 Pim 6tin) 1 

[u(pk Ph - ~tl) --. u(Pk - P~m ~t~)] 

(29) 

and 

F U(PII + 6tl - "Pll - 6tl) "'" U(PII + ~Stl - P~ - 6tin) "] 
K i t =  I u(Pi2 + 6t2- P~l U(Pi2 + 't2-- Pira --Stm) l . 

kU(Pim +6tm--Pi 1 --~tl) U(Pirn +6tm--Pim -- ~m)] 
( 3 0 )  

(Note that the diagonal of K"  is identically zero.) 
It will also be helpful to rewrite the matrix K 
in a parallel form: 

K = 

u ( P 1  - 5 )  

u ( e 2  - 

U ( Pk - /°1)  

• . .  u ( 5  - e k ) q  

• " U(P2-Pk)[.. 

. . .  U ( P k -  Pk)-] 

( 3 1 )  

The spline of equations (26) and (27) is the 
function with least bending energy that has the 
right heights and, when averaged over edges 
of length 5, the right slopes at the subset of 
landmarks specified by the ij. From equation 
(8) that bending energy is 

8~r K rr K"  . (32) 

We simplify the behavior of this spline as 6 
tends to 0 by using a first-order approximation 



These new coefficient vectors a and b are related 
to those of equations (26) and (27) by linear 
operations. Applying corresponding operations 

to the matrix in the spline and energy equations 
above and swapping the order of b and c gives 

To expand L ~ as 6 ~ O, we need a compact 
notation for the derivatives of U. Its derivative 

in the direction t will be denoted Ut. Thus 

Using this notation, we may simplify L ~ by 
expanding it to first order in 6 component by 

component. The entries of ( 1 / 6 ) ( K ' - K J  T) a r e  

Bookstein and Green 

Hence 

4.2 Approximating L ~ and if-1 

where Im is the m x m identity matrix and 
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To approximate L '-1, use the trick of parti- 
tioned-matrix inversion we introduced in equa- 
tion (11). The appropriate partition of U uses 
the submatrix 

independent of 6 as before, and also 

[ 11 M =  vT +0(610g6), 

D = ( -2  log 6)Ira - K2 + 0(6). (44) 

Putting 

we get 

Lt-I = [ L-10 

x (Ira 

I-K1 ] Mr.. V~r , 

N = K2 + MTL-1M, 

21og6 [ -L-1MIm ] 

(45) 

+ 0(6). 

(46) 

4.3 Approximating the Spline Coefficients 

Substituting into the spline equation, we recon- 
struct the zero-order terms of the spline (33) as 

(ac0o ° ) ( a 0 )  = L_I ( h )  (47) , where co 

and the zero-order term of the energy (34) as 

1 T °) 
1 ~r 

(48) 

These are the coefficients and energy of the 
thin-plate spline f0 resulting from the landmark 
locations alone. The rest of the expression is a 
function of 

A = In, J 0 = s - MrL-lh, (49) 
~q 

a vector of differences between the desired 
slopes s and the (infinitesimal) slopes v = 
MTL-lh resulting from the landmark-driven 
map fo. The Cartesian components of v will 
be written 

vx= MT L 1 hx = MT"L-1 0 and v~ 

From equations (34) and (46) the coefficients 
of the difference terms [the middle summation 
in equation (33)] are approximately 

bl - -  2 log 6 Im+ A. (50) 

The complete spline is then 

+ o(6) (51a) 

with energy 

E = E0 + E~ + 0(6). (51b) 

Here 

and 

( ; i )  = -L-aMbl (52) 

1 - 1  T (  N ) -1 
E1 - 2j-ff/g  a Im + 21- g6 

- - 2 1 ° g 6 b T ( I m + ~ ) b l  " ~ - ~  I 

z5 

(53) 

If we denote the spline with coefficients al, 
bl, and c~ by fl, then it can be verified that 
(uniformly on compact subsets of R 2) 

f = f0 + fl + off) ,  

Vf  = V(f0 + fl) + O(-61og6), 

v i i  = o(1), 

(54) 

Within a ball of radius 6 about each edgel the 
slopes of both f and f0 + fl differ from what 
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is specified by the edgel at that landmark by an 
amount O ( - 1 / l o g  6). 

