
Entropy 2011, 13, 860-901; doi:10.3390/e13040860

OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

A Feature Subset Selection Method Based On High-Dimensional

Mutual Information

Zheng Yun 1,2,� and Kwoh Chee Keong 3,�

1 Institute of Developmental Biology and Molecular Medicine, Fudan University, 220 Handan Road,

Shanghai 200433, China
2 School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
3 School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798,

Singapore

� Author to whom correspondence should be addressed; E-Mail: zhengyun@fudan.edu.cn (Z.Y.);

asckkwoh@ntu.edu.sg (K.C.K.); Tel.: +86-65643718-103 (Z.Y.); +65-6790-6057 (K.C.K.);

Fax: +86-65643718-201 (Z.Y.); +65-6792-6559 (K.C.K.).

Received: 8 January 2011; in revised form: 18 March 2011 / Accepted: 23 March 2011 /

Published: 19 April 2011

Abstract: Feature selection is an important step in building accurate classifiers and provides

better understanding of the data sets. In this paper, we propose a feature subset selection

method based on high-dimensional mutual information. We also propose to use the entropy

of the class attribute as a criterion to determine the appropriate subset of features when

building classifiers. We prove that if the mutual information between a feature set X and

the class attribute Y equals to the entropy of Y , then X is a Markov Blanket of Y . We show

that in some cases, it is infeasible to approximate the high-dimensional mutual information

with algebraic combinations of pairwise mutual information in any forms. In addition,

the exhaustive searches of all combinations of features are prerequisite for finding the

optimal feature subsets for classifying these kinds of data sets. We show that our approach

outperforms existing filter feature subset selection methods for most of the 24 selected

benchmark data sets.

Keywords: feature selection; mutual information; Entropy; information theory; Markov

blanket; classification

Entropy 2011, 13 861

1. Introduction

In solving classification problems, many induction algorithms suffer from the curse of

dimensionality [1]. The inclusion of irrelevant, redundant and noisy attributes in the model building

phase can also result in poor predictive performance and increased computation [2]. Feature selection is

critical to overcome the over-fitting problems by finding the informative and discriminatory features, to

improve the performance of classification algorithm, and to avoid the curse of dimensionality.

Recently, some methods have been proposed to select feature subsets with mutual information

(MI) [3–13]. Because it is expensive to evaluate MI between continuous features and the class attribute,

some studies [3,7–10,12] use approximation methods to estimate MI of continuous features. Even for

discrete features, it is very difficult to compute high dimensional MI [7]. Hence, in [3–9,11–13], the

high dimensional MI is replaced with the algebraic combinations of two dimensional MIs to accelerate

the computation. In particular, Peng et al. [7] proposed a theorem that for the first-order incremental

search (greedy search, forward search), mRMR (minimal redundancy maximal relevance) is equivalent

to Max-Dependency, i.e., maximal high dimensional MI.

In this paper, we introduce the Discrete Function Learning algorithm [14] as a filter feature selection

method, using high-dimensional mutual information to measure the relationship between the candidate

feature subsets, X, and the class attribute, Y . In our method, we propose to use the entropy of the class

attribute as the criterion to choose the appropriate number of features, instead of subjectively assigning

the number of features in prior. Specifically, we prove that if the mutual information between a feature

set X and the class attribute Y equals to the entropy of Y , then X is a Markov Blanket of Y . The

DFL algorithm uses a unique searching schema, which is greedy in its first round of searching and still

guarantees the exhaustive searching of all combinations of features in the searching space. Accordingly,

the DFL algorithm has the average complexity of O(k · n · (N + log n)) and the worst case complexity

of O((N + log n) · nK), respectively. Due to the merit of this searching schema and using the entropy of

class attribute as the stopping criterion in evaluating features subsets, the DFL algorithm can solve some

special problems that cannot be solved by existing feature selection methods based on pairwise mutual

information. We also demonstrate that in these cases, the high-dimensional mutual information cannot

be replaced with algebraic combinations of pairwise mutual information.

To evaluate the performance of the DFL algorithm, we choose 24 benchmark data sets from the

classic UCI machine learning repository [15] and high-dimensional gene (or protein) expression profiles

in [16–19], whose numbers of features range from 4 to 15454. We compare our method with

two filter feature subset selection method, CFS (Correlation-based Feature Selection) [20] and CSE

(Consistency-based Subset Evaluation) [21], and the Wrapper Subset Evaluation (WSE) [22] method.

Experimental results show that our method outperforms the CFS and CSE methods in most data sets

selected. The accuracies from our method and the WSE method are comparable, but our method has

much better efficiency than the WSE method has.

The rest of the paper is organized as follows. In Section 2, we review existing feature selection

methods and analyze their limitations. Section 3. will reintroduce the Discrete Function Learning

(DFL) algorithm, discuss its relationship with the Markov Blanket, and analyze its complexity and

correctness. Then, we introduce the ǫ value method for noisy data sets in Section 4. Next, we discuss

Entropy 2011, 13 862

how to choose parameters of the DFL algorithm in Section 5. The prediction method is introduced in

Section 6. Section 7. will discuss two critical issues in implementation. Experimental results

are discussed in Section 8. We further show that the it is infeasible in some situations to replace

high-dimensional mutual information with algebraic combinations of pairwise ones in Section 9. Finally,

Section 10. summarizes this paper.

2. Related Work

In this section, we review current feature selection methods, and discuss their limitations. First, we

categorize current feature selection methods. Then, we specifically describe feature selection methods

based on information theory. Finally, we analyze the shortcomings of them.

2.1. Categorization of Feature Selection Methods

Feature selection methods fall into two main categories, those evaluating individual features and those

evaluating subsets of features.

In the individual feature selection methods, a certain evaluation statistic is calculated for each

feature, then a ranked feature list is provided in a predefined order of the statistic. The statistics

used for individual feature selection include information gain [2,23,24], signal-to-noise (S2N)

statistic [16–18,25], correlation coefficient [26], t-statistic [23], χ2-statistic [23,27] and others. The main

shortcoming of these individual feature selection methods lies in that a larger than necessary number of

redundant top features with similar value patterns, like gene expression patterns, are selected to build

the models. Hence, these approaches often bring much redundancy to the models, since the selected

features carry similar information about the class attribute. According to the principle of Occam’s razor,

these models are not optimal although accurate, since they are often complex and suffer from the risk of

overfitting the training data sets [24]. In addition, the large number of features in the predictors makes it

difficult to know which features are really useful for recognizing different classes.

