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Abstract

Many feature subset selection (FSS) algorithms have been proposed, but not all of them
are appropriate for a given feature selection problem. At the same time, so far there is
rarely a good way to choose appropriate FSS algorithms for the problem at hand. Thus,
FSS algorithm automatic recommendation is very important and practically useful. In
this paper, a meta learning based FSS algorithm automatic recommendation method is
presented. The proposed method first identifies the data sets that are most similar to the
one at hand by the k -nearest neighbor classification algorithm, and the distances among
these data sets are calculated based on the commonly-used data set characteristics. Then,
it ranks all the candidate FSS algorithms according to their performance on these similar
data sets, and chooses the algorithms with best performance as the appropriate ones.
The performance of the candidate FSS algorithms is evaluated by a multi-criteria metric
that takes into account not only the classification accuracy over the selected features, but
also the runtime of feature selection and the number of selected features. The proposed
recommendation method is extensively tested on 115 real world data sets with 22 well-
known and frequently-used different FSS algorithms for five representative classifiers. The
results show the effectiveness of our proposed FSS algorithm recommendation method.

1. Introduction

Feature subset selection (FSS) plays an important role in the fields of data mining and
machine learning. A good FSS algorithm can effectively remove irrelevant and redundant
features and take into account feature interaction. This not only leads up to an insight
understanding of the data, but also improves the performance of a learner by enhancing the
generalization capacity and the interpretability of the learning model (Pudil, Novovičová,
Somol, & Vrňata, 1998a; Pudil, Novovičovà, Somol, & Vrňata, 1998b; Molina, Belanche,
& Nebot, 2002; Guyon & Elisseeff, 2003; Saeys, Inza, & Larrañaga, 2007; Liu & Yu, 2005;
Liu, Motoda, Setiono, & Zhao, 2010).
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Although a large number of FSS algorithms have been proposed, there is no single
algorithm which performs uniformly well on all feature selection problems. Experiments
(Hall, 1999; Zhao & Liu, 2007) have confirmed that there could exist significant differences
of performance (e.g., classification accuracy) among different FSS algorithms over a given
data set. That means for a given data set, some FSS algorithms outperform others.

This raises a practical and very important question: which FSS algorithms should be
picked up for a given data set? The common solution is to apply all candidate FSS al-
gorithms to the given data set, and choose one with the best performance by the cross-
validation strategy. However, this solution is quite time-consuming especially for high-
dimensional data (Brodley, 1993).

For the purpose of addressing this problem in a more efficient way, in this paper, an FSS
algorithm automatic recommendation method is proposed. The assumption underlying our
proposed method is that the performance of an FSS algorithm on a data set is related to
the characteristics of the data set. The rationality of this assumption can be demonstrated
as follows:

1) Generally, when a new FSS algorithm is proposed, its performance needs to be exten-
sively evaluated at least on real world data sets. However, the published FSS algorithms
are rarely tested on the identical group of data sets (Hall, 1999; Zhao & Liu, 2007; Yu &
Liu, 2003; Dash & Liu, 2003; Kononenko, 1994). That is, for any two algorithms, they
are usually tested on the different data. This implies that the performance of an FSS
algorithm biases to some data sets.

2) At the same time, the famous NFL (No Free Lunch) (Wolpert, 2001) theory tells us
that, for a particular data set, different algorithms have different data-conditioned per-
formance, and the performance differences vary with data sets.

The above evidences imply that there is a relationship between the performance of an
FSS algorithm and the characteristics of data sets. In this paper, we intend to explore this
relationship and utilize it to automatically recommend appropriate FSS algorithm(s) for
a given data set. The recommendation process can be viewed as a specific application of
meta-learning (Vilalta & Drissi, 2002; Brazdil, Carrier, Soares, & Vilalta, 2008) that has
been used to recommend algorithms for classification problems (Ali & Smith, 2006; King,
Feng, & Sutherland, 1995; Brazdil, Soares, & Da Costa, 2003; Kalousis, Gama, & Hilario,
2004; Smith-Miles, 2008; Song, Wang, & Wang, 2012).

To model this relationship, there are three fundamental issues to be considered: i) which
features (often are referred to as meta-features) are used to characterize a data set; ii) how
to evaluate the performance of an FSS algorithm and identify the applicable one(s) for a
given data set; iii) how to recommend FSS algorithm(s) for a new data set.

In this paper, the meta-features, which are frequently used in meta-learning (Vilalta &
Drissi, 2002; Ali & Smith, 2006; King et al., 1995; Brazdil et al., 2003; Castiello, Castellano,
& Fanelli, 2005), are employed to characterize data sets. At the same time, a multi-criteria
metric, which takes into account not only the classification accuracy of a classifier with an
FSS algorithm but also the runtime of feature selection and the number of selected features,
is used to evaluate the performance of the FSS algorithm. Meanwhile, a k -NN (k -Nearest
Neighbor) based method is proposed to recommend FSS algorithm(s) for a new data set.
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Our proposed FSS algorithm recommendation method has been extensively tested on
115 real world data sets with 22 well-known and frequently-used different FSS algorithms
for five representative classifiers. The results show the effectiveness of our proposed recom-
mendation method.

The rest of this paper is organized as follows. Section 2 introduces the preliminaries.
Section 3 describes our proposed FSS algorithm recommendation method. Section 4 pro-
vides the experimental results. Section 5 conducts the sensitivity analysis of the number
of the nearest data sets on the recommendation results. Finally, section 6 summarizes the
work and draws some conclusions.

2. Preliminaries

In this section, we first describe the meta-features used to characterize data sets. Then,
we introduce the multi-criteria evaluation metric used to measure the performance of FSS
algorithms.

2.1 Meta-features of Data Sets

Our proposed FSS algorithm recommendation method is based on the relationship between
the performance of FSS algorithms and the meta-features of data sets.

The recommendation can be viewed as a data mining problem, where the performance
of FSS algorithms and the meta-features are the target function and the input variables,
respectively. Due to the ubiquity of “Garbage In, Garbage Out” (Lee, Lu, Ling, & Ko, 1999)
in the field of data mining, the selection of the meta-features is crucial for our proposed
FSS recommendation method.

The meta-features are measures that are extracted from data sets and can be used to
uniformly characterize different data sets, where the underlying properties are reflected. The
meta-features should be not only conveniently and efficiently calculated, but also related to
the performance of machine learning algorithms (Castiello et al., 2005).

There has been 15 years of research to study and improve on the meta-features proposed
in the StatLog project (Michie, Spiegelhalter, & Taylor, 1994). A number of meta-features
have been employed to characterize data sets (Brazdil et al., 2003; Castiello et al., 2005;
Michie et al., 1994; Engels & Theusinger, 1998; Gama & Brazdil, 1995; Lindner & Studer,
1999; Sohn, 1999), and have been demonstrated working well in modeling the relationship
between the characteristics of data sets and the performance (e.g., classification accuracy) of
learning algorithms (Ali & Smith, 2006; King et al., 1995; Brazdil et al., 2003; Kalousis et al.,
2004; Smith-Miles, 2008). As these meta-features do characterize data sets themselves, and
have no connection with learning algorithms and their types, so we use them to model the
relationship between data sets and FSS algorithms.

The most commonly used meta-features are established focusing on the following three
aspects of a data set: i) general properties, ii) statistic-based properties, and iii) information-
theoretic based properties (Castiello et al., 2005). Table 11 shows the details.

1. In order to compute the information-theoretic features, for data sets with continuous-valued features, if
needed, the well-known MDL (Minimum Description Length) method with Fayyad & Irani criterion was
used to discretize the continuous values.
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Category Notation Measure description

General properties

I Number of instances
F Number of features
T Number of target concept values
D Data set dimensionality, D = I/F

Statistical based properties
ρ(X, Y ) Mean absolute linear correlation coefficient of all possible pairs of features
Skew(X) Mean skewness
Kurt(X) Mean kurtosis

Information-theoretic properties

H(C)norm Normalized class entropy
H(X)norm Mean normalized feature entropy
MI(C,X) Mean mutual information of class and attribute
MI(C,X)max Maximum mutual information of class and attribute
ENattr Equivalent number of features, ENattr = H(C)/MI(C,X)
NSratio Noise-signal ratio, NSratio = (H(X)−MI(C, X))/MI(C, X)

Table 1: Meta-features used to characterize a data set

2.2 Multi-criteria Metric for FSS Algorithm Evaluation

In this section, first, the classical metrics evaluating the performance of FSS algorithm are
introduced. Then, by analyzing the user requirements in practice application, based on
these metrics, a new and user-oriented multi-criteria metric is proposed for FSS algorithm
evaluation by combining these metrics together.

2.2.1 Classical Performance Metrics

When evaluating the performance of an FSS algorithm, the following three metrics are
extensively used in feature selection literature: i) classification accuracy , ii) runtime of
feature selection, and iii) number of selected features.

1) The classification accuracy (acc) of a classifier with the selected features can be used to
measure how well the selected features describe a classification problem. This is because
for a given data set, different feature subsets generally result in different classification
accuracies. Thus, it is reasonable that the feature subset with higher classification ac-
curacy has stronger capability of depicting the classification problem. The classification
accuracy also reflects the ability of an FSS algorithm in identifying the salient features
for learning.

2) The runtime (t) of feature selection measures the efficiency of an FSS algorithm for
picking up the useful features. It is also viewed as a metric to measure the cost of feature
selection. The longer the runtime, the higher the expenditure of feature selection.

3) The number of selected features (n) measures the simplicity of the feature selection
results. If the classification accuracies with two FSS algorithms are similar, we usually
favor the algorithm with fewer features.