Uniformly on compact subsets of R 2 we have 

~ ( U ( z -  Pij - 6 t j ) -  U ( z -  P#)) 

= -Ut j (z  - Pij) + O(-61og6). (55) 

(The convergence is not 0(6) because U ( z - P i j )  
has infinite second derivative at Pij.) Hence if 

we define ~ by 

n 

f l (Z)  = Z al, iU(z  - -  Pi) - bl,jUt~(z - Pi~) 
i=1 j = l  

"t- e l ,  lX  -t- Cl,2Y -I- Cl,3 ,  (56) 

then fl = ~ + O(-61og6). (The coefficients 
are the elements of the vectors el, bl, and cl 
of equation (51a).) Note that al and cl are 
the coefficients of the conventional thin-plate 
spline that, when added to the combination 
of - U t j ( z -  P#) functions with coefficients bl, 
exactly reverses the displacements of the land- 
marks and makes the function O(Iz]) at infinity. 
Hence the approximation by f0 + ~ is exact at 
the landmarks. 

Equation (50) for bl can be rewritten as 

(-21og6)bl - K2b I - M T L - 1 M b l  = A .  (57) 

The right-hand side is the desired change in 
slope at each edge. The second and third terms 
on the left-hand side are the slopes at each edge 
induced by the Ut functions at different land- 
marks and by the correcting thin-plate spline. 
Although each Ut term has infinite slope at its 
landmark in the direction of its edge, at scale 6 
(roughly speaking) it has slope -21og6. 

It can be verified that ~1 is invariant under 
affine transformations of the image space, but 
not of the domain, and that the approximations 
all hold uniformly in s for bounded s. 

This formula is itself only a special case, in 
which we have assumed that no two edge spec- 
ifications lie at the same landmark (that is, that 
ii 7 ~ ij for i ~ j). The algebra of these cor- 
rection terms may be extended to include such 
combinations of slope specifications, allowing, 
in effect, a full specification of the normal to 
the thin-plate spline as a surface. A term J'  

would then be added to the approximation to 
the mixed second derivative in equation (41 ) -  
we actually have 

~-ff(K" - - + J K J  T) J K '  Krr jT  

= (--2 log 6)I~ - K2 + J' + 0 ( 6 ) ,  (41') 

where J '  is an m x m edge-incidence matrix that is 
log 2 for any pair of edges at the same landmark 
and is otherwise 0. The additional term contin- 
ues to appear through all subsequent equations. 
It is a function of the specific limiting process 
invoked here and can be removed by a different 
approach to the singular perturbation. 

4.4 Extension to Edgels in Two Dimensions 

The development of (26)-(57) treats a single 
dimension of thin-plate splining. Now consider 
both components of the deformation. Dropping 
the subscript 1 from be, we have 

(bb:) = -21ogl 6 [0  Q ~ ] - I ( A A : )  

and 

E1 - - 2  log 6 by)' (58) 

where 

Suppose that all the edges tj are required to 
be mapped to directions given by unit vectors 
wj but that they are allowed to grow or shrink. 
Let W x denote the diagonal matrix with the 
components of the vector w x along the diagonal, 
and similarly for W y. It is convenient to make 
a change of basis at each edge to components 
along and perpendicular to the target directions, 
even though we will continue to refer to them 
by subscripts x and y: 

A~ 
(59) 



Edgels with Landmarks 245 

Then 

and 

-21og6 QD Qs ~u  

E1 - -21ogb QS _QD 

(61) 
where QS = WXQWX + W Y Q W  u and QZ) = 
W X Q W  y _ w Y o w  ~. 

Ifyy is the assigned change of slope in this new 
basis, the requirement placed on the deformed 
image is Yy = 0. Since A = s -  v, this means 

Ay = -'gy = - ( - W Y v ~  + WXvy). (62) 

The Ax, j (lengths of the resulting edgels on the 
right) are arbitrary. To be consistent with our 
approach of selecting the function satisfying the 
constraints with least bending energy, equation 
(61), we should minimize over them as well. 

The minimum is at b~ = 0, giving 

-1  
"by- 21--~6(Q s) IA.v, 

E1 - -21°g6~ruQSb u. (63) 
8~r 

Note that 
~u,J = IvJ] sin AOj, (64) 

where AOj is the angle of rotation from vj to 
wj. If the wj are nearly parallel to the vj (so 
that the edgel-driven part of the deformation is 
small), to first order we may replace W ~" and WY 
by V ~ and VV (the components of the images 
under f0 of the starting edge orientations t) in 
the equations for QS and in the change of basis 
for b, equations (59), and we may replace the 

Au, J by AOj. In this case the deformation is 
linear in the angles of rotation at each edgel 
separately, and the matrix QS can be simplified 
as Im+ N / 2  log 6, where 

(-N)ij = (vi . vj)N~j, i, j = 1, 2 . . . .  , m. (65) 

(The terms Nij are characterized in (42) and 
(45).) 