In the feature subset selection methods, a search algorithm is often employed to find the optimal

feature subsets. In evaluating a feature subset, a predefined score is calculated for the feature

subset. Since the number of feature subsets grows exponentially with the number of features, heuristic

searching algorithms, such as the forward greedy selection, are often employed to solve the problem.

Examples of feature subset selection methods are CFS (Correlation-based Feature Selection) [20], CSE

(Consistency-based Subset Evaluation) [21], and the WSE (Wrapper Subset Evaluation) [22]. Most

feature subset selection methods use heuristic measures to evaluate feature subset under consideration,

such as the CFS and CSE methods. The WSE method is inefficient, especially when dealing with

high-dimensional data sets.

There is another popular way to categorize these algorithms as “filter” or “wrapper”

methods [28]. While a filter is used independent of the classification algorithm, the wrapper is used

with the classification algorithm when searching the optimal feature subsets [22].

Entropy 2011, 13 863

2.2. Theoretic Background

The entropy of a discrete random variable X is defined in terms of probability of observing a particular

value x of X as [29]:

H(X) = −
∑

x

P (X = x) logP (X = x) (1)

The entropy is used to describe the diversity of a variable or vector. The more diverse a variable or

vector is, the larger entropy they will have. Generally, vectors are more diverse than individual variables,

hence have larger entropy. Hereafter, for the purpose of simplicity, we represent P (X = x) with p(x),

P (Y = y) with p(y), and so on. The MI between a vector X and Y is defined as [29]:

I(X;Y) = H(Y)−H(Y |X) = H(X)−H(X|Y) = H(X) +H(Y)−H(X, Y) (2)

Mutual information is always non-negative and can be used to measure the relation between two

variable, a variable and a vector (Equation 2), or two vectors. Basically, the stronger the relation between

two variables, the larger MI they will have. Zero MI means the two variables are independent or have no

relation, which is formally given in Theorem 1. Proof of Theorem 1 can be found in [30].

Theorem 1 For any discrete random variables Y and Z, I(Y ;Z) ≥ 0. Moreover, I(Y ;Z) = 0 if and

only if Y and Z are independent.

The conditional MI I(X;Y |Z) (the MI between X and Y given Z) [30] is defined by

I(X;Y |Z) = H(Y |Z)−H(Y |X,Z) =
∑

x,y,z

p(x, y, z)
p(x, y|z)

p(x|z)p(y|z)
(3)

The chain rule for MI is give by Theorem 2, for which the proof is available in [30].

Theorem 2 I(X1, X2, . . . , Xn;Y) =
∑n

i=1 I(Xi;Y |Xi−1, Xi−2, . . . , X1).

2.3. Feature Selection Methods Based on Information Theory

Let us review existing feature selection methods based on MI, which include work by Dumais

et al. [31], Yang and Pedersen [32], Kwak and Choi [4], Vidal-Naquet and Ullman [5], Fleuret [6],

Chow and Huang [33], Peng et al. [7], Bonev and Escolano [8], Cai et al. [9], Estevez et al. [11], Vinh

et al. [13], Zhu et al. [10], and Sotoca and Pla [12]. These methods can also be classified into two

categories.

In the first category, i.e., the individual feature selection methods, features are ranked according to

their MI with the class label. Then, the first k features [31] or the features with a bigger MI than a

predefined threshold value [32] are chosen.

The second category is feature subset selection. In this category, the forward selection searching

algorithm, i.e., the greedy algorithm, is often used to find the predefined k features. In the first iteration,

the feature Xi which shares the largest MI with the class attribute Y is selected to the target feature subset

U. Then, in the next step, the selection criterion is to determine how much information can be added

with respect to the already existing X(1). Therefore, the X(2) with maximum I(Xi, X(1);Y)−I(X(1);Y)

Entropy 2011, 13 864

is added to U [5]. Formally, the features X(1), . . . , X(k) are selected with the following criteria,

X(1) = argmaxi I(Xi;Y) and

X(s) = argmax
Xi∈Ps−1

min
X(j)∈Us−1

(I(Xi, X(j);Y)− I(X(j);Y)) (4)

where ∀s, 1 < s ≤ k, i = 1, . . . , (n− s+1), j = 1, . . . , (s− 1), and Ps is the feature pool by removing

X(1), . . . , X(s), with P1 = V \ X(1), Ps = Ps−1 \ X(s), and Us is the set of selected features, with

U1 = {X(1)}, Us = Us−1 ∪ {X(s)}.

From Theorem 2, we have I(Xi, X(j);Y) = I(X(j);Y) + I(Xi;Y |X(j)), then I(Xi;Y |X(j)) =

I(Xi, X(j);Y) − I(X(j);Y). Therefore, Equation 4 is equivalent to maximizing conditional MI,

minX(j)∈Us−1 I(Xi;Y |X(j)) [6,9] in Equation 5.

X(s) = argmax
Xi∈Ps−1

min
X(j)∈Us−1

I(Xi;Y |X(j)) (5)

Battiti [3] introduced a heuristic algorithm to find the feature subsets, as in Equation 6. This method

is similar to those in Equations 4 and 5 [5,6], i.e., but not theoretically formulated.

X(s) = argmax
Xi∈Ps−1

[I(Xi;Y)− β
∑

X(j)∈Us−1

I(Xi;X(j))] (6)

where β was a manually tuned parameter.

Kwak and Choi [4] introduced a modified version of Equation 6 as Equation 7.

X(s) = argmax
Xi∈Ps−1

[I(Xi;Y)− β
∑

X(j)∈Us−1

I(X(j);Y)

H(X(j))
I(Xi;X(j))] (7)

similar to Equation 6, where β was a manually tuned parameter.