Feature subset selection aims to improve the performance of learning algorithms which
usually is measured with classification accuracy. The FSS algorithms with higher clas-
sification accuracy are in favor. However, this does not mean that the runtime and the
number of selected features could be ignored. This can be explained by the following two
considerations:

1) Suppose there are two different FSS algorithms Ai and Aj , and a given data set D. If
the classification accuracy with Ai on D is slightly greater than that with Aj , but the
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runtime of Ai and the number of features selected by Ai are much greater than those of
Aj , then Aj is often chosen.

2) Usually, we do not prefer to use the algorithms with higher accuracy but longer runtime,
so is those with lower accuracy but shorter runtime. Therefore, we need a tradeoff be-
tween classification accuracy and the runtime of feature selection/the number of selected
features. For example, in real-time systems, it is impossible to choose the algorithm with
high time-consumption even if its classification accuracy is high.

Therefore, it is necessary to allow users making a user-oriented performance evaluation
for different FSS algorithms. For this purpose, it is needed to address the problem of how
to integrate classification accuracy with the runtime of feature selection and the number of
selected features to obtain a unified metric. In this paper, we resort to the multi-criteria
metric to explore this problem. The underlying reason lies that the multi-criteria metric
has been successfully used to evaluate data mining algorithms by considering the positive
properties (e.g. classification accuracy) and the negative ones (e.g. runtime and number of
selected features) simultaneously (Nakhaeizadeh & Schnabl, 1997, 1998).

When comparing two algorithms, besides the metrics used to evaluate their performance,
the ratio of the metric values can also be used. For example, suppose A1 and A2 are two
different FSS algorithms, if A1 is better than A2 in terms of classification accuracy, i.e.,
acc1 > acc2

2, then ratio acc1/acc2 > 1 can be used to show A1 is better than A2 as well.
On the contrary, for the negative metrics runtime of feature selection and number of of the
selected features, the corresponding ratio < 1 means a better algorithm.

Actually, a multi-criteria metric adjusted ratio of ratios (ARR) (Brazdil et al., 2003),
which combines classification accuracy and runtime together as a unified metric, has been
proposed to evaluate the performance of a learning algorithm. We extend ARR by integrat-
ing it with the runtime of feature selection and the number of selected features, so a new
multi-criteria metric EARR (extened ARR) is proposed. In the following discussion, we will
show that the new metric EARR is more inclusive, very flexible, and easy to understand.

2.2.2 Multi-Criteria Metric EARR

Let DSet = {D1, D2, · · · , DN} be a set of N data sets, and ASet = {A1, A2, · · · , AM} be a
set of M FSS algorithms. Suppose accj

i is the classification accuracy of a classifier with FSS
algorithm Ai on data set Dj (1 ≤ i ≤ M , 1 ≤ j ≤ N), and tji and nj

i denote the runtime
and the number of selected features of FSS algorithm Ai on data set Dj , respectively. Then
the EARR of Ai to Aj over Dk is defined as

EARRDk
Ai,Aj

=
acck

i /acck
j

1 + α · log (tki /tkj ) + β · log (nk
i /nk

j )
(1 ≤ i 6= j ≤ M, 1 ≤ k ≤ N), (1)

where α and β are the user-predefined parameters which denote the relative importance of
the runtime of feature selection and the number of selected features, respectively.

The computation of the metric EARR is based on the ratios of the classical FSS algo-
rithm performance metrics, the classification accuracy, the runtime of feature selection and

2. Where acc1 and acc2 are the corresponding classification accuracies of algorithms A1 and A2, respectively.

5



Wang, Song, Sun, Zhang, Xu & Zhou

the number of selected features. From the definition we can know that EARR evaluates an
FSS algorithm by comparing it with another algorithm. This is reasonable since it is more
objective to assert an algorithm is good or not by comparing it with another one instead of
just focusing on its own performance. For example, suppose there is a classifier with 70%
classification accuracy on a data set, we will get confused on whether the classifier is good
or not. However, if we compare it with another classifier that can obtain 90% classification
accuracy on the same data set, then we can definitely say that the first classifier is not good
compared with the second one.

Noted that, in practice, the runtime difference between two different FSS algorithms
usually can be quite great. Meanwhile, for high-dimensional data sets, the difference of the
number of selected features for two different FSS algorithms can be great as well. Thus,
the ratio of runtime and the ratio of the number of selected features usually have much
more wide ranges than that of the classification accuracy. If the simple ratio of runtime and
the simple ratio of the number of selected features are employed, they would dominate the
value of EARR, and the ratio of the classification accuracy will be drowned. In order to
avoid this situation, the common logarithm (i.e., the logarithm with base 10) of the ratio
of runtime and the common logarithm of the ratio of the number of selected features are
employed.

The parameters α and β represent the amount of classification accuracy that a user is
willing to trade for a 10 times speedup/reduction on the runtime of feature selection/the
number of selected features, respectively. This allows users to choose the algorithms with
shorter runtime and less features but acceptable accuracy. This can be illustrated by the
following example. Suppose that acck

i = (1 + α + β) · acck
j , the runtime of algorithm Ai on

a given data set is 10 times of that of Aj (i.e., tki = 10 · tkj ), and the number of selected
features of algorithm Ai is 10 times of that of Aj (i.e., nk

i = 10 · nk
j ). Then, according to

Eq. (1), EARRDk
Ai,Aj

= 1, and EARRDk
Aj ,Ai

= 1
1−(α+β)2

> 1.3 In this case, Aj outperforms
Ai. If a user prefers fast algorithms with less features, Aj will be his/her choice.

The value of EARR varies around 1. The value of EARRDk
Ai,Aj

is greater than (or equal

to, or smaller than) that of EARRDk
Aj ,Ai

indicates that Ai is better than (or equal to, or
worse than) Aj .

Eq. (1) can be directly used to evaluate the performance of two different FSS algorithms.
When comparing multiple FSS algorithms, the performance of any algorithm Ai ∈ ASet on
a given data set D can be evaluated by the metric EARRD

Ai
defined as follows:

EARRD
Ai

=
1

M − 1

M∑

j=1∧j 6=i

EARRD
Ai,Aj

. (2)

This equation shows that the EARR of an FSS algorithm Ai on D is the arithmetic
mean of the EARRD

Ai,Aj
of Ai to other algorithm Aj on D. That is, the performance of any

FSS algorithm Ai ∈ ASet is evaluated based on the comparisons with other algorithms in
{ASet −{Ai}}. The larger the value of EARR, the better the corresponding FSS algorithm
on the given data set D.

3. Since log (x/y) = − log (y/x) and (α + β)2 > 0
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3. FSS Algorithm Recommendation Method

In this section, we first give the framework of the FSS algorithm recommendation. Then,
we introduce the nearest neighbor based recommendation method in detail.

3.1 Framework

Based on the assumption that there is a relationship between the performance of an FSS
algorithm on a given data set and the data set characteristics (aka meta-features), our
proposed recommendation method firstly constructs a meta-knowledge database consisting
of data set meta-features and FSS algorithm performance. After that, with the help of
the meta-knowledge database, a k-NN based method is used to model this relationship and
recommend appropriate FSS algorithms for a new data set.

Therefore, our proposed recommendation method consists of two parts: Meta-knowledge
Database Construction and FSS Algorithm Recommendation. Fig. 1 shows the details.

FSS algorithm recommendation

Meta-knowledge  database construction

New data set

Historical

data sets

Meta-features

extraction

Performance metric

aquirement

Feature selection 

algorithms

Meta-features

extraction
Meta-features

Nearest data sets

identification

Meta-

knowledge

database

Performance metrics

Meta-features

Meta-features

FSS algorithms

ranking

Nearest 

data sets

Top r algorithms

recommendation
Ranks

Recommended

FSS algorithms

 Metric 

collection

Performance 

metrics

Performance 

metrics

Figure 1: Framework of feature subset selection algorithm recommendation

1) Meta-Knowledge Database Construction
As mentioned previously, the meta-knowledge database consists of the meta-features of

a set of historical data sets and the performance of a group of FSS algorithms on them.
It is the foundation of our proposed recommendation method, and the effectiveness of the
recommendations depends heavily on this database.

The meta-knowledge database is constructed by the following three steps. Firstly, the
meta-features in Table 1 are extracted from each historical data set by the module “Meta-
features extraction”. Then, each candidate FSS algorithm is applied on each historical data
set. The classification accuracy, the runtime of feature selection and the number of selected
features are recorded, and the corresponding value of the performance metric EARR is
calculated. This is accomplished by the module “Performance metric calculation”. Finally,
for each data set, a tuple, which is composed of the meta-features and the values of the
performance metric EARR for all the candidate FSS algorithms, is obtained and added into
the knowledge database.
2) FSS Algorithm Recommendation
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Based on the introduction of the first part “Meta-knowledge Database Construction”
we presented above, the learning target of the meta-knowledge data is a set of EARR values
instead of an appropriate FSS algorithm. In this case, it has been demonstrated that the
researchers usually resort to the instance-based or k -NN (nearest neighbors) methods or
their variations (Brazdil et al., 2003, 2008) for algorithm recommendation. Thus, a k -NN
based FSS algorithm recommendation procedure is proposed.

When recommending FSS algorithms for a new data set, firstly, the meta-features of
this data set are extracted. Then, the distance between the new data set and each historical
data set is calculated according to the meta-features. After that, its k nearest data sets
are identified, and the EARR values of the candidate FSS algorithms on these k data sets
are retrieved from the meta-knowledge database. Finally, all the candidate FSS algorithms
are ranked according to these EARR values, where the algorithm with the highest EARR
achieves the top rank, the one with the second highest EARR gets second rank, and so
forth, and the top r algorithms are recommended.