Likewise, the bending energy simplifies in the 
limit of small rotations. Collect the rotational 

deficits in an m-vector AO = {AOj}. If all 
landmarks are fixed (h~ = h.~ = 0), this is just 
the vector of rotations, edgel by edgel, from 
the t's to the w's. Then the bending energy of 
equation (58) is very nearly 

1-1  r(  
(66) 

(Compare expression (25), in which AO = 1, a 
scalar, and the factor of 87r is suppressed.) 

Just as the general method for a one- 
dimensional sheet can be extended to include 
specification of two edges at a single landmark, 
so the extension to two dimensions of interpola- 
tion allows for specification of two directions of 
derivatives at a landmark. That is, the method 
actually incorporates constraints on the general 
affine derivative in the &vicinity of landmarks, 
not merely these edgel shears. The rotations 
AOj of the present discussion can actually be ar- 
bitrary 2-vectors applying to alter the images of 
the end points of the landmark-mapped edgels 
tj under the linearized mapping. If the vector tj 
is extended along its length, there results a local- 
ized dilatation, and so on. A computer program 
for this purpose is introduced in [11], and several 
useful special cases are demonstrated there. 

The freedom afforded by these combinations 
of edgel shears is one of the great pleasures of 
our work station. Our videotape [12] demon- 
strates the construction of these deformations 
in interactive mode. In a journal such as this 
we can show only the final frame of one such 
session. Figure 10(a) is a typical mild spline 
on five landmarks. Figure 10(b) is the result of 
playfully torquing all of the edgels shown. Con- 
siderable concentration is required to construe 
this surface as the flat deformation grid actually 
being visualized. 

5 Principal Edgel Warps as a Basis for the 

Space of Edgels 

Application of these ideas to biomedical scene 
analysis proceeds by identifying edgels with tan- 
gents or normals to biological outlines running 
through landmark locations. Figure 11 shows 
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a preliminary, although still unrealistically sym- 
metric, scene of this sort in which the edgel is 
tangent to a standard outline at one of four 
landmarks in the form of a square. The effect 
of the mapping f{ is suddenly interpretable in a 
different language: what is induced by the edgel 
shear we are abstracting is not a pseudovertical 
shearing, as in earlier figures, but is a bulge of 
the outline itself. Comparing figures l l (b)  and 
ll(c),  we see how the edgel-driven warps of 
images, when applied to outlines alone, specify 
changes of features of those outlines that are 
perceptually independent of the features of the 
planar maps that underlie them. 

For the case of landmark data alone, the bend- 
ing energy (8) is a quadratic form in the right- 
hand landmark coordinates, the form yTL~IY, 
having an eigenanalysis of great usefulness [6], 
as briefly sketched in section 1. In the vicinity of 
a mean form about which changes are small, the 
approximate bending energy for the additional 
deformation according with edgels, expression 
(66), is likewise of a very suggestive form. 
It is incommensurate with the bending energy 
that pertains to the landmark reconfiguration, 
i.e., it is weighted by an indeterminate factor 
-(21og6) -~, but otherwise its spectrum is that 

of-N and hence is independent of the value of ~. 
For landmarks, the eigenvectors of the bend- 

ing-energy quadratic form represent patterns of 

landmark displacement having stationary values 
of that energy for a unit sum of squares of 
Cartesian displacements. For our edgels, the 
eigenvectors of N represent, similarly, patterns 
of coordinated small rotations of edgels that, 
taken as a whole, have stationary values of bend- 
ing energy for a fixed sum of squares of these 
rotations. They collect the interactions of these 
multiple rotations by a specific sort of propa- 
gation of those rotations across the interior of 
a form. In this matter they contrast substan- 
tially with other approaches to the interactions 
of edgels [13], [14] that consider only edgels 
aligned on a single outline and that represent 
localizations in arc length. The edgel warps are 
not restricted to outlines but can apply to any 
configuration of edgels inside or on the bound- 
ary of a biological image. 

We shall refer to the eigenvectors of .N, and 
also to the deformations they specify, as thepr/n- 
cipal edgel warps of the schemes of landmarks Pi 
and P[ and edgels tj. These warps depend on 
all three of these arguments in a strongly non- 
linear manner. The remainder of this section 
exemplifies these bases for various cases char- 
acterized by diverse degrees of symmetry. In 
all these analyses of circles, the landmarks are 
presumed f ixed- in  the preceding formalism we 
take h x = hY = 0, so that the spline f0 is the 
identity mapping. 



Edgels with Landmarks 247 

/r 

~x 

C a ) 

Fig. 11. 

i J  
/ [  

1 

%. 