Chow and Huang [33] proposed an approximation method to evaluate MI between continuous features

and the class attribute. Then, Chow and Huang [33] used the heuristic criteria, feature relevance criterion

(FRC) and feature similarity criterion (FSC) in Equation 8 and 9 to choose features with a forward

selection process.

FRC(Xi) = I({U, Xi};Y) (8)

FSC(Xi) = argmax
X(j)∈U

(
I(Xi;X(j))

H(X(j))
) (9)

This method essentially finds the most relevant feature with maximal FRC(Xi), then evaluates its

redundancy by calculating FSC(Xi) with respect to the selected features individually. If FSC(Xi)

is larger than a predefined threshold value, it is considered as a redundant feature and will not be

chosen [33].

Peng et al. [7] proposed to use X(1) = argmaxi I(Xi;Y) and Equation 10 to choose a new feature.

X(s) = argmax
Xi∈Ps−1

[I(Xi;Y)−
1

s− 1

∑

X(j)∈Us−1

I(Xi;X(j))] (10)

Peng et al. [7] also used an approximation method to calculate the MI between continuous features and

the class attribute.

Entropy 2011, 13 865

Later, Estevez et al. [11] proposed a variant of Equation 10 in Equation 11.

X(s) = argmax
Xi∈Ps−1

[I(Xi;Y)−
1

s− 1

∑

X(j)∈Us−1

Î(Xi;X(j))] (11)

where Î(Xi;X(j)) was the normalized mutual information defined in Equation 12.

Î(Xi;X(j)) =
I(Xi;X(j))

min(H(Xi), H(X(j)))
(12)

Vinh et al. [13] recently further proposed to improve Equation 11 with Equation 13.

X(s) = argmax
Xi∈Ps−1

[Î(Xi;Y)−
1

s− 1

∑

X(j)∈Us−1

Î(Xi;X(j))] (13)

where Î(Xi;Y) was defined similarly as Equation 12.

Recently, Sotoca and Pla [12] proposed a method to perform clustering of features based on

conditional mutual information, then a representative feature of each cluster was chosen as a selected

feature. Maji [34] also proposed clustering method for choosing features according to some measures

derived from mutual information.

2.4. Limitations of Current Feature Subset Selection Methods

For most existing feature subset selection methods based on MI, one common major shortcoming is

that the candidate feature is pairwise evaluated with respect to every individual feature in the selected

feature subset Us−1 step by step. The motivation underlying Equation 4 and 5 is that Xi is good only if it

carries information about Y , and if this information has not been caught by any of the X(j) already

picked [6]. However, it is unknown whether the existing features as a vector have captured the

information carried by Xi or not. Another shortcoming is that it needs to specify the number of features

k in prior. As shown in [1,4,7,8,10,11,13,33], the performances of existing algorithms applied to the

selected features were sensitive to the predefined k. In addition, it also introduces some redundant

computation when evaluating the new feature Xi with respect to each of the already picked features

X(j) ∈ Us−1, which will be discussed further in Section 9.

3. The Discrete Function Learning Algorithm

3.1. Theoretic Motivation and Foundation

We restate the theorem about the relationship between the MI I(X;Y) and the number of attributes

in X.

Theorem 3 ([35], p. 26) I({X, Z};Y) ≥ I(X;Y), with equality if and only if p(y|x) = p(y|x, z) for

all (x, y, z) with p(x, y, z) > 0.

Proof of Theorem 3 can be found in [35]. In Theorem 3, it can be seen that {X, Z} will contain more

or equal information about Y as X does. To put it another way, the more variables, the more information

is provided about another variable.

Entropy 2011, 13 866

To measure which subset of features is optimal, we reformulate the following theorem, which is the

theoretical foundation of our algorithm.

Theorem 4 If the MI between X and Y is equal to the entropy of Y , i.e., I(X;Y) = H(Y), then Y is a

function of X.

It has been proved that if H(Y |X) = 0, then Y is a function of X [30]. Since I(X;Y) = H(X) −

H(Y |X), it is immediate to obtain Theorem 4. The entropy H(Y) represents the diversity of the variable

Y . The MI I(X;Y) represents the dependence between vector X and Y . From this point of view,

Theorem 4 actually says that the dependence between vector X and Y is very strong, such that there

is no more diversity for Y if X has been known. In other words, the value of X can fully determine

the value of Y . X satisfying Theorem 4 is defined as essential attributes (EAs), because X essentially

determines the value of Y [14].

3.2. Performing Feature Selection

The feature selection is often used as a preprocessing step before building models for classification.

The aim of feature selection is to remove the irrelevant and redundant features, so that the induction

algorithms can produce better prediction accuracies with more concise models and better efficiency.

From Theorem 1, the irrelevant features tend to share zero or very small MI with the class attribute

in the presence of noise. Therefore, the irrelevant features can be eliminated by choosing those features

with relatively large MI with the class attribute in modelling process.

When choosing candidate features, our approach maximizes the MI between the feature subsets and

the class attribute. Suppose that Us−1 has already been selected at the step s− 1, and the DFL algorithm

is trying to add a new feature Xi ∈ V \ Us−1 to Us−1. Specifically, our method uses the following

criterion, X(1) = argmaxi I(Xi;Y) and

X(s) = argmax
i

I(Us−1, Xi;Y) (14)

where ∀s, 1 < s ≤ k, U1 = {X(1)}, and Us = Us−1 ∪ {X(s)}. From Equation 14, it is obvious that

the irrelevant features have lost the opportunity to be chosen as EAs of the classifiers after the first EA,

X(1), is chosen, since I(Xi;Y) is very small if Xi is an irrelevant feature.

Next, we illustrate how to eliminate the redundant features. From Theorem 2, we have

I(Us−1, Xi;Y) = I(Us−1;Y) + I(Xi;Y |Us−1) (15)

In Equation 15, note that I(Us−1;Y) does not change when trying different Xi ∈ V \Us−1. Hence, the

maximization of I(Us−1, Xi;Y) in our method is actually maximizing I(Xi;Y |Us−1), as shown by the

shaded region in Figure 1, which is the conditional MI of Xi and Y given the already selected features

Us−1, i.e., the information of Y not captured by Us−1 but carried by Xi. As shown in Figure 1 (b), if

the new feature B is a redundant feature, i.e., I(Us−1;B) is large, then the additional information of Y

carried by Xi, I(B;Y |Us−1), will be small. Consequently, B is unlikely to be chosen as an EA based on

Equation 15. Hence, the redundant features are automatically eliminated by maximizing I(Us−1, Xi;Y).