3.2 Recommendation Method

To recommend appropriate FSS algorithms for a new data set Dnew based on its k nearest
data sets, there are two foundational issues to be solved: i) how to identify its k nearest
data sets, and ii) how to recommend appropriate FSS algorithms based on these k data
sets.
1) k nearest data sets identification

The k nearest data sets of Dnew are identified by calculating the distance between Dnew

and each historical data set based on their meta-features. The smaller the distance, the
more similar the corresponding data set to Dnew.

In order to effectively calculate the distance between two data sets, the L1 norm distance
(Atkeson, Moore, & Schaal, 1997) is adopted since it is easy to understand and calculate,
and its ability in measuring the similarity between two data sets has been demonstrated by
Brazdil et al. (2003).

Let Fi = <fi,1, fi,2, · · · , fi,h> be the meta-features of data set Di, where fi,p is the
value of pth feature of Fi and h is the length of the meta-features. The L1 norm distance
between data sets Di and Dj can be formulated as

dist(Di, Dj) = ‖Fi − Fj‖1 =
h∑

p=1

|fi,p − fj,p|. (3)

It is worth noting that the ranges of different meta-features are quite different. For example,
of the meta-features introduced in Table 1, the value of normalized class entropy varies from
0 to 1, while the number of instances can be millions. Thus, if these meta-features with
different ranges are directly used to calculate the distance between two data sets, the meta-
features with large range would dominate the distance, and the meta-features with small
range will be ignored. In order to avoid this problem, the 0-1 standardized method (Eq.
(4)) is employed to make all the meta-features have the same range [0, 1].

fi,p −min (f·,p)
max (f·,p)−min (f·,p)

, (4)
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where fi,p (1 ≤ p ≤ h) is the value of the pth meta-feature of data set Di, min (f·,p) and
max (f·,p) denote the minimum and maximum values of the pth meta-feature over historical
data sets, respectively.
2) FSS algorithm recommendation

Once getting the k nearest data sets of Dnew, the performance of the candidate FSS
algorithms on Dnew is evaluated according to those on the k nearest data sets. Then, the
algorithms with the best performance are recommended.

Let Dknn = {D1, D2, · · · , Dk} be the k nearest data sets of Dnew and EARRDj

Ai
be the

performance metric of the FSS algorithm Ai on data set Dj ∈ Dknn (1 ≤ j ≤ k). Then the
performance of Ai on the new data set Dnew can be evaluated by

EARRDknn
Ai

=
k∑

j=1

ωj · EARRDj

Ai
, where ωj = dj

−1/
k∑

t=1

dt
−1, dj = dist(Dnew, Dj). (5)

Eq. (5) indicates that the performance of the FSS algorithm Ai on Dnew is evaluated by
its performance on the Dknn of Dnew. For a data set Dj ∈ Dknn, the smaller the distance
dj between itself and Dnew, the more similar the two data sets. This means for two data
sets Dp and Dq, if dp < dq then the data set Dp is more similar to Dnew, so the EARR
of Ai on Dp is more important for evaluating the performance of Ai on Dnew. Thus, the
weighted average, which takes into account the relative importance of each data set in Dknn

rather than treating each data set equally, is employed. Moreover, in the domain of machine
learning, the reciprocal of the distance usually is used to measure the similarity. So the

ωj = dj
−1/

k∑
t=1

dt
−1 is used as the weight of the EARR of Ai on Dj ∈ Dknn.

According to the EARR of each candidate FSS algorithm in ASet on Dnew, a rank of
these candidate FSS algorithms can be obtained. The greater the EARR, the higher the
rank. Then, the top r (e.g., r = 3 in this paper) FSS algorithms are picked up as the
appropriate ones for the new data set Dnew.

Procedure FSSAlgorithmRecommendation shows the pseudo-code of the recommenda-
tion.
Time complexity. The recommendation procedure consists of two parts. In the first part
(lines 1-3), the k nearest data sets of the given new data set D are identified. Firstly,
the meta-features F of D are extracted by function MetaFeatureExtraction(). Then, the
k-nearest historical data sets are identified by function NeighborRecognition() based on
the distance between F and the meta-features Fi of each historical data set Di. Suppose
that P is the number of instances and Q is the number of features in the given data set
D, the time complexity of function MetaFeatureExtraction() is O(P + Q). For function
NeighborRecognition(), the time complexity is O(n) which depends on the number of the
historical data sets n. Consequently, the time complexity of the first part is O(P +Q)+O(n).

In the second part (lines 4-8), the r FSS algorithms are recommended for the data set
D. Since the weights and EARRs of the k nearest data sets can be obtained directly, the
time complexity of these two steps is O(1). The time complexity for estimating and ranking
the EARRs of the algorithms in ASet is O(k ·m)+O(m · log(m)), where k is the preassigned
number of the nearest data sets and m is the number of the candidate FSS algorithms.

9
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Procedure FSSAlgorithmRecommendation

Inputs :
D - a new given data set;
DSet - {D1, D2, · · · , Dn}, historical data sets;
ASet - {A1, A2, · · · , Am}, candidate FSS algorithms;
MetaDataBase - {<Fi, EARRsi>|1 ≤ i ≤ n} where Fi and EARRsi are the

meta-features and the EARRs of ASet on Di, respectively;
k - the predefined number of the nearest neighbors;
r - the number of recommended FSS algorithms.

Output: RecAlgs - Recommended FSS algorithms for D

//Part 1: Recognition of the k nearest data sets for D
F = MetaFeatureExtraction (D);//Extract meta-features from D1

MetaFeatureSet = {F1, F2, · · · , Fn};//Meta-feature of each data set in DSet2

Neighbors = NeighborRecognition (k, F, MetaFeatureSet);3

//Part 2: Appropriate FSS algorithm recommendation

WeightSet = calculate the weight for each data set in Neighbors //See Eq. (5)4

EARRSet = the corresponding EARRs for each data set in Neighbors from MetaDataBase;5

Estimate the EARR of each FSS algorithm ∈ ASet on D according to WeightSet and EARRSet6

by Eq. (5) and rank the algorithms in ASet based on these EARRs;
RecAlgs = top r FSS algorithms;7

return RecAlgs;8

To sum up, the time complexity of the recommendation procedure is O(P +Q)+O(n)+
O(k·m)+O(m·log(m)). In practice, for a data set D that needs to conduct feature selection,
the number of the instances P and/or the number of the features Q in D are much greater
than the number of the nearest data sets k and the number of the candidate FSS algorithms
m, so the major time consumption of this recommendation procedure is determined by the
first part.

4. Experimental Results and Analysis

In this section, we experimentally evaluate the proposed feature subset selection (FSS)
algorithm recommendation method by recommending algorithms over the benchmark data
sets.

4.1 Benchmark Data Sets

115 extensively-used real world data sets, which come from different areas such as Computer,
Image, Life, Biology, Physical and Text 4, are employed in our experiment. The sizes of
these data sets vary from 10 to 24863 instances, and the numbers of their features are
between 5 and 27680.

The statistical summary of these data sets is shown in Table 2 in terms of the number
of instances (denoted as I), the number of features (denoted as F) and the number of target
concepts (denoted as T).

4. These data sets are available from http://archive.ics.uci.edu/ml/datasets.html, http://

featureselection.asu.edu/datasets.php, http://sci2s.ugr.es/keel/datasets.php, http://www.

upo.es/eps/bigs/datasets.html, and http://tunedit.org/repo/Data, respectively.
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Data ID Data Name I F T Data ID Data Name I F T
1 ada agnostic 4562 49 2 59 Lymphoma96x4026+9classes 96 4027 9
2 ada prior 4562 15 2 60 mfeat-fourier 2000 77 10
3 anneal 898 39 6 61 mfeat-morphological 2000 7 10
4 anneal ORIG 898 39 6 62 mfeat-pixel 2000 241 10
5 AR10P 130 674 130 675 10 63 mfeat-zernike 2000 48 10
6 arrhythmia 452 280 16 64 molecular-biology promoters 106 59 2
7 audiology 226 70 24 65 monks-problems-1 test 432 7 2
8 autos 205 26 7 66 monks-problems-1 train 124 7 2
9 balance-scale 625 5 3 67 monks-problems-2 test 432 7 2
10 breast-cancer 286 10 2 68 monks-problems-2 train 169 7 2
11 breast-w 699 10 2 69 monks-problems-3 test 432 7 2
12 bridges version1 107 13 6 70 monks-problems-3 train 122 7 2
13 bridges version2 107 13 6 71 mushroom 8124 23 2
14 car 1728 7 4 72 oh0.wc 1003 3183 10
15 CLL-SUB-111 111 2856 111 2857 3 73 oh10.wc 1050 3239 10
16 cmc 1473 10 3 74 oh15.wc 913 3101 10
17 colic 368 23 2 75 oh5.wc 918 3013 10
18 colic.ORIG 368 28 2 76 pasture 36 23 3
19 colon 62 2001 2 77 pendigits 10992 17 10
20 credit-a 690 16 2 78 PIE10P 210 1520 210 1521 10
21 credit-g 1000 21 2 79 postoperative-patient-data 90 9 3
22 cylinder-bands 540 40 2 80 primary-tumor 339 18 22
23 dermatology 366 35 6 81 segment 2310 20 7
24 diabetes 768 9 2 82 shuttle-landing-control 15 7 2
25 ECML90x27679 90 27680 43 83 sick 3772 30 2
26 ecoli 336 8 8 84 SMK-CAN-187 187 1815 187 1816 2
27 Embryonaldataset C 60 7130 2 85 solar-flare 1 323 13 2
28 eucalyptus 24863 249 12 86 solar-flare 2 1066 13 3
29 flags 194 30 8 87 sonar 208 61 2
30 GCM Test 46 16064 14 88 soybean 683 36 19
31 gina agnostic 3468 971 2 89 spectf test 269 45 2
32 gina prior 3468 785 2 90 spectf train 80 45 2
33 gina prior2 3468 785 10 91 spectrometer 531 103 48
34 glass 214 10 7 92 spect test 187 23 2
35 grub-damage 155 9 4 93 spect train 80 23 2
36 heart-c 303 14 5 94 splice 3190 62 3
37 heart-h 294 14 5 95 sponge 76 46 3
38 heart-statlog 270 14 2 96 squash-stored 52 25 3
39 hepatitis 155 20 2 97 squash-unstored 52 24 3
40 hypothyroid 3772 30 4 98 sylva agnostic 14395 217 2
41 ionosphere 351 35 2 99 sylva prior 14395 109 2
42 iris 150 5 3 100 TOX-171 171 1538 171 1538 4
43 kdd ipums la 97-small 7019 61 9 101 tr11.wc 414 6430 9
44 kdd ipums la 98-small 7485 61 10 102 tr12.wc 313 5805 8
45 kdd ipums la 99-small 8844 61 9 103 tr23.wc 204 5833 6
46 kdd JapaneseVowels test 5687 15 9 104 tr31.wc 927 10129 7
47 kdd JapaneseVowels train 4274 15 9 105 tr41.wc 878 7455 10
48 kdd synthetic control 600 62 6 106 tr45.wc 690 8262 10
49 kr-vs-kp 3196 37 2 107 trains 10 33 2
50 labor 57 17 2 108 vehicle 846 19 4
51 Leukemia 72 7130 2 109 vote 435 17 2
52 Leukemia 3c 72 7130 3 110 vowel 990 14 11
53 leukemia test 34x7129 34 7130 2 111 wap.wc 1560 8461 20
54 leukemia train 38x7129 38 7130 2 112 waveform-5000 5000 41 3
55 lung-cancer 32 57 3 113 white-clover 63 32 4
56 lymph 148 19 4 114 wine 178 14 3
57 Lymphoma45x4026+2classes 45 4027 2 115 zoo 101 18 7
58 Lymphoma96x4026+10classes 96 4027 11