/ 
/ 

I 

(b) 

(c) 

5.1 Some Symmetrical Configurations 

The simplest edgel analysis after the one-edgel 
case of section 3 is the extension to a pair of 
edgels. The form of the principal edgel warps 
depends crucially on the angle between the edgel 
directions tl and t2 and the angle between those 
directions and the segment P1 - P 2  linking the 
landmarks at which the edgels lie. In the matrix 
.~ it should be noted that perpendicular edgels 
(those with t i .  tj = 0) do not interact at all. 
The analysis of pairs of edgels, then, can be 

restricted to the case of parallel edgels only. 
The characteristic scenarios involve edgels that 
are parallel to or perpendicular to the segment 
linking the landmarks at which they lie. 

For the situation of Figure 12, to which we 
have added a little additional biological scenery, 
the matrix 

(3.63 2.31"~ 
N =  \2.31 3.63J"  

(The specific entries here are a mild function 
of the number and locations of those additional 
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landmarks.) Its eigenvectors (1,4-1) represent 
maps that shear the edgels to the same extent 
either in the same sense or in opposite senses. 
These two principal edgel warps differ consider- 
ably in specific bending energy. The deforma- 
tions corresponding to a summed squared edgel 
shear IIAOII of unity are shown in figure 13, 
and the splined surfaces corresponding to the de- 
formed y coordinates are shown in figure 14. In 
both figures part (a) looks the smoother: the im- 
pression is clearly of a virtual landmark located 
vaguely near the middle of the scene and drag- 
ging the interior upward or downward. (Note, 
however, in the surface visualization that in fact 
the bending has relaxed between the edgels by 
just a bit.) The more bent principal edgel warp 
appears to be an affine transformation highly lo- 
calized to the interior of the configuration. The 
surface representation is perhaps the clearer; it 
shows that this warp is a pronounced twist of 
its coordinate sheet linking equal but opposite 
r l o g r  terms at the two landmarks. The bend- 
ing energy is large because the derivative Ofy/Ox 
must change sign between the landmarks, lead- 
ing to a large second derivative 02fJOxOy and 
thus a large quadratic variation (7). 

A typical scene in which edgels point at each 
other might have them lying at opposite ends 
of an organismal axis, as in figure 15. Now 
the matrix 

_ ~ =  ( 4.70 - 1 . 3 1 )  
-1.31 4.70 " 

The principal edgel warps (figure 16) are still 
the same combinations of parallel or antipar- 
allel edge shear, but the maps they drive are 
somewhat altered. The more bent mapping, 
corresponding to the eigenvector (1 , -1) ,  now 
indeed looks the more bent as a map. The in- 
duced S-curve along the equator again requires 
a large variation of Ofy/Ox, now entailing large 
02fJOx2; the less bent grid, as in the previous 
case, seems to show the effect of a virtual land- 
mark near the middle. These impressions are 
consistent with the explicit representation of the 
deformed y coordinates as surfaces in figure 17. 
A pairing of two of the maps of figure 16(b) at 
90 ° rotates the interior of the circle with respect 
to the exterior. 

The preceding two examples were not par- 
ticularly biological in that the edgels were not 
associated with the outline (the circle) drawn. 
(Indeed, in the second of the two examples the 
shape of that circle is hardly altered at all.) 
Figure 18 shows a more suggestive, although 
still unrealistically symmetric, scene in which 
the edgels lie along tangents to a standard out- 
line at four landmarks in the form of a square. 
Because in this case t~. tj = 0 for i + j odd, 

the eigenanalysis of _~ reduces to two copies 
(one for each of the pairs of parallel edgels) of 
the analysis of a two-edgel case, the scene of 
figure 15 in which the edgels are rotated by 90 °. 
For this reduced problem 

~ =  ( 2.61 - 0 . 7 7 )  
-0.77 2.61 " 

The principal edgel warps are not very differ- 
ent in energy. Each leaves two edgels clamped 
and twists the other two in either parallel or 
antiparallel fashion, as shown in figures 18(b) 
and 18(c); the more bent, in this case that for 
the eigenvector (1,-1) ,  may be referred to as 
a taco bell (after the logo of an American fast- 
food chain). 

5.2 Principal Edgel Warps in the General Case 

The degeneracy of the preceding example is 
broken quite easily. Figure 19 shows a small 
modification in which a landmark is moved and 
its edgel is rotated to remain tangent to the 
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circle. The matrix _N is now (with landmarks 
numbered counterclockwise from the lower left) 

( 0.43. O. -0.65 -1.58'~ 
2.58 O. -0.46 | 

(67) 
~ -0.65 0. 3.97 1.11 ] "  
\ - 1 . 5 8  -0.46 1.11 1 .16/  

The zero entries correspond to the perpendic- 
ularity between the edgel at the second landmark 
and those at the first and third. 