From Theorem 4, if a feature subset U ⊆ V satisfies I(U;Y) = H(Y), then Y is a deterministic

function of U, which means that U is a complete and optimal feature subset. But the real data sets are

Entropy 2011, 13 867

often noisy. Thus, the DFL algorithm estimates the optimal feature subsets with the ǫ value method to

be introduced in Section 4. by finding feature subsets to satisfy H(Y)− I(U;Y) ≤ ǫ×H(Y).

Figure 1. The advantage of using MI to choose the most discriminatory feature vectors. The

circles represent the entropy of variables or vectors. The intersection between the circles

represents the MI between the variables or vectors. Us−1 is the features already chosen. The

shaded regions represent I(Xi;Y |Us−1), where Xi ∈ V\Us−1. (a) When Xi = A. A shares

less MI with Y than B does. However, the vector {Us−1, A} shares larger MI with Y than

the vector {Us−1, B} does. (b) When Xi = B. B shares larger MI with Y than A does. But

B and Us−1 have a large MI, which means that Us−1 has contained most of the information

of Y carried by B or the additional information of Y carried by B, I(B;Y |Us−1), is small.

(a) (b)

In summary, the irrelevant and redundant features can be automatically removed, if the new

candidate feature Xi is evaluated with respect to the selected features as a vector Us−1 by maximizing

I(Us−1, Xi;Y). Furthermore, the optimal subset of features can be determined by evaluating I(U;Y)

with respect to H(Y).

3.3. Relation to Markov Blanket

Conditional Independence (see [36], p. 83) is a concept used in graphical models, especially Bayesian

networks [36].

Definition 1 (Conditional Independence) Let V = {X1, . . . , Xn} and P (·) be a joint probability

function over the variables in V. ∀X,Y, and Z ⊆ V, the sets Y and Z are said to be conditional

independent given X if

P (Y|X,Z) = P (Y|X) (16)

In other words, learning the value of Z does not provide additional information about Y, once we

know X.

Markov Blanket [36] is defined as follows.

Entropy 2011, 13 868

Definition 2 (Markov Blanket) Let U be some set of features(variables) which does not contain Xi.

We say that U is a Markov Blanket for Xi if Xi is conditional independent of R = V \{U∪{Xi}} [37]

given U, i.e.,

p(xi|r,u) = p(xi|u), ∀p(r,u) > 0 (17)

A set is called a Markov boundary of Xi, if it is a minimum Markov Blanket of Xi, i.e., none of its proper

subsets satisfy Equation 17 (see [36], p. 97).

From the definition of Markov Blanket, it is known that if we can find a Markov Blanket U for the

class attribute Y , then all other variables in V will be statistically independent of Y given U. This means

that all the information that may influence the value of Y is stored in values of U [38]. In other words,

Markov Blanket U has prevented other nodes from affecting the value of Y . Markov Blanket U also

corresponds to strongly relevant features [39], as defined by Kohavi and John [22]. Therefore, if we

can find a Markov Blanket U of Y as the candidate feature subsets, U should be the theoretical optimal

subset of features to predict the value of Y , as discussed in [1,39].

Next, let us discuss the relationship between our method and Markov Blanket. First, we restate

Theorem 5 and 6, which is needed to prove Theorem 7.

Theorem 5 ([40], p. 36) Suppose that X is a set of discrete random variables, and Y are a finite discrete

random variables. Then, min(H(X), H(Y)) ≥ I(X;Y) ≥ 0.

Theorem 6 ([30], p. 43) If Y = f(X), where X is a set of discrete random variables, then

H(X) ≥ H(Y).

Theorem 7 If I(X;Y) = H(Y), X = {X(1), . . . , X(k)} ⊆ V, ∀Z ⊆ V\X, Y and Z are conditional

independent given X.

Proof 1 Let us consider I(X,Z;Y), ∀Z ⊆ V\X. Firstly,

H(X,Z) = H(X) +H(Z|X) ≥ H(X)

Secondly, from Theorem 4, Y = f(X). Then, from Theorem 6, H(X) ≥ H(Y). So, H(X,Z) ≥

H(X) ≥ H(Y) Thus, min(H(X,Z), H(Y)) = H(Y). From Theorem 5, we have

I(X,Z;Y) ≤ min(H(X,Z), H(Y)) = H(Y) = I(X;Y) (18)

On the other hand, from Theorem 3, we get

I(X,Z;Y) ≥ I(X;Y) (19)

From both Equation 18 and Equation 19, we obtain I(X,Z;Y) = I(X;Y). Again from Theorem 3, we

get p(y|x, z) = p(y|x). That is to say, Y and Z are conditional independent given X.

Based on Theorem 7 and the concept of Markov Blanket, it is known that if I(X;Y) = H(Y), then

X is a Markov Blanket of Y . Formally, we have

Theorem 8 If I(X;Y) = H(Y), then X is a Markov Blanket of Y .

Entropy 2011, 13 869

Proof 2 Immediately from Theorem 7 and Definition 2.

As to be introduced in Section 4., I(X;Y) = H(Y) can be satisfied only when the data sets are

noiseless. However, with the introduction of ǫ method in Section 4., the set that carries most information

of Y , H(Y), is still a good estimation of the true Markov Blanket of Y . In addition, our method has

competitive expected computational costs when compared to other methods for finding Markov Blankets,

such as in [1,39,41,42].

3.4. The Discrete Function Learning Algorithm

U satisfying I(U;Y) = H(Y) is a complete feature subsets in predicting Y based on Theorem 4.

As also proved in Theorem 8, U satisfying I(U;Y) = H(Y) is a good feature subsets for predicting Y .

Thus, we aim to find U ⊆ V with I(U;Y) = H(Y) from the training data sets for solving the problem

of finding optimal feature subsets.