Table 2: Statistical summary of the 115 data sets

4.2 Experimental Setup

In order to evaluate the performance of the proposed FSS algorithm recommendation
method, further verify whether the proposed method is potentially useful in practice, and
confirm the reproducibility of our experiments, we set the experimental study as follows.

4.2.1 FSS Algorithms

FSS algorithms can be grouped into two broad categories: Wrapper and Filter (Molina et al.,
2002; Kohavi & John, 1997). The Wrapper method uses the error rate of the classification
algorithm as the evaluation function to measure a feature subset, while the evaluation
function of the Filter method is independent of the classification algorithm. The accuracy
of the Wrapper method is usually high; however, the generality of the result is limited,
and the computational complexity is high. In comparison, Filter method is of generality,
and the computational complexity is low. Due to the fact that the Wrapper method is
computationally expensive (Dash & Liu, 1997), the Filter method is usually a good choice
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when the number of features is very large. Thus, we focus on the Filter method in our
experiment.

A number of Filter based FSS algorithms have been proposed to handle feature selection
problems. These algorithms can be significantly distinguished by i) the search method used
to generate the feature subset being evaluated, and ii) the evaluation measures used to assess
the feature subset (Liu & Yu, 2005; de Souza, 2004; Dash & Liu, 1997; Pudil, Novovičová,
& Kittler, 1994).

In order to guarantee the generality of our experimental results, twelve well-known or
the latest search methods and four representative evaluation measures are employed. The
brief introduction of these search methods and evaluation measures is as follows.

1) Search methods

i) Sequential forward search (SFS): Starting from the empty set, sequentially add the
feature which results in the highest value of objective function into the current
feature subset.

ii) Sequential backward search (SBS): Starting from the full set, sequentially eliminate
the feature which results in smallest or no decrease in the value of objective function
from the current feature subset.

iii) Bi-direction search (BiS): A parallel implementation of SFS and SBS. It searches
the feature subset space in two directions.

iv) Genetic search (GS): A randomized search method which performs using a simple
genetic algorithm (Goldberg, 1989). The genetic algorithm finds the feature subset
to maximize special output function using techniques inspired by natural evolution.

v) Linear search (LS): An extension of BestFirst search (Gutlein, Frank, Hall, & Kar-
wath, 2009) which searches the space of feature subsets by greedy hill-climbing
augmented with a backtracking facility.

vi) Rank search (RS) (Battiti, 1994): It uses a feature evaluator (such as gain ratio)
to rank all the features. After a feature evaluator is specified, a forward selection
search is used to generate a ranking list.

vii) Scatter search (SS) (Garci’a Lopez, Garci’a Torres, Melian Batista, Moreno Perez,
& Moreno-Vega, 2006): This method performs a scatter search through the feature
subset space. It starts with a population of many significant and diverse feature
subsets, and stops when the assessment criteria is higher than a given threshold or
does not have improvement any longer.

viii) Stepwise search (SWS) (Kohavi & John, 1997): A variation of the forward search.
At each step in the search process, after a new feature is added, a test is performed
to check if some features can be eliminated without significant reduction in the
output function.

ix) Tabu search (TS) (Hedar, Wang, & Fukushima, 2008): It is proposed for combina-
torial optimization problems. It is an adaptive memory and responsive exploration
by combining a local search process with anti-cycling memory-based rules to avoid
trapping in local optimal solutions.
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x) Interactive search (Zhao & Liu, 2007): It traverses the feature subset space for
maximizing the target function while taking consideration the interaction among
features.

xi) FCBF search (Yu & Liu, 2003): It evaluates features via the relevance and redun-
dancy analysis, and uses the analysis results as guideline to choose features.

xii) Ranker (Kononenko, 1994; Kira & Rendell, 1992; Liu & Setiono, 1995): It evaluates
each feature individually and ranks the features by the values of their evaluation
metrics.

2) Evaluation measures

i) Consistency (Liu & Setiono, 1996; Zhao & Liu, 2007): This kind of measure evalu-
ates the worth of a feature subset by the level of consistency in the target concept
when the instances are projected onto the feature subset. The consistency of any
feature subset can never be lower than that of the full feature set.

ii) Dependency (Hall, 1999; Yu & Liu, 2003): This kind of measure evaluates the worth
of a subset of features by considering the individual predictive ability of each feature
along with the degree of redundancy among these features. The FSS methods based
on this kind of measure assume that good feature subsets contain features closely
correlated with the target concept, but uncorrelated with each other.

iii) Distance (Kira & Rendell, 1992; Kononenko, 1994): This kind of measure is pro-
posed based on the assumption that the distance of instances from different target
concepts is greater than that from same target concepts.

iv) Probabilistic significance (Zhou & Dillon, 1988; Liu & Setiono, 1995): This measure
evaluates the worth of a feature by calculating the probabilistic significance as a
two-way function, i.e., the association between feature and the target concept. A
good feature should have significant association with the target concept.

We should pay attention to that, besides the above four evaluation measures, there is
another basic kind of measure: information-based measure (Liu & Yu, 2005; de Souza, 2004;
Dash & Liu, 1997), which is not contemplated in the experiments. The reason is demon-
strated as follow. The information-based measure is usually in conjunction with ranker
search method. Thus, the FSS algorithms based on this kind of measure usually provide a
rank list of the features instead of telling us which features are relevant to the learning tar-
get. In this case, we should preassign particular thresholds for these FSS algorithms to pick
up the relevant features. However, there is not any effective method to set the thresholds
or any acknowledged default threshold for these FSS algorithms. Moreover, it is unfair to
conclude that these information measure based FSS algorithms with any assigned threshold
are not appropriate when comparing to the other FSS algorithms. Therefore, this kind of
FSS algorithm is not employed in our experiments.

Based on the search methods and the evaluation measures introduced above, 22 different
FSS algorithms are obtained. Table 3 shows the brief introduction of these FSS algorithms.
Where all these algorithms are available in the data mining toolkit Weka5 (Hall, Frank,

5. http://www.cs.waikato.ac.nz/ml/weka/
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Holmes, Pfahringer, Reutemann, & Witten, 2009), and the search method INTERACT is
implemented based on Weka and its source codes are available online6.

ID Search Method Evaluation Measure Notation ID Search Method Evaluation Measure Notation
1 BestFirst + Sequential Forward Search Dependency CFS-SFS 12 BestFirst + Sequential Backward Search Consistency Cons-SBS
2 BestFirst + Sequential Backward Search Dependency CFS-SBS 13 BestFirst + Bi-direction Search Consistency Cons-BiS
3 BestFirst + Bi-direction Search Dependency CFS-BiS 14 Genetic Search Consistency Cons-GS
4 Genetic Search Dependency CFS-GS 15 Linear Search Consistency Cons-LS
5 Linear Search Dependency CFS-LS 16 Rank Search Consistency Cons-RS
6 Rank Search Dependency CFS-RS 17 Scatter Search Consistency Cons-SS
7 Scatter Search Dependency CFS-SS 18 Stepwise Search Consistency Cons-SWS
8 Stepwise Search Dependency CFS-SWS 19 Interactive Search Consistency INTERACT-C
9 Tabu Search Dependency CFS-TS 20 FCBFsearch Dependency FCBF
10 Interactive Search Dependency INTERACT-D 21 Ranker Distance Relief-F
11 BestFirst + Sequential Forward Search Consistency Cons-SFS 22 Ranker Probabilistic Significance Signific

Table 3: Introduction of the 22 FSS algorithms

It is noted that some of these algorithms require particular settings of certain parame-
ters. For the purpose of allowing other researchers to confirm our results, we introduce the
parameter settings of these FSS algorithms. Such as, for FSS algorithms “INTERACT-D”
and “INTERACT-C”, there is a parameter, c-contribution threshold, used to identify the
irrelevant features. We set this threshold as 0.0001 suggested by Zhao and Liu (2007). For
FSS algorithm “FCBF”, we set the relevance threshold to be the SU (Symmetric Uncer-
tainty) value of the bN/ log Ncth ranked feature suggested by Yu and Liu (2003). For FSS
algorithm “Relief-F”, we set the significance threshold to 0.01 used by Robnik-Šikonja and
Kononenko (2003). For FSS algorithm “Signific”, there is a threshold, statistical signifi-
cance level α, used to identify the irrelevant features. We set α as the commonly-used value
0.01 in our experiment. The other FSS algorithms are conducted in the Weka environment
with the default setting(s).