All eigenvalues are distinct, and the differ- 
ent principal edgel warps now represent con- 
ceptually quite distinct aspects of the bending 
of this outline around its landmarks. The most- 
bent principal edgel warp, figure 19(b), is the 
induction of an S-curve between the pair of 
landmarks at closest separation. Taken with 

this sign, it grows a nose. The second-most- 
bent warp, figure 19(c), bulges out (when taken 
with this sign) rather less locally, the whole 
length of this shortest interlandmark arc. This 
is, perhaps, prognathism. The third-most-bent 
principal edgel warp is the same deformation 
on the other side, a combined protrusion and 
downward shear. The least-bent principal edgel 
warp, figure 19(e), is by far the most interesting. 
It represents an extrusion of the interior along 
the arc of the outline at the upper left, the 
arc least constrained by landmarks. The figure 
shows an uncanny resemblance to the creature 
called the Shmoo in the comic strip "Li'l Ab- 
ner" that was popular in the United States in 
the 1950's and 1960's. (Its face is at the upper 
right, and its front and back feet are at the 
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bottom.) The Shmoo (which laid eggs in car- 
tons and produced milk in bottles) was drawn 
as a creature of infinite gentleness; these warps, 
in their curving, seem to incorporate some of 
that visual aspect of gentleness as well. Quite 
literally, one cannot imagine a twisting of this 
outline, leaving the landmarks alone, that is less 
bent than the form drawn here. 

As the number of edgels increases further, the 
principal-edgel warps ramify among the land- 
marks by combining aspects of these special 
cases. Figure 20, for instance, shows a com- 
bination in which there is no evidence of any 
starting circle. The principal edgel warps of 
highest specific bending, such as that in fig- 
ure 20(b), are those that twist single edgels that 
are closely spaced with respect to others lying at 
parallel orientation nearby. The warps of lowest 
and second-lowest specific bending, figures 20(c) 
and 20(d), pull out features like those we have 
been studying for the square by combination of 
appropriately large-scale features. In all three of 
these warps the landmarks have not moved. The 
eigenstructure of the matrix _N, in fact, serves 
as a useful formalism for extracting scales of or- 
ganization of flow in scenes as arbitrary as this. 

6 Application to Medical Images 

Let us turn from these abstractions to a data set 
of real images, as promised: 14 midsagittal MRI 
scans of normal UCLA medical students. The 

images were originally gathered and their land- 
marks located by Daniel Valentino of UCLA. 
These data have been the subject of analysis 
in a previous videotape [15], and the average 
picture the landmarks support has been pub- 
lished previously [16], [17]. It was generated by 
unwarping each image to a standard configura- 
tion, the true (statistical) average of the 14 sets 
of landmarks, and then averaging the unwarped 
pictures pixelwise. In that figure, one of us 
(EL.B.) traced by hand a set of five contours, 
two open and three closed, corresponding to the 
outline drawing in figure 21. It is this outline 
that will bear the landmarks and edgels for the 
demonstration to follow. A demonstration in 
real time is available on a recently published 
videotape [12]. 

The machinery of the splines applies to fig- 
ure 21 as to any other two-dimensional scene. 
We can move landmarks around, and we can de- 
fine and shear edgels whether or not we choose 
to display the effect of the resulting mapping 
on a whole Cartesian grid. Figure 22 shows 
an artificial acrocephaly-we grabbed the ver- 
tex of the head and dragged it upward -and  
figure 23 shows the further evolution of one 
of the students away from his pithecanthropic 
forebears by shearing his frontal lobe forward. 
Corresponding to these deformations there is a 
warping of any underlying averaged image into 
that of the case and an unwarping of the case 
into the coordinate system of that average. 

The single-edgel mapping F' of relation (21) 
is well defined up to a factor of proportional- 
ity. In the applications shown here, whether to 
grids or to pictures, that indeterminacy charac- 
terizes the geometric scale at which the finite 
separation vector along t" displays precisely the 
change of slope that was specified. These scales, 
although individually indeterminate, may never- 
theless take on empirically characterized ratios 
from landmark to landmark of a scene; we will 
investigate these in a subsequent paper. In 
the context of multiscale analysis of individual 
images, as by convolutions with derivatives of 
Gaussians, this implies that whether or not in- 
dividual edge elements have a particular spatial 
scale, rotations (shears) of edgels have particular 
scales that can be estimated from image series. 
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We combine these two tactics, the warping 
of the standard outline and the warping of the 
specimen images, in a new, potentially more 
precise approach to the problems of image av- 
eraging (the "brain atlas problem" of earlier 
articles [17], [181) and of image covariances. 