For n discrete variables, there are totally 2n subsets. Clearly, it is NP-hard to examine all possible

subsets exhaustively. It is often the case that there are some irrelevant and redundant features in the

domain V. Therefore, it is reasonable to reduce the searching space by only checking feature subsets

with a predefined number of features. In this way, the problem can be solved in polynomial time.

Based on the above consideration, the DFL algorithm uses a parameter, the expected cardinality of

EAs K, to prevent the exhaustive searching of all subsets of attributes by checking those subsets with

fewer than or equal to K attributes, as listed in Table 1 and 2. The DFL algorithm has another parameter,

the ǫ value, which will be elaborated in Section 4..

Table 1. The DFL algorithm.

Algorithm: DFL(V,K,T)

Input: a list V with n variables, indegree K,

T = {(vi, yi) : i = 1, · · · , N}. T is global.

Output: f

Begin:

1 L ← all single element subsets of V;

2 ∆Tree.F irstNode ← L;

3 calculate H(Y); //from T

4 D ← 1; //initial depth

5∗ f = Sub(Y,∆Tree,H(Y), D,K);

6 return f ;

End

∗ Sub() is a subroutine listed in Table 2.

When trying to find the EAs from all combinations whose cardinalities are not larger than K, the DFL

algorithm will examine the MI between the combination of variables under consideration, U, and the

class attribute, Y . If I(U;Y) = H(Y), then the DFL algorithm will terminate its searching process, and

obtain the classifiers by deleting the non-essential attributes and duplicate instances of the EAs in the

training data sets, which corresponds to step 5 in Table 2. Meanwhile, the counts of different instances

Entropy 2011, 13 870

of (U, Y) are stored in the classifiers and will be used in the prediction process. In the algorithm, we use

the following definitions.

Table 2. The subroutine of the DFL algorithm.

Algorithm: Sub(Y,∆Tree,H,D,K)

Input: variable Y , ∆Tree, entropy H(Y)

current depth D, maximum indegree K

Output: function table for Y , Y = f(X)

Begin:

1 L ← ∆Tree.DthNode;

2 for every element X ∈ L {

3 calculate I(X;Y); //from T

4 if(I(X;Y) == H) { //from Theorem 4

5 extract Y = f(X) from T;

6 return Y = f(X) ;

}

}

7 sort L according to I;

8 for every element X ∈ L {

9 if(D < K){

10 D ← D + 1;

11 ∆Tree.DthNode ← ∆1(X);

12 return Sub(Y,∆Tree,H,D,K);

}

}

13 return “Fail(Y)”; //fail to find function for Y

End

Definition 3 (δ Superset) Let X be a subset of V = {X1, X2, . . . , Xn}, then δi(X) of X is a superset

of X so that X ⊂ δi(X) and |δi(X)| = |X|+ i.

Definition 4 (Δ Supersets) Let X be a subset of V = {X1, X2, . . . , Xn}, then Δi(X) of X is the

collective of all δi(X) and Δi(X) =
⋃

δi(X).

Definition 5 (Searching Layer L of V) Let X ⊆ V, then the ith layer Li of all subsets of V is,

∀|X| = i, Li = ∪X.

Definition 6 (Searching Space) The searching space of functions with a bounded indegree K is

SK = ∪K
i=1Li.

From Definition 5, it is known that there are
(

n

i

)

subsets of V in Li. And there are
∑K

i=1

(

n

i

)

≈ nK

subsets of V in SK .

To clarify the search process of the DFL algorithm, let us consider an example, as shown in

Figure 2. In this example, the set of attributes is V = {A,B,C,D} and the class attribute is determined

with Y = (A · C) + (A · D), where “·” and “+” are logic AND and OR operation respectively. The

expected cardinality K is set to n = 4 for this example. However, there are only three real relevant

Entropy 2011, 13 871

features. We use k to represent the actual cardinality of the EAs, therefore, k = 3 in this example. The

training data set T of this example is shown in Table 3.

Table 3. The training data set T of the example to learn Y = (A · C) + (A ·D).

ABCD Y ABCD Y ABCD Y ABCD Y

0000 0 0100 0 1000 0 1100 0

0001 0 0101 0 1001 1 1101 1

0010 0 0110 0 1010 1 1110 1

0011 0 0111 0 1011 1 1111 1

The search procedure of the DFL algorithm for this example is shown in Figure 2. In the learning

process, the DFL algorithm uses a data structure called ΔTree to store the Δ supersets in the searching

process. For instance, the ΔTree when the DFL algorithm is learning the Y is shown in Figure 3.

As shown in Figure 2 and 3, the DFL algorithm searches the first layer L1, then it sorts all subsets

according to their MI with Y on L1. Consequently, the DFL algorithm finds that {A} shares the largest

MI with Y among subsets on L1.

Figure 2. The search procedures of the DFL algorithm when it is learning Y = (A ·C)+(A ·

D). {A,C,D}∗ is the target combination. The combinations with a black dot under them

are the subsets which share the largest MI with Y on their layers. Firstly, the DFL algorithm

searches the first layer, then finds that {A}, with a black dot under it, shares the largest MI

with Y among subsets on the first layer. Then, it continues to search Δ1(A) on the second

layer. Similarly, these calculations continue until the target combination {A,C,D} is found

on the third layer.

{}

{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

{A,B,C} {A,B,D} {A,C,D}* {B,C,D}

{A,B,C,D}

Next, the Δ1(A)s are added to the second layer of ΔTree, as shown in Figure 3. Similarly to L1,

the DFL algorithm finds that {A,D} shares the largest mutual information with Y on L2. Then, the

Entropy 2011, 13 872

DFL algorithm searches through Δ2(A), . . ., ΔK−1(A), however it always decides the search order of

Δi+1 (A) based on the calculation results of Δi(A). Finally, the DFL algorithm finds that the subset

{A,C,D} satisfies the requirement of Theorem 4, i.e., I({A,C,D};Y) = H(Y), and will construct the

function f for Y with these three attributes.

Table 4. The learned classifier f of the example to learn Y = (A · C) + (A ·D).