4.2.2 Classification Algorithms

Since the actual relevant features of real world data sets are usually not known in advance, it
is impracticable to directly evaluate an FSS algorithm by the selected features. Classification
accuracy is an extensively used metric for evaluating the performance of FSS algorithms,
and also plays an important role in our proposed performance metric EARR for assessing
different FSS algorithms.

However, different classification algorithms have different biases. An FSS algorithm may
be more suitable for some classification algorithms than others (de Souza, 2004). This fact
affects the performance evaluation of FSS algorithms.

With this in mind, in order to demonstrate that our proposed FSS algorithm recommen-
dation method is not limited to any particular classification algorithm, five representative
classification algorithms based on different hypotheses are employed. They are bayes-based
Naive Bayes (John & Langley, 1995) and Bayes Network (Friedman, Geiger, & Goldszmidt,
1997), information gain-based C4.5 (Quinlan, 1993), rule-based PART (Frank & Witten,
1998), and instance-based IB1 (Aha, Kibler, & Albert, 1991), respectively.

Although Naive Bayes and Bayes Net are both bayes-based classification algorithms,
they are quite different from each other since Naive Bayes is proposed based on the hypoth-

6. http://www.public.asu.edu/huanliu/INTERACT/INTERACTsoftware.html
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esis that the features are conditional independent (John & Langley, 1995), while Bayes Net
takes into account the feature interaction (Friedman et al., 1997).

4.2.3 Measures to Evaluate the Recommendation Method

FSS algorithm recommendation is an application of meta-learning. So far as we know,
there are no unified measures to evaluate the performance of the meta-learning methods.
In order to assess our proposed FSS algorithm recommendation method, two measures,
recommendation hit ratio and recommendation performance ratio, are defined.

Let D be a given data set and Arec be an FSS algorithm recommended by the recom-
mendation method for D, these two measures can be introduced as follows.
1) Recommendation hit ratio

An intuitive evaluation criterion is whether the recommended FSS algorithm Arec meets
users’ requirements. That is, whether Arec is the optimal FSS algorithm for D, or the per-
formance of Arec on D has no significant difference with that of the optimal FSS algorithm.

Suppose Aopt represents the optimal FSS algorithm for D, and ASetopt denotes the FSS
algorithm set in which each algorithm has no significant difference with Aopt (of course it
includes Aopt as well). Then, a measure named recommendation hit can be defined to assess
whether the recommended algorithm Arec is effective on D.

Definition 1 (Recommendation hit). If an FSS algorithm Arec is recommended to a data
set D, then the recommendation hit Hit(Arec, D) is defined as

Hit(Arec, D) =

{
1, if Arec ∈ ASetopt

0, otherwise
. (6)

Where Hit(Arec, D) = 1 means the recommendation is effective since the recommended
FSS algorithm Arec is one of the algorithms in ASetopt for D, while hit(Arec, D) = 0 indicates
the recommended FSS algorithm Arec is not a member of ASetopt, i.e., Arec is significantly
worse than the optimal FSS algorithm Aopt on D, thus the recommendation is bad.

From Definition 1 we know that the recommendation hit Hit(Arec, D) is used to evaluate
the recommendation method for a single data set. Thus, it is extended as recommendation
hit ratio to evaluate the recommendation for a set of data sets, and is defined as follows.

Definition 2 Recommendation hit ratio

Hit Ratio(Arec) =
1
G

G∑

i=1

Hit(Arec, Di). (7)

Where G is the number of the historical data sets, e.g., G = 115 in our experiment.
Definition 2 represents the percentage of data sets on which the appropriate FSS algo-

rithms are effectively recommended by our recommendation method. The larger this value,
the better the recommendation method.
2) Recommendation performance ratio

The recommendation hit ratio reveals that whether or not an appropriate FSS algorithm
is recommended for a given data set, but it cannot tell us the margin of the recommended
algorithm to the best one. Thus, a new measure, the recommendation performance ratio
for a recommendation, is defined.
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Definition 3 (Recommendation performance ratio). Let EARRrec and EARRopt be the
performance of the recommended FSS algorithm Arec and the optimal FSS algorithm on D,
respectively. Then, the recommendation performance ratio (RPR) for Arec is defined as

RPR(Arec, D) = EARRrec/EAARopt. (8)

In this definition, the best performance EARRopt is employed as a benchmark. Without
the benchmark, it is hard to determine the recommended algorithms are good or not.
For example, suppose the EARR of Arec on D is 0.59. If EARRopt = 0.61, then the
recommendation is effective since EARR of Arec is very close to EARRopt. However, the
recommendation is poor if EARRopt = 0.91.

RPR is the ratio of EARR of a recommended FSS algorithm to that of the optimal one.
It measures how close the recommended FSS algorithm to the optimal one, and reveals the
relative performance of the recommended FSS algorithm. Its value varies from 0 to 1, and
the larger the value of RPR, the closer the performance of the recommended FSS algorithm
to that of the optimal one. The recommended algorithm is the optimal one if and only if
RPR = 1.

4.2.4 Values of the Parameters α and β

In this paper, a multi-criteria metric EARR is proposed to evaluate the performance of an
FSS algorithm. For the proposed metric EARR, two parameters α and β are established
for users to express their requirements on algorithm performance.

In the experiment, when presenting the results, two representative value pairs of param-
eters α and β are used as follows:

1) α = 0 and β = 0. This setting represents the situation where the classification
accuracy is most important. The higher the classification accuracy over the selected features,
the better the corresponding FSS algorithms.

2) α 6= 0 and β 6= 0. This setting represents the situation where the user can tolerate
an accuracy attenuation and favor the FSS algorithms with shorter runtime and fewer
selected features. In the experiment, both α and β are set to 10% that is quite different
from α = β = 0. This allows us can explore the impact of these two parameters on the
recommendation results.

Moreover, in order to explore how parameters α and β affect the recommended FSS
algorithms in terms of classification accuracy, runtime and the number of selected features,
different parameters settings are provided. Specifically, the values of α and β vary from 0
to 10% with an increase of 1%.

4.3 Experimental Process

In order to make sure the soundness of our experimental conclusion and guarantee the
experiments reported being reproducible, in this part, we introduce the four crucial processes
used in our experiments. They are i) meta-knowledge database construction, ii) optimal
FSS algorithm set identification for a given data set, iii) Recommendation method validation
and iv) sensitivity analysis of the number of the nearest data sets on recommendations.

1) Meta-knowledge database construction
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Procedure PerformanceEvaluation

Inputs : data = a given data set, i.e, one of the 115 data sets;
learner = a given classification algorithm, i.e., one of {Naive Bayes, C4.5, PART,

IB1 or Bayes Network};
FSSAlgSet = {FSSAlg1, FSSAlg2, · · · , FSSAlg22}, the set of the 22 FSS

algorithms;
Output: EARRset = {EARR1, EARR2, · · · , EARR22}, the EARRs of the 22 FSS

algorithms on data;
M = 5; FOLDS = 10;1

for i = 1 to 22 do2

EARRi = 0;3

for i = 1 to M do4

randomized order from data;5

generate FOLDS bins from data;6

for j = 1 to FOLDS do7

TestData = bin[j ];8

TrainData = data- TestData;9

numberList = Null , runtimeList = Null , accuracyList = Null ;10

for k = 1 to 22 do11

(Subset , runtime) = apply FSSAlg k on TrainData;12

number = |Subset |;13

RedTestData = reduce TestData according to selected Subset ;14

RedTrainData = reduce TrainData according to selected Subset ;15

classifier = learner (RedTrainData);16

accuracy = apply classifier to RedTestData;17

numberList [k ] = number , runtimeList [k ] = runtime, accuracyList [k ] =18

accuracy ;

for k = 1 to 22 do19

EARR = EARRCompution(accuracyList , runtimeList , numberList , k);20

//Compute EARR of FSSAlgk on jth bin of pass i according Eqs. (1) and (2)

EARRk = EARRk + EARR;21

for i ← 1 to 22 do22

EARRi = EARRi/(M×FOLDS);23

return EARRset ;24

For each data set Di (1 ≤ i ≤ 115), we i) extract its meta-features Fi; ii) calculate the
EARRs for the 22 candidate FSS algorithms with the stratified 5×10-fold cross-validation
strategy (Kohavi, 1995), and iii) combine the meta-features Fi and the EARR of each FSS
algorithm together to form a tuple, which is finally added to the meta-knowledge database.

Since the extraction of meta-features and the combination of the meta-features and the
EARRs are straightforward, we just present the calculation of EARRs, procedure Perfor-
manceEvaluation shows the details.

2) Optimal FSS algorithm set identification

The optimal FSS algorithm set for a given data set Di consists of the optimal FSS algo-
rithm for this data set and those algorithms that have no significant performance difference
with the optimal one on Di.