It is easiest to proceed by holding the patient's 
image fixed on the screen and then warping the 
standard outline interactively until it appears to 
match adequately the important contours of the 
specimen image. The landmarks and edgels of 
figure 21 may be considered a basis of nine land- 
marks and four edgels for the representation of 
any specimen. Figure 24 shows an arbitrary su- 

perposition over a single case; figure 25 matches 
the landmark locations (a step that might well 
be taken almost wholly automatically); figure 26 
matches the four edgel slopes as well. This little 
interactive demonstration substitutes for a rigor- 
ous algorithm not worth developing on a sample 
so small: an adaptive low-dimensional version 
of the familiar deformable template. Notice 
that the edgel in the frontal lobe is a free dial 
corresponding to no local image information, 
whereas the other three all align with image 
gradients that themselves could be extracted by 
local operations. To this matching of warped 
standard outline to specimen contours corre- 
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Fig. 18. 
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sponds a warping function (figure 26) that, in- 
verted, converts the patient's gray levels to the 
standardized image of figure 27. The panels of 
figure 28 show other instances of this warping 

function. 
When all specimens of the data set have been 

digitized as instantiations of the standard, we 
may proceed to average all of the unwarped im- 
ages pixelwise in the newly consistent coordinate 
system. This summary (figure 29) shows greater 
sharpness in several regions of the image than 
does an average driven only by landmarks ([16], 
[17]). Whereas in one sense such improve- 
ment is surely to be expected (since the edges 

were explicitly sharpened by actual geometric 
intervention), in another it represents a consid- 
erable enrichment of the stereotactic resources 
that can be turned to image averaging. The 
contours of this more sharply averaged picture 
could be traced in turn and the entire atlas com- 
putation iterated, applied to sharpen contours 
of specific organs, such as the pons or the cere- 
bellum [12], or applied to new series of images, 
such as those with specific diseases, those un- 
dergoing specific treatments, or those that have 
been histologically labeled in particular ways. 
We might also have studied the endophrenology 
of this little example- the  correlations between 
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Fig. 20. 

landmark position and edge orientation-or we 

might have explored other structural-functional 

associations, as between MRI shape and PET 

activation patterns. 

7 Discussion 

7.1 Warps, Templates, and Edgels 

For a collection of images having a well- 

characterized mean landmark configuration P1 

• " Pk and typical orientations of edge elements 

t l ' "  t,,~ at some subset of these landmarks, the 

elementary edgel warps F' of relation (21), ap- 

propriately reoriented, serve as a finite basis 

spanning the feature space for edgels promised 

in our title. Easily evaluated by finite matrix 

operations, they apply quite flexibly for the 

parametric instantiation of arbitrarily detailed 

templates deriving from typical or validly aver- 

aged images rather than from simple geometric 

models. The principal edgel warps provide an 

alternative basis, an orthogonal rotation of the 
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collection of separate edgels organized by effec- 
tive geometrical scale. 

The same technology that warps templates 
can be applied to unwarp specimen images into 
a normative coordinate system in which gray- 
level features can be extracted with great preci- 
sion of biological localization. Furthermore, all 
the information used in these unusually flexible 
warping operations may be expressed in a finite- 
dimensional linearized feature space, spanned 
by principal warps and principal edgel warps; 
with the aid of this vector space any warping 

may be run in reverse to standardize the ge- 
ometry of a specimen image without otherwise 
adjusting its gray levels. (Of course, if a physi- 
cal theory calls for the adjustment of those gray 
levels, so as to conserve total counts, such adjust- 
ments can be incorporated in the course of the 
unwarping.) The feature spaces for geometry 
meanwhile archive that part of the information 
in a form usable for conventional multivariate 
analyses: these include assessments of correla- 
tions between landmark locations and outline 
form as well as the more usual case-oriented 
group comparisons, discriminant-function com- 
putations, structural-functional correlations, and 
the like. 

Equations (33) and (51) allow any statisti- 
cal signal extracted as a vector of coefficients 
of these warps - tha t  is, any linear combination 
of principal warps and principal edgel warps -  
to be visualized as an incremental deformation 
all its own, rearranging landmarks and shearing 
edgels at those rearranged positions. For ap- 
plications to automatic feature extraction from 
images processed individually, these same pa- 
rameters supply a convenient basis in which to 
express posterior distributions that summarize 
the expected values and the expected covari- 
ances of these descriptors. Sample covariance 
matrices among the principal edgel warp scores 
may be summarized by a set of empirical or- 
thogonal functions of their own (principal corn- 
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Fig. 24 r/g. 25. 

ponents with respect to bending energy) in a 
manner parallel to that for any other system of 
empirical orthogonal functions. 