ACD Y Count ACD Y Count

000 0 2 100 0 2

001 0 2 101 1 2

010 0 2 110 1 2

011 0 2 111 1 2

Figure 3. The ΔTree when searching the EAs for Y = (A ·C)+(A ·D). (a) after searching

the first layer of Figure 2 but before the sort step in line 7 of Table 2. (b) when searching the

second layer of Figure 2. The {A}, {C} and {D} which are included in the EAs of Y are

listed before {B} after the sort step in line 7 of Table 2. (c) when searching the third layer of

Figure 2, {A,C,D}∗ is the target combination. Similar to part (b), the {A,C} and {A,D}

are listed before {A,B}. When checking the combination {A,C,D}, the DFL algorithm

finds that {A,C,D} is the complete EAs for Y since {A,C,D} satisfies the criterion of

Theorem 4.

{A} {B} {C} {D}

{ } { } { }

{ } { }

{ }

{A} {C} {D} {B}

{A,B} {A,C} {A,D}

{ } { }

{ }

{A} {C} {D} {B}

{A,D} {A,C} {A,B}

{A,B,D} {A,C,D }*

{ }

(a) (b) (c)

To determine f , firstly, B is deleted from training data set since it is a non-essential attribute. Then,

the duplicate rows of ({A,C,D}, Y) are removed from the training data set to obtain the final function

f as the truth table of (A ·C) + (A ·D) along with the counts for each instance of ({A,C,D}, Y). This

is the reason for which we name our algorithm as the Discrete Function Learning algorithm.

If the DFL algorithm still does not find the target subset, which satisfies the requirement of Theorem 4,

in Kth layer LK , it will return to the first layer. Now, the first node on the L1 and all its Δ1, . . . ,ΔK−1

supersets have already been checked. In the following, the DFL algorithm continues to calculate the

second node on the first layer (and all its Δ1, . . . ,ΔK−1 supersets), the third one, and so on, until it

reaches the end of L1 and fulfills the exhaustive searching of SK .

We use the example in Figure 4 to illustrate the searching steps beyond the first round searching of

the DFL algorithm. Note that the DFL algorithm is the same as the classical greedy forward selection

Entropy 2011, 13 873

algorithm [43] and uses the mutual information I(U;Y) as the greedy measure before it returns to the

(K − 1)th layer from Kth layer for the first time. We name the searching steps before this first return as

the first round searching of the DFL algorithm. As shown in Figure 4 (a) and (b), this first return happens

after step 10.

To produce the exhaustive searching, we add one noisy sample (1100,1) to the training data set in

Table 3. Then, we keep the same settings of K = 4 and ǫ = 0. As shown in Figure 4 (b), the mutual

information I(X;Y) of all subsets is not equal to H(Y) = 0.977. Therefore, the DFL algorithm will

exhaustively check all subsets and finally report “Fail to identify the model for Y (the classifier) when

ǫ = 0”.

In Figure 4 (a), the first round searching is shown in the solid edges and the subsets checked in each

step are shown in the blue region of Figure 4 (b). In Figure 4 (a), the dashed edges represent the searching

path beyond the first round searching (only partly shown for the sake of legibility), marked as yellow

regions in Figure 4 (b). The red regions are the subsets, as well as their supersets, that will not be checked

after deploying the redundancy matrix to be introduced in Section B.1.

3.5. Complexity Analysis

First, we analyze the worst-case complexity of the DFL algorithm. As to be discussed in Section 7.1,

the complexity to compute the MI I(X, Y) is O(N), where N is the number of instances in the training

data set. For the example in Figure 2, {A,B} will be visited twice from {A} and {B} in the worst

case. {A,B,C} will be visited from {A,B}, {A,C} and {B,C}. Thus, {A,B,C} will be checked for

3 × 2 = 3! times in the worst case. In general, for a subset with K features, it will be checked for K!

times in the worst case. Hence, it takes O((
(

n

1

)

+
(

n

2

)

2! + . . .+
(

n

K

)

K!)×N) = O(N · nK) to examine

all subsets in SK . Another computation intensive step is the sort step in line 7 of Table 2. In L1, there

is only one sort operation, which takes O(n log n) time. In L2, there would be n sort operations, which

takes O(n2 log n) time. Similarly, in LK , the sort operation will be executed for nK−1 times, which takes

O(nK log n) time. Therefore, the total complexity of the DFL algorithm is O((N + log n) · nK) in the

worst case.

Next, we analyze the expected complexity of the DFL algorithm. As described in Section 3.4, the

actual cardinality of the EAs is k. After the EAs with k attributes are found in the subsets of cardinalities

≤ K, the DFL algorithm will stop its search. In our example, the K is 4, while the k is automatically

determined as 3, since there are only 3 EAs in this example. Contributing to sort step in the line 7 of the

subroutine, the algorithm makes the best choice on current layer of subsets. Since there are (n − 1) Δ1

supersets for a given single element subset, (n − 2) Δ1 supersets for a given two element subset, and

so on. The DFL algorithm only considers
∑k−1

i=0 (n − i) ≈ k · n subsets in the optimal case. Thus, the

expected time complexity of the DFL algorithm is approximately O(k · n · (N + log n)), where log n is

for sort step in line 7 of Table 2.

Next, we consider the space complexity of the DFL algorithm. To store the information needed in the

search processes, the DFL algorithm uses two data structures. The first one is a linked list, which stores

the value list of every variable. Therefore, the space complexity of the first data structure is O(Nn). The

second one is the ΔTree, which is a linked list of length K, and each node in the first dimension is itself

a linked list. The ΔTree for the example in Figure 2 is shown in Figure 3. The first node of this data

Entropy 2011, 13 874

structure is used to store the single element subsets. If the DFL algorithm is processing {Xi} and its Δ

supersets, the second node to the Kth node are used to store Δ1 to ΔK−1 [44] supersets of {Xi}. If there

are n variables, there would be
∑K−1

i=0 (n − i) ≈ Kn subsets in the ΔTree. To store the ΔTree, the

space complexity would be O(Kn), since only the indexes of the variables are stored for each subsets.

Therefore, the total space complexity of the DFL algorithm is O((K +N) · n).