The optimal FSS algorithm set for a given data set Di is obtained via a non-parametric
Friedman test (1937) followed by a Holm procedure test (1988) on the performance, which
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is estimated by the 5×10 cross validation strategy, of the 22 FSS algorithms. If the result
of the Friedman test shows that there is no significant performance difference among the
22 FSS algorithms, these 22 FSS algorithms are added to the optimal FSS algorithm set.
Otherwise, the FSS algorithm with the highest performance is viewed as the optimal one
and added to the optimal FSS algorithm set. Then, the Holm procedure test is performed
to identify the algorithms from the rest 21 FSS algorithms. The algorithms that have no
significant performance differences with the optimal one are added into the optimal FSS
algorithm set.

The reason why the non-parametric test is employed lies in that it is difficult for the
performance values to follow the normal distribution and satisfy variance homogeneous
condition.

Note that the optimal FSS algorithm sets for different settings of parameters α and β are
different, since the values of these two parameters directly affect the required performance
values.

3) Recommendation method validation

The leave-one-out strategy is used to empirically evaluate our proposed FSS algo-
rithm recommendation method as follows: for each data set Di (1 ≤ i ≤ 115) that
is viewed as the test data, i) identify its k nearest data sets from the training data =
{D1, · · · , Di−1, Di+1, · · · , D115} excluding Di; ii) calculate the performance of the 22 candi-
date FSS algorithms according to Eq. (5) based on the k nearest data sets where the value
of k is determined by the standard cross-validation strategy, and recommend the top three
to Di; and iii) evaluate the recommendations by the measures introduced in section 4.2.3.

4) Sensitivity analysis of the number of the nearest data sets on recommendations

In order to explore the effect of the number of the nearest data sets on the recommen-
dations and provide users an empirical method to choose its value, for each data set, all
the possible numbers of the nearest data sets are tested. That is, when identifying the k
nearest data sets for a given data set, k is set from 1 to the number of the historical data
sets minus 1 (e.g., 114 in this experiment).

4.4 Results and Analysis

In this section, we present the recommendation results in terms of recommended FSS al-
gorithms, hit ratio and performance ratio , respectively. Due to the space limit of the
paper, we do not list all the recommendations, but instead present the results under two
significantly different pairs of α and β, i.e., (α = 0, β = 0) and (α = 10%, β = 10%).

Afterward, we also provide the experimental results of the influence of the user-oriented
parameters α and β on recommendations in terms of classification accuracy, runtime, and
the number of selected features, respectively.

4.4.1 Recommended Algorithms and Hit Ratio

Figs. 2, 3, 4, 5 and 6 show the first recommended FSS algorithms for the 115 data sets
when the classification algorithms Naive Bayes, C4.5, PART, IB1 and Bayes Network are
used, respectively.
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In each figure, there are two sub-figures corresponding to the recommendation results
for (α = 0, β = 0) and (α = 10%, β = 10%), respectively. In each sub-figure, ‘◦’ and ‘×’
denote the correctly and incorrectly recommended algorithms, respectively.
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(a) α = 0, β = 0
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(b) α = 10%, β = 10%

Figure 2: FSS algorithms recommended for the 115 data sets when Naive Bayes is used
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(b) α = 10%, β = 10%

Figure 3: FSS algorithms recommended for the 115 data sets when C4.5 is used

From these figures, we observe that:

1) For all the five classifiers, the proposed method can effectively recommend appropriate
FSS algorithms for most of the 115 data sets.

In the case of (α = 0, β = 0), the number of data sets, whose appropriate FSS
algorithms are correctly recommended, is 109 out of 115 for Naive Bayes, 111 out of 115
for C4.5, 109 out of 115 for PART, 108 out of 115 for IB1, and 109 out of 115 for Bayes
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(b) α = 10%, β = 10%

Figure 4: FSS algorithms recommended for the 115 data sets when PART is used
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(b) α = 10%, β = 10%

Figure 5: FSS algorithms recommended for the 115 data sets when IB1 is used

Network, respectively. This states that the recommendation method is effective when
classification accuracy is most important.

In the case of (α = 10%, β = 10%), the number of data sets, whose appropriate FSS
algorithms are correctly recommended, is 104 out of 115 for Naive Bayes, 109 out of 115
for C4.5, 110 out of 115 for PART, 106 out of 115 for IB1, and 104 out of 115 for Bayes
Network, respectively. This indicates that the recommendation method also works well
when tradeoff is required among classification accuracy, runtime, and the number of
selected features.

2) The distribution of the recommended FSS algorithms for the 115 data sets is different for
different parameters settings. The distribution is relatively uniform for (α = 0, β = 0),
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(b) α = 10%, β = 10%

Figure 6: FSS algorithms recommended for the 115 data sets when Bayes Network is used

while it is seriously biased to some algorithm (e.g., the 22th FSS algorithm) for (α =
10%, β = 10%).

This phenomenon is similar for all the five classifiers. This can be explained as follows.
The FSS algorithms with the best classification accuracy distribute on the 115 data sets
uniformly. Thus, in the case of (α = 0, β = 0) where users favor accurate classifiers, the
distribution of the recommended FSS algorithms is relatively uniform as well. However,
there exist some FSS algorithms that run faster (e.g., the 22th algorithm “Signific”)
or select fewer features (e.g., the 8th algorithm “CFS-SWS”, the 18th algorithm “Cons-
SWS”, and the 22th algorithm “Signific”) on most of the 115 data sets. For this reason, in
the case of (α = 10%, β = 10%) where users prefer the FSS algorithms with less runtime
and fewer features, the distribution of the FSS algorithms with the best performance on
the 115 data sets is biased to some algorithms, so is the recommended FSS algorithms.

3) The 22th FSS algorithm performs well on about 85 out of 115 data sets for all classifiers
when (α = 10%, β = 10%). It seems that this FSS algorithm is a generally well-
performed FSS algorithm that can be adopted by all FSS tasks and there is no need
for FSS algorithm recommendation. Unfortunately, this is not the case. The 22th FSS
algorithm is still failing to perform well over about a quarter of the 115 data sets.
Yet, our recommendation method can distinguish these data sets and further effectively
recommend appropriate FSS algorithms for them. This indicates our recommendation
method is still necessary in this case.

Compared with (α = 0, β = 0), we can know that this case is due to the larger α and
β values and can be explained as follows. For all the 22 FSS algorithms, although the
classification accuracies of a classifier over the features selected by them are different,
the differences are usually bounded. Meanwhile, from Eq. (1) we know that when α/β
is set to be greater than the bound value, the value of EARR will be dominated by
the runtime/the number of selected features. This means that if α or β is set to be
a relatively large value, the algorithm with a lower time complexity or the algorithm
that chooses smaller number of features will be recommended, and the classification
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accuracy over the selected features will be ignored. However, as we know, one of the
most important targets of feature selection is to improve the performance of learning
algorithms. So it is unreasonable to ignore the classification accuracy and just focus on
the speed and the simplicity of an FSS algorithm.

Thus, in real applications, the values of α and β should be set under the limit of classi-
fication accuracies. Generally, the α/β should be bounded by (accmax−accmin)/accmin,
where accmax and accmin denote the maximum and the minimum classification accura-
cies, respectively.

Parameter setting Recommendation Naive Bayes C4.5 PART IB1 Bayes Network

α = 0, β = 0

Alg1st 94.78 96.52 94.78 93.91 94.78

Alg2nd 83.48 79.13 92.17 77.39 83.48

Alg3rd 74.78 80.87 84.35 75.65 73.91

Top 3 99.13 98.26 99.13 99.13 98.26

α = 10%, β = 10%

Alg1st 90.43 94.78 94.78 92.17 90.43

Alg2nd 71.30 69.57 70.43 64.35 71.30

Alg3rd 38.26 45.22 42.61 43.48 36.52

Top 3 99.13 100.0 100.0 100.0 99.13
∗ Algx denotes only the x -th algorithm in the ranking list is recommended while Top 3 means the top three

algorithms are recommended.

Table 4: Hit ratio (%) of the recommendations for the five classifiers under different settings
of (α, β)

Table 4 shows the hit ratio of the recommended FSS algorithms for the five classifiers.
From it we can observe that:

1) If a single FSS algorithm is recommended, the hit ratio of the first recommended algo-
rithm Alg1st is the highest, its value is up to 96.52% and at least is 90.43% for all the
five classifiers. Thus, Alg1st should be the first choice.

2) If the top three algorithms are recommended, the hit ratio is up to 100% and at least
is 98.62%. That indicates that the confidence of the top three algorithms including an
appropriate one is very high. This is the reason why only the top three algorithms
are recommended. Moreover, the proposed recommendation method has reduced the
number of candidate algorithms to three, users can further pick up the one that fits
his/her specific requirement from them.

4.4.2 Recommendation Performance Ratio

Figs. 7 and 8 show the recommendation performance ratio RPR of the first recommended
FSS algorithm for the five classifiers with (α = 0, β = 0) and (α = 10%, β = 10%),
respectively. From these two figures we can observe that, for most data sets and the two
settings of α and β, the RPRs of the recommended FSS algorithms are greater than 95%
and some of them are up to 100% no matter which classifier is used. This indicates that the
FSS algorithms recommended by our proposed method are very close to the optimal one.