At the conclusion of section 6 we reported the 
match of the original landmark-labeled outline 
to each of the 14 specimen images, together 
with a pooled feature space for the representa- 
tion of the requisite deformations (a composite 
list of all the landmarks and all the edgels that 
had to be used). Although many other methods 
of deformable templates exist for instantiating 
a template to arbitrary accuracy, the method 
of warps demonstrated here is the only one 
known to us that allows for a parametric rever- 

sion, the computation of a rigorously defined 
inverse mapping that restores the geometry of 
the specimen image to the normative configura- 
tion up through terms linear in all the relevant 
parameters of those deformations. Likewise, we 
are not aware of any other method of freely de- 
formable templates that, while permitting maps 
of quite diverse and spatially distributed com- 
plexity, nevertheless is capable of expressing all 
the members of a sample of these maps in 
a shared linearized feature space of relatively 

low dimension. The method of edgel-driven 
splines here supports not only a flexible algebra 
of deformations but also a complete multivariate 
statistical method. 

The role of the landmark-driven thin-plate 
spline in image normalization has been noted 
previously by us [16], [17] and by others [18]. 
When such unwarping splines are calibrated 
only by landmarks, however, there is variation 
remaining in the directions of edge elements 
through those landmarks. When equation (51a) 
is used to sharpen the unwarping mapping, the 
further calibration afforded by the edgels can 
only improve the precision of these averaged 
images, thus further reducing the sample sizes 
required to show statistical significance for clin- 
ical or experimental group differences. These 
edge-driven splines are much more flexible for 
such purposes than are families of transforma- 
tions fixed by functional form in advance of en- 
countering data, such as the polynomial warping 
functions of Sneath [19] or Greitz et al. [20] 
We are very enthusiastic about their suitability 
as a routine or utility unwarping method for a 
great variety of quantitative investigations into 
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medical images. 

7.2 Vertical and Horizontal Visualizations of Im- 

ages with Landmarks 

The problems we are pursuing originate in data 
that are already visualized. The source of in- 
formation was a medical image, indicating a 
physical property (some sort of interaction with 
radiation) within each of a grid of little volumes 
inside a region of tissue. Our scientific concern 
is to investigate aspects of this sort of data many 
sets at a time. The visualization we seek is to 
concentrate certain features of particular inter- 
est out of the rather dilute, hard-to-compare 
information that is each original brain scan. To 
emphasize this task of concentration rather than 
the pursuit of arbitrary detail is to ask a different 
sort of question from that the original visualiza- 
tion was designed to answer. The goal now is 
to retrieve not what is unique of each instance 
but what is common to all, what is most vari- 
able among them, what typically covaries with 
exogenous causes or effects, etc. 

The data under discussion are, in general, 
vectors at each point of a domain organized 
on Euclidean principles-multispectral pixels or 

voxels. To this basis, linear operators deal most 
comfortably with variances and covariances pixel 
by pixel; it is rather difficult to express adja- 
cencies, and it is nearly impossible to denote 
families of warps, even with the aid of shift 
operators. Let us refer to this orientation of 
linear statistics, that which uses pixel locations 
for its index set, as vertical. There is always ad- 
ditional information, then, in the horizontal part 
of this imagined f igure- the  information about 
where the labeled locations and gradients of the 
ground plane actually lie with respect to the 
pixels and how their configurations covary with 
height(s) of the surface(s) above them. This 
horizontal part, born in and borne on the non- 
linear world of the retina, is what we primates 
are used to processing. Indeed, the abstract lin- 
ear visualization of the vector space indexed by 
pixels hardly deserves the name visualization at 
all. Whenever data are originally visual, and es- 
pecially if they are originally gridded, the linear 
machinery must be supplemented, if not wholly 
supplanted, by a semantics of deformation. 

Note that the labels attach to the points and 
directions of the ground plane. (or ground space 
in the three-dimensional applications), not to 
the points of the imaginary data surfaces float- 
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ing above them. These labels, which, of course, 
identify the landmarks and edgels of the earlier 
discussion, have their own metrics, including the 
versions of bending energy reviewed here, that 
complement the usual covariance-based metric 
of the multivariate observations above them. 
That is, the labeled points and directions can 
move about in their Euclidean domain at the 
same time that images change above them, lead- 
ing to decompositions of the variance at a point 
that are very interesting both scientifically and 
statistically. 