Finally, we consider the sample complexity of the DFL algorithm. Akutsu et al. [45] proved that

Ω(2k + klog2n) transition pairs are the theoretic lower bound to infer the Boolean networks, where n

is the number of genes (variables), k is the maximum indegree of the genes, and a transition pair is

({v(t) → v(t + 1)}) (t is a time point). We further proved Theorem 9 when the genes have more than

two discrete levels [46,47].

Theorem 9 ([46,47]) Ω(bk + klogbn) transition pairs are necessary in the worst case to identify the

qualitative gene regulatory network models of maximum indegree ≤ k and the maximum number of

discrete levels for variables ≤ b.

When considering the sample complexity in the context of feature selection (and classification), the

transition pair should be replaced with {v, y}. Because k, n and b in the context of feature selection

(classification) are the same as those in learning gene regulatory network models, the number of

samples N in training data set T = {(vi, yi) : i = 1, · · · , N} has the same theoretic lower bound of

Ω(bk + klogbn) as in Theorem 9.

3.6. Correctness Analysis

We first reintroduce Theorem 10, then show Theorem 11 about the correctness of the DFL algorithm.

Theorem 10 ([40], p. 37) If Y = f(X), then I(X;Y) = H(Y).

Theorem 11 Let V = {X1, . . . , Xn}. The DFL algorithm can find a consistent function

Y = f(U) of maximum indegree K with O((N+ logn) ·nK) time in the worse case from T = {(vi, yi) :

i = 1, 2, . . . , N}.

Proof 3 Since |X| = k, X is included in the searching space SK , where K ≥ k. Since Y = f(X),

I(X;Y) = H(Y) based on Theorem 10. In the searching space SK , there exists at least one subset of

V, i.e., X, which satisfies the criterion of Theorem 4.

Since the maximum indegree of the function is K ≥ k, the target subset U is included in the searching

space SK . The DFL algorithm guarantees the check of all subsets in SK , which takes O(N ·nK) time. The

sort step in line 7 of Table 2 will be executed for O(nK−1) times, which takes O(nK · log n) time. Finally,

based on Theorem 4, the DFL algorithm will find a consistent function Y = f(U) in O((N+log n) ·nK)

time in the worst case.

The word “consistent” means that the function Y = f(U) is consistent with the learning samples,

i.e., ∀ui, f(ui) = yi.

Entropy 2011, 13 875

Figure 4. The exhaustive searching procedures of the DFL algorithm when it is learning

Y = (A · C) + (A · D). {A,C,D}∗ is the target combination. (a) The exhaustive

searching after the first round searching. The numbers beside the subsets are the steps of

the DFL algorithm in part (b). The solid edges represent the searching path in the first round

searching, marked as blue region in part (b). The dashed edges represent the searching path

beyond the first round searching (only partly shown for the sake of legibility), marked as

yellow regions in the table below. (b) The exhaustive searching steps. Blue, yellow and red

regions correspond to first round searching, exhaustive searching and the subsets, as well

as their supersets, not checked after deploying the redundancy matrix to be introduced in

Section B.1.

{}

{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

{A,B,C} {A,B,D} {A,C,D}* {B,C,D}

{A,B,C,D}

1 2 3 4

5 6 7

8 9

10 11

12 13

(a)

(b)

Entropy 2011, 13 876

4. The ǫ Value Method for Noisy Data Sets

4.1. The ǫ Value Method

In Theorem 4, the exact functional relation demands the strict equality between the entropy of

Y , H(Y) and the MI of X and Y , I(X;Y). However, this equality is often ruined by the noisy

data, like microarray gene expression data. The noise changes the distribution of X or Y , therefore

H(X), H(X, Y) and H(Y) are changed due to the noise. From Equation 2, I(X;Y) is changed as a

consequence. In these cases, we have to relax the requirement to obtain the best estimated result. As

shown in Figure 5, by defining a significance factor ǫ, if the difference between I(X;Y) and H(Y) is

less than ǫ ×H(Y), then the DFL algorithm will stop the searching process, and build the classifier for

Y with X at the significant level ǫ.

Figure 5. The Venn diagram of H(X),H(Y) and I(X, Y), when Y = f(X). (a) The

noiseless case, where the MI between X and Y is the entropy of Y . (b) The noisy case,

where the entropy of Y is not equal to the MI between X and Y strictly. The shaded region

is resulted from the noises. The ǫ value method means that if the area of the shaded region is

smaller than or equal to ǫ ×H(Y), then the DFL algorithm will stop the searching process,

and build the function for Y with X.

H(Y)

H()X

I(;Y)X

(a) (b)

Because H(Y) may be quite different for various classification problems, it is not appropriate to use

an absolute value, like ǫ, to stop the searching process or not. Therefore, a percentage of H(Y) is used

as the criterion to decide whether to stop the searching process or not.

The main idea of the ǫ value method is to find a subset of attributes which captures not all the diversity

of the Y , H(Y), but the major part of it, i.e., (1−ǫ)×H(Y), then to build functions with these attributes.

The attributes in vectors showing strong dependence with Y are expected to be selected as input variables

of Y , i.e., the EAs of the models, in the ǫ value method.

4.2. The Relation with The Over-fitting Problem

The ǫ value method can help to avoid over-fitting of the training data sets. For a given noisy data

set, the missing part of H(Y) is determined, so there exists a threshold value of ǫ with which the

DFL algorithm can find the correct input variables X of the generation function Y = f(X). From

Theorem 3, it is known that more variables tend to contain more information about the class attribute Y .

Entropy 2011, 13 877

On the other hand, from Figure 5, it can be seen that some part of H(Y) is not captured by the input

variables X due to the noise. Therefore, it is likely to include more than necessary number of feature as

EAs, if we continue to add variables after the threshold value of ǫ. The unnecessary input variables often

incur complex models and risks of over-fitting the training data sets. By introducing the ǫ value method,

the DFL algorithm will stop the searching procedure when the missing part of H(Y) is smaller than or

equal to ǫ×H(Y), and avoids the inclusion of unnecessary input variables.