Table 5 shows the average RPRs over the 115 data sets for the five classifiers under
different settings of (α, β). In this table, for each classifier, columns “Rec” and “Def”
shows the RPR value corresponding to the recommended FSS algorithms and default FSS
algorithms, respectively. Where the default FSS algorithm is the most frequent best one on
the 115 data sets under the classifier.
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Figure 7: RPR of the 1 st recommended FSS algorithm with (α = 0, β = 0) for the five
classifiers
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Figure 8: RPR of the 1 st recommended FSS algorithm with (α = 10%, β = 10%) for the
five classifiers
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From it we observe that the average RPRs range from 97.32% to 98.8% for (α = 0,
β = 0), and from 97.82% to 98.99% for (α = 10%, β = 10%), respectively. Moreover,
the average RPR of the recommended FSS algorithms surpasses that of the default FSS
algorithms for all the five different classifiers. This means our proposed recommendation
method works very well and greatly fits user’s performance requirement.

Parameter setting
Naive bayes C4.5 PART IB1 Bayes Network
Rec Def Rec Def Rec Def Rec Def Rec Def

α = 0, β = 0 98.24 96.42 98.80 98.18 97.61 94.79 97.32 96.43 98.37 96.63
α = 10%, β = 10% 98.69 91.95 97.82 92.40 97.89 92.40 98.11 92.35 98.99 92.43

Table 5: Average RPR (%) over 115 data sets for the five classifiers

Data ID NB C4.5 PART IB1 BNet Data ID NB C4.5 PART IB1 BNet

1 0.0443 0.0425 0.0499 0.0423 0.0464 59 0.0446 0.0439 0.0443 0.0477 0.0427

2 0.0227 0.0131 0.0147 0.0137 0.0129 60 0.0361 0.0351 0.0407 0.034 0.0354

3 0.0118 0.0124 0.0123 0.0117 0.0116 61 0.0087 0.0096 0.0073 0.0078 0.0085

4 0.0079 0.0092 0.0082 0.0114 0.0096 62 0.0845 0.0843 0.0835 0.0853 0.0859

5 0.0244 0.0253 0.0257 0.0246 0.0241 63 0.0225 0.0177 0.0211 0.02 0.0194

6 0.019 0.019 0.0221 0.0192 0.0208 64 0.0108 0.0077 0.0065 0.0076 0.0098

7 0.0091 0.0093 0.0093 0.0114 0.0113 65 0.0117 0.0105 0.0074 0.0068 0.0071

8 0.0111 0.0062 0.0076 0.0066 0.0088 66 0.0089 0.0075 0.0058 0.008 0.0079

9 0.011 0.0076 0.0072 0.0074 0.0076 67 0.0092 0.0067 0.0079 0.0065 0.0064

10 0.0091 0.0087 0.0084 0.0138 0.0073 68 0.0082 0.0063 0.0071 0.0085 0.0116

11 0.0086 0.007 0.0072 0.0075 0.0083 69 0.0061 0.0058 0.006 0.0067 0.0067

12 0.0062 0.0068 0.0065 0.0063 0.011 70 0.0069 0.0077 0.0079 0.0097 0.007

13 0.0068 0.0085 0.0064 0.0093 0.0096 71 0.0611 0.0496 0.051 0.0485 0.0514

14 0.0077 0.0087 0.0086 0.0084 0.0077 72 0.203 0.1993 0.1976 0.1994 0.1983

15 0.0616 0.0582 0.0575 0.058 0.0586 73 0.1854 0.1689 0.1631 0.1652 0.1638

16 0.0099 0.0083 0.0081 0.0082 0.009 74 0.1195 0.1112 0.1105 0.1103 0.1096

17 0.0074 0.0126 0.0076 0.0084 0.0085 75 0.1246 0.1208 0.1217 0.1209 0.1226

18 0.0083 0.0077 0.0128 0.0117 0.007 76 0.0147 0.0064 0.0068 0.0067 0.006

19 0.0102 0.0078 0.0105 0.0067 0.0091 77 0.0576 0.0526 0.0509 0.0519 0.0533

20 0.007 0.0071 0.007 0.0069 0.0081 78 0.0685 0.0704 0.0641 0.066 0.0646

21 0.008 0.01 0.009 0.0075 0.0079 79 0.0081 0.006 0.0082 0.008 0.013

22 0.0103 0.0079 0.011 0.0135 0.0088 80 0.0086 0.0085 0.0087 0.0072 0.0089

23 0.008 0.0083 0.0079 0.0093 0.0072 81 0.0203 0.0144 0.0141 0.0118 0.0184

24 0.0066 0.0064 0.0067 0.0069 0.0093 82 0.0095 0.0109 0.0054 0.0091 0.0082

25 0.0088 0.0158 0.0101 0.0082 0.0094 83 0.0244 0.0244 0.0276 0.0257 0.0248

26 0.0061 0.0068 0.0075 0.0083 0.0077 84 0.0683 0.0671 0.0674 0.0692 0.0664

27 0.0097 0.0078 0.0113 0.0117 0.0123 85 0.0074 0.0069 0.0086 0.0086 0.0071

28 0.0083 0.0069 0.008 0.0082 0.0074 86 0.0084 0.0077 0.0411 0.0074 0.0132

29 0.007 0.0132 0.0093 0.0072 0.007 87 0.0066 0.0101 0.0071 0.0069 0.0077

30 0.0273 0.0272 0.0291 0.0273 0.0272 88 0.0096 0.0091 0.0124 0.014 0.0113

31 0.2236 0.2231 0.2236 0.2239 0.2255 89 0.0095 0.0095 0.0078 0.0124 0.0092

32 0.2602 0.2616 0.2605 0.262 0.2596 90 0.006 0.0069 0.0085 0.0066 0.0079

33 0.3691 0.3722 0.3689 0.3689 0.3714 91 0.0158 0.0152 0.0164 0.0183 0.0165

34 0.008 0.0103 0.0083 0.0113 0.007 92 0.0068 0.0073 0.0066 0.0081 0.0061

35 0.0084 0.0068 0.0065 0.0064 0.009 93 0.0097 0.0076 0.008 0.0065 0.008

36 0.0103 0.0068 0.0066 0.0066 0.0069 94 0.0365 0.0396 0.0378 0.0374 0.0375

37 0.0065 0.0088 0.0086 0.0059 0.0061 95 0.0108 0.0081 0.0064 0.0094 0.0077

38 0.0084 0.007 0.0084 0.0093 0.0085 96 0.0058 0.0062 0.0062 0.0061 0.0064

39 0.0098 0.0352 0.0069 0.0067 0.0077 97 0.0082 0.0078 0.0064 0.0068 0.0083

40 0.0278 0.0243 0.0245 0.0246 0.0249 98 0.4402 0.4429 0.444 0.4401 0.4413

41 0.007 0.0099 0.011 0.007 0.0086 99 0.4591 0.4532 0.4557 0.4551 0.4545

42 0.0138 0.006 0.0106 0.0116 0.0063 100 0.0504 0.0496 0.0502 0.0539 0.0526

43 0.1219 0.1228 0.1214 0.1231 0.1241 101 0.1012 0.095 0.0954 0.0966 0.0968

44 0.1453 0.1427 0.144 0.145 0.1434 102 0.04 0.0393 0.0424 0.0416 0.0394

45 0.1937 0.1955 0.1972 0.194 0.1935 103 0.0633 0.0618 0.0644 0.0635 0.0625

46 0.0225 0.0232 0.0242 0.0219 0.0228 104 0.9103 0.9096 0.9091 0.9142 0.9122

47 0.0149 0.0142 0.0125 0.0139 0.015 105 0.6484 0.6448 0.6443 0.6464 0.6461

48 0.0101 0.0125 0.0101 0.0092 0.0104 106 0.5864 0.5884 0.5861 0.5851 0.5854

49 0.0228 0.0245 0.0191 0.0198 0.024 107 0.0067 0.0056 0.0065 0.0075 0.0055

50 0.0069 0.0075 0.0084 0.0068 0.009 108 0.0091 0.0075 0.0102 0.0131 0.0103

51 0.0195 0.0201 0.0196 0.0209 0.0197 109 0.0082 0.0074 0.0087 0.0064 0.0095

52 0.0202 0.0207 0.0165 0.0192 0.0165 110 0.0088 0.0131 0.0131 0.0093 0.0078

53 0.0128 0.0135 0.0116 0.0156 0.0158 111 0.7746 0.7759 0.7736 0.7739 0.7746

54 0.0128 0.013 0.0197 0.0138 0.0134 112 0.0267 0.0255 0.025 0.0266 0.0282

55 0.0075 0.0073 0.0069 0.0065 0.0068 113 0.0082 0.0075 0.0066 0.0063 0.0135

56 0.0084 0.0073 0.007 0.006 0.0069 114 0.0106 0.0095 0.0095 0.0055 0.0073

57 0.0146 0.008 0.0095 0.0082 0.0103 115 0.0086 0.0079 0.0073 0.0062 0.0064

58 0.0432 0.0464 0.0449 0.0436 0.0445 Average 0.0658 0.0651 0.0652 0.0649 0.0650
∗ “NB” and “BNet” denote Naive Bayes and Bayes Network, respectively.

Table 6: Recommendation time over 115 data sets for the five classifiers (in second)
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4.4.3 Recommendation Time

When recommending FSS algorithms for a feature selection problem, the recommendation
time is contributed by meta-features extraction, k nearest data sets identification, and the
candidate algorithm ranking according to their performance on the k data sets.

Of these three recommendation time contributors, only the candidate algorithm ranking
is related with the parameters α and β of the performance metric EARR.

However, the computation of performance EARR is the same whatever the values of α
and β are. This means recommendation time is independent of the specific settings of α
and β. Thus, we just present the recommendation time with (α = 0, β = 0), and Table 6
shows the details.

From Table 6 we observe that for a given data set, the recommendation time differences
for the five classifiers are small. The reason is that the recommendation time is mainly
contributed by the extraction of meta-features, which has no relation with classifiers. This
is consistent with the time complexity analysis in Section 3.2. We also observe that for most
of the data sets, the recommendation time is less than 0.1 second, and its average value on
the 115 data sets is around 0.65 second for each of the five classifiers. This is much faster
than the conventional cross validation method.