For instance, a vertical analysis may be best 

if one wants to use the geometry of the la- 
beled image rather as one uses a covariate in 
a classic experimental design. In this case it is 
as if the shape of the configuration of labeled 
points-fluctuation in biological meaning of the 
basis for the vector space underlying the d a t a -  
is to be treated as nuisance variation. Control- 
ling this variation increases the precision with 
which other effects can be addressed. That is, 
one analyzes vertically-examining the gradients 
of the picture, for instance, or its correlations 
with physical or biological processes-only af- 
ter unwarping horizontally to a more focused 
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feature space in which processes more nearly 
stay put to have their statistically standardized 
pictures taken. In multivariate language we 
are projecting out a complicated nonlinear fea- 
ture co-space. The experience of generations of 
anatomists shows how this maneuver improves 
the power of subsequent multivariate tactics, 
such as discrimination or analysis of covariance. 
When averaging pictures of brain activity over 
brains of different shapes, for instance, the land- 
marks serve as guides to the correspondence of 
regions (the atlas) before averaging. It is the 
atlas, not the squares of the grid of a PET re- 
construction, that represents the true coordinate 
system for valid biometric analyses. 

This much is often conceded. Less often ac- 
knowledged is that in most applications this hor- 
izontal variation is not noise or nuisance but is 
instead a signal in its own right. In the vicinity of 
their mean configuration, the labeled points and 
edgels induce a very powerful low-dimensional 
feature space. With the aid of a convenient ba- 
sis for shape variation this information may be 
concentrated into linear features of its own. The 
variables of this block ought to be paired with 
less delicately crafted descriptors of the original 
vertical scalar or vector content for prediction of 
other images, such as later images of the same 
system, and for the joint evocation of shape and 
content as a bispectral signal in a detection or 
classification problem, such as locating tumors 
or quantifying their recession under treatment. 

We believe we have shown that visualization 
of vectors in this feature space of edge informa- 
tion at landmarks is at least as straightforward 
as visualization of changes in surfaces above the 
planes or volumes tagged by those points. The 
best visualizations are suggestive of the process 
explanations automatically familiar to any sen- 
tient organism that ever navigated a binocular 
landscape. We read the grids of figures 7, 8, 
10, and the like as easily as we can read simula- 
tions of surfaces by gray-scale shading, the cues 
of barrels or pincushions, or any other pictorial 
metaphor of a spatial field. The combination of 
features of labeled point shape with features of 
the image at the average s h a p e - t h e  careful sep- 
aration of vertical from horizontal variation in 
these mixed feature spaces, along with the care- 

29. 

ful, specialized visualization of the horizontal-  
is, in our view, the most powerful discipline 
available for scientifically effective analyses of 
biometrical images. For instance, many trans- 
formations that appear hopelessly nonlinear in 
terms of the multivariate space oriented ver- 
tically turn out to be linear, or nearly so, in 
aspects of the same space viewed and measured 
horizontally. The averaging of biological images 
is made vastly more effective when these non- 
linear transformations are executed first, each 
in its own linearized domain. In practice, the 
two domains of linearization, and the result- 
ing two complementary styles of visualization, 
combine for composite analyses of changes over 
a deforming scene, as when a growing tumor 
changes texture while it deforms surrounding 
tissues or when a heart contracts as it bounces 
on its tether within the chest wall. The same du- 
ality applies also in analysis of image variability, 
as of structure-function correlations, unrelated 
to physical dynamics. Whether the problem is 
dynamic or cross sectional, the proper visual- 
ization of quantitative biometrics involves both 
kinds of linear operators. 

The power for image analysis and scientific 
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insight of the new methods that exploit labeled 
point and edge data to enrich the conventional 
multivariate metaphor is thus immense, and it 
is mostly unexploited. In our view, the inter- 
action of real nonlinear geometry with linear 
feature extraction is the key to many presently 
intractable problems of pattern detection and 
display across the medical imaging sciences. The 
crux of this combination of vertical and hor- 
izontal descriptions is their careful separation 
to begin with: separation of change of image 
content from deformation of the index set of 
pixels or voxels. The separation proceeds best 
with the aid of a unique intermediate linearized 
structure, the nonstandard multivariate technol- 
ogy of labeled point and edge configurations. 
In its peculiar finite-dimensional elegance, this 
space affords two bases at once: one for linear 
features of the arbitrarily nonlinear transforma- 
tions that we see in the real world and the 
other for the pictorial features of the normal- 
ized images that result from these very helpful 
nonlinear transformations. 
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