4.4.4 Impact of the Parameters α and β

Figs. 9, 10, 11, 12 and 13 show the impact of the settings of α and β on the classification
accuracy, the runtime of feature selection, the number of selected features, the Hit Ratio
and the RPR value, respectively.
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Figure 9: Classification accuracies of the five classifiers with the recommended FSS algo-
rithms under different values of α and β

Fig. 9 shows the classification accuracies of the five classifiers under the different values
of α and β. From it we observe that, with the increase of either α or β, the classification
accuracies of the five classifiers with the recommended FSS algorithms decrease. This is
because the increase of α or β indicates that users much prefer faster FSS algorithms or the
FSS algorithms that can get less features. Thus, the proportion of classification accuracy
in performance is decreased. This means the ranks of the FSS algorithms that run faster
and/or get less features are improved and the corresponding FSS algorithms are finally
selected.
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Figure 10: Runtime of the FSS algorithms recommended to the five classifiers under different
values of α and β

Fig. 10 shows the runtime of the FSS algorithms that recommended to the five classifiers
under the different values of α and β for the five classifiers. From it we observe that:

1) With the increase of α, the average runtime of the recommended FSS algorithms for
each classifier decreases. Note a larger value of α means users favor faster FSS algo-
rithms. Thus, this indicates that user’s performance requirement is met since faster FSS
algorithms were recommended.

2) With the increase of β, the average runtime of the recommended FSS algorithms increases
as well. This is because in our proposed recommendation method, the appropriate
FSS algorithms for a given data set are recommended based on its nearest data sets.
Moreover, in the experiment, for more than half (i.e., 69) of the 115 data sets, there is
a negative correlation between the number of selected features and the runtime of the
22 FSS algorithms. Thus, the more data sets with this kind of negative correlation, the
more possible the nearest neighbors of a given data set have the negative correlation.
Therefore, a larger β means longer runtime. Another possible reason is that a larger
value of β means users favor the FSS algorithms that choose fewer features, and in order
to get fewer features, the FSS algorithms need to consume relatively more time.
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Figure 11: Number of features selected by the FSS algorithms that recommended to the
five classifiers under different values of α and β

Fig. 11 shows the number of features selected by the FSS algorithms that recommended
to the five classifiers under different values of α and β. From it we observe that:
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1) With the increase of α, the average number of selected features increases as well. This
is because in our proposed recommendation method, the appropriate FSS algorithms
for a given data set are recommended based on its nearest data sets. Moreover, in the
experiment, for more than half (i.e., 69) of the 115 data sets, there is a negative correla-
tion between the number of selected features and the runtime of the 22 FSS algorithms.
Thus, the more data sets with this kind of negative correlation, the more possible the
nearest neighbors of a given data set have the negative correlation. Therefore, a larger
α means more features. Another possible reason is that a larger value of α means users
favor faster FSS algorithms. It is possible that shorter computation time can be obtained
via filter out less features so more features are remained.

Note that there is an exception. That is, the average number of selected features for
C4.5 decreases when the value of α is small. However, the decrement comes up in a quite
small range of α (i.e., < 0.005).

2) With the increase of β, the average number of features selected by the recommended
FSS algorithm decreases. Note a larger value of β means users favor the FSS algorithms
that can get fewer features. Thus, this indicates that user’s requirement is met since the
FSS algorithms that can get fewer features were recommended.
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Figure 12: Average Hit Ratio of the FSS algorithms that recommended to the five classifiers
under different values of α and β
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Figure 13: Average RPR of the FSS algorithms that recommended to the five classifiers
under different values of α and β

Figs. 12 and 13 show the average hit ratio and RPR of the recommended FSS algorithms
under different values of α and β for the five classifiers.
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From them we observe that, the average hit ratio falls in the intervals [91.74%, 100%]
under α and [92.56%, 99.13%]) under β. The average RPR varies in the intervals [97.69%,
98.82%] under α and [97.68%, 98.73%] under β. With the change of the α and β, the hit
ratio and RPR of the recommended FSS algorithms vary as well. However, the change
intervals fall in a relative small interval and the lower bound stands at a fairly high level.
The minimum average hit ratio is up to 91.74% and the minimum average RPR is up
to 97.68%. This indicates that the proposed FSS algorithm recommendation method has
general application and works well for different settings of α and β.

5. Sensitivity Analysis of the Number of Nearest Data Sets on
Recommendation Results

In this section, we analyze how the number of the nearest data sets affects the recommen-
dation performance. Based on the experimental results, we provide some guidelines for
selecting the appropriate number of nearest data sets in practice.

5.1 Experimental Method

Generally, different numbers of the nearest data sets (i.e., k) will result in different recom-
mendations. Thus, when recommending FSS algorithms to a feature selection problem, an
appropriate k value is very important.

The k value that results in higher recommendation performance is preferred. However,
the recommendation performance difference under two different k values sometimes might
be random and not significant. Thus, in order to identify an appropriate k value from
alternatives, we should first determine whether or not the performance differences among
them are statistically significant. Non-parametric statistical test, Friedman test followed by
Holm procedure test as suggested by Demšar (2006), can be used for this purpose.

In the experiment, we conducted FSS algorithm recommendation with all possible k
values (i.e., from 1 to 114) over the 115 data sets. When identifying the appropriate k
values, the non-parametric statistical test is conducted as follows.

Firstly, the Friedman test is performed over the 114 recommendation performance at
the significance level 0.05. Its null hypothesis is that the 114 k values perform equivalently
well in the proposed recommendation method over the 115 data sets.

If the Friedman test rejects the null hypothesis, that is, there exists significant difference
among these 114 k values, then we choose one under which the recommendation has the best
performance as the reference. After that, the Holm procedure test is performed to find out
the k values under which the recommendation performance has no significant difference with
that of the reference. The identified k values including the reference are the appropriate
numbers of the nearest data sets.

5.2 Results Analysis

Fig. 14 shows how the number of the nearest data sets (i.e., k) affects the performance
of the recommendation method under different settings of α and β, where ‘×’ denotes the
k under which the recommendation performance is significantly worse than others at the
significance level of 0.05. From it we observe that:
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(a) α = 0, β = 0
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(b) α = 10%, β = 10%

Figure 14: Number of the nearest data sets vs. RPR

1) When α = β = 0 (Fig. 14(a)), for each of the five classifiers, the RPR varies with
different k values. Specifically, the RPR is fluctuant when k is smaller than 20, while it
is relatively flat in the middle part, and it decreases when k is larger than 79 except for
C4.5. However, the increment of C4.5 is very small (< 0.002). This might be due to that
C4.5 picks up useful features to build the tree by itself, so the impact of other feature
selection methods is less. Moreover, the difference among accuracies of C4.5 on most
data sets is relatively small, while the performance metric EARR that used to evaluate
different FSS algorithms depends only on classification accuracy when α = β = 0. Thus,
the RPR of C4.5 is relatively stable for the different values of k.

2) In the case of α = β = 10% (Fig. 14(b)), the variation of RPR is different from that of
α = β = 0. For each of the five classifiers, the RPR first decreases with fluctuations, then
increases, and finally decreases slowly and steadily. This could be due to that, when the
parameters α and β are set to be a relatively large value (such as 10% in our experiment),
the runtime of ( or the number of features selected by) an FSS algorithm will play a
more important role in evaluating the performance of the FSS algorithm. Thus, for a
given data set, the FSS algorithms with lower time complexity (or the smaller number of
selected features) will be more possibly higher ranked and have larger RPR. Therefore,
with the increasing of k, these algorithms are more possibly recommended. Meanwhile,
for most data sets, these algorithms are either the real appropriate algorithms or with
larger RPR, so the RPR averaged over all data sets is relatively stable with the increasing
of k.

29



Wang, Song, Sun, Zhang, Xu & Zhou

3) Comparing the cases of α = β = 0 and α = β = 10%, we found that ‘×’ appears when
k < 21 for the former and k < 29 for the latter, while it emerges again when k > 76 for
the former. This means we cannot choose the k values falling into these ranges. At the
same time, we also found that the peak values of RPR for α = β = 10% appear in the
range of [32, 54], which is also one of the peak value ranges for α = β = 0 except C4.5.
This means if we set k to 28% to 47% of the number of data sets, better recommendation
performance can be obtained.

6. Conclusion

In this paper, we have presented an FSS algorithm recommendation method with the aim
to support the automatic selection of appropriate FSS algorithms for a new feature selection
problem from a number of candidates.

The proposed recommendation method consists of meta-knowledge database construc-
tion and algorithm recommendation. The former obtains the meta-features and the perfor-
mance of all the candidate FSS algorithms, while the latter models the relationship between
the meta-features and the FSS algorithm performance based on a k -NN method and rec-
ommends appropriate algorithms for a feature selection problem with the built up model.

We have thoroughly tested the recommendation method with 115 real world data sets, 22
different FSS algorithms, and five representative classification algorithms under two typical
user’s performance requirements. The experimental results show that our recommendation
method is effective.

We have also conducted a sensitivity analysis to explore how the number of the nearest
data sets (k) impacts the FSS algorithm recommendation, and suggest to set k as the 28%
to 47% of the number of the historical data sets.

In this paper, we have utilized the well-known and commonly-used meta-features to
characterize different data sets. “Which meta-features are informative?” and “Are there
any other more informative meta-features?” are still open questions. To our knowledge,
there still does not exist any effective method to answer these questions. Thus, for future
work, we plan to explore further that how to measure the information of the meta-features
and whether there are some more informative meta-features that can lead to further im-
provements for FSS algorithm recommendation.
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