An example is given in Figure 6, which is generated with the LED+17 data set [15] with 3000 samples,

which will be used later in Section 8. The LED+17 data set has 23 Boolean features, 7 relevant and 16

irrelevant. We randomly choose 2000 samples as the training data set and the remaining 1000 as testing

data set. From Figure 6 (b), it is seen that when ǫ is small, k is large, much larger than the actual relevant

number of features, seven. Meanwhile, the prediction performance of these complex models are bad, as

shown in Figure 6 (a), although using much more time as in Figure 6 (c). When choosing the optimal

ǫ value, ǫop. = 0.31, the DFL algorithm correctly finds the seven relevant features and reaches its best

performance of 72.3% in 10-fold cross validation and 75.4% for the independent testing data set. The

optimal ǫ value ǫop. is automatically chosen from the training data set with the restricted learning method

to be introduced in Section 5.2.

Figure 6. The performance of the DFL algorithm for different ǫ values. The figures are

generated from LED+17 data sets in Table 5. The training data set has 2000 samples

and K is set to 20. The curves marked with circles and triangles are for result of 10-fold

cross validation and the result of an independent testing data set of 1000 samples. The ǫop.

pointed by an arrow is the optimal ǫ value with which the DFL algorithm reaches its highest

prediction accuracy in a 10-fold cross validation for the training data set. (a) ǫ vs accuracy.

(b) ǫ vs the number of selected features k. (c) ǫ vs the run time (s).

0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

LED+17, ε vs accuracy

ε

A
c
c
u

ra
c
y

10−fold CV
Train−test

ε
op.

0 0.2 0.4 0.6 0.8
0

5

10

15

20
LED+17, ε vs k

ε

k

ε
op.

0 0.2 0.4 0.6 0.8
0

20

40

60

80

100
LED+17, ε vs time

ε

t
(s

)

ε
op.

(a) (b) (c)

4.3. The Relation with The Time Complexity

The ǫ value method is also helpful to avoid the exhaustive searching when dealing with noisy data

sets. There is not a subset that satisfies Theorem 4 in all subsets of V when the data sets are noisy.

After introducing proper ǫ value, the DFL algorithm will just check the n subsets with one variable,

and n − 1 subsets with two variables, and so on. Thus, the DFL algorithm maintains its expected

complexity of O((k · n · (N + log n)). For example, as shown in Figure 4 (b), since the data set is

noisy, the I(X;Y) = H(Y) cannot be satisfied with ǫ of 0. Thus, the DFL algorithm will exhaustively

Entropy 2011, 13 878

search all subsets in SK . But when the ǫ value increases to 0.17, the DFL algorithm can correctly find

the three input variables {A,C,D} in the 9th step in Figure 4 (b), since H(Y) − I({A,C,D};Y) =

0.977 − 0.815 = 0.162 < 0.17 × H(Y) = 0.166. Thus, the complex exhaustive searching is avoided

by introducing ǫ = 0.17. For another example, in Figure 6 (c), it is shown that if ǫop. is chosen, the DFL

algorithm can be significantly faster while achieves its best prediction performance, in Figure 6 (a).

5. Selection of Parameters

5.1. Selection of The Expected Cardinality K

We discuss the selection of the expected cardinality K in this section. Generally, if a data set has a

large number of features, like several thousands, then K can be assigned to a small constant, like 20. If

the number of features is small, then the K can be directly specified to the number of features n.

Another usage of K is to control model complexity. If the number of features is more important than

accuracy, then a predefined K can be set. Thus, the learned model will have fewer than or equal to

K features.

The expected cardinality K can also be used to incorporate the prior knowledge about the number of

relevant features. If we have the prior knowledge about the number of relevant features, then the K can

be specified as the predetermined value.

5.2. Selection of ǫ value

For a given noisy data set, the missing part of H(Y), as demonstrated in Figure 5, is determined, i.e.,

there exists a specific minimum ǫ value, ǫm, with which the DFL algorithm can find the original model.

If the ǫ value is smaller than the ǫm, the DFL algorithm will not find the original model. Here, we will

introduce two methods to efficiently find ǫm.

In the first method, the ǫm can be found automatically by a restricted learning process. To efficiently

find the ǫm, we restrict the maximum number of the subsets to be checked to K×n, i.e., just performing

the first round searching in Figure 4. A pre-defined scope of ǫ is specified in prior. If the DFL algorithm

cannot find the model for a noisy data set with the specified minimum ǫ value, then the ǫ will be increased

with a step of 0.01. The restricted learning will be performed, until the DFL algorithm finds a model

with a threshold value of ǫ, i.e., the ǫm. Since only K × n subsets are checked, the time to find ǫm will

be O(K · n · (N + log n)).

In the second method, the ǫm can also be found with a manual binary search method. Since ǫ ∈ [0, 1),

ǫ is specified to 0.5 in the first try. If the DFL algorithm finds a model with ǫ value of 0.5, then ǫ is

specified to 0.25 in the second try. Otherwise, if the DFL algorithm cannot find a model with a long

time, like 10 minutes, then the DFL algorithm can be stopped and ǫ is specified to 0.75 in the second

try. The selection process is carried out until the ǫm value is found so that the DFL algorithm can find a

model with it but cannot when ǫ = ǫm − 0.01. This selection process is also efficient. Since ǫ ∈ [0, 1),

only 5 to 6 tries are needed to find the ǫm on the average.

As shown in Figure 7, we use the LED data set [15] with 10 percent noise to show the manual binary

search procedure. There are 3000 samples in this data set, 2000 as training and 1000 as testing. This

LED data set will also be used later in Section 8. For this example, in the first try, DFL algorithm finds

Entropy 2011, 13 879

a model for the training data set with ǫ of 0.5. Then, the DFL algorithm cannot find a model with the ǫ

of 0.25 in the second try. Similarly, from the third to sixth tries, the DFL algorithm finds models with

the specified ǫ values, 0.37, 0.31, 0.28 and 0.26. Since we have known in the second try that the DFL

algorithm cannot find a model with ǫ of 0.25. Hence, 0.26 is the minimum ǫ value for this data set.

Figure 7. The manual binary search of minimum ǫ value. This figure is generated with the

LED training data set in Table 5, with 2000 samples. The ticks indicate whether the DFL

algorithm can find a model after a ǫ value is specified in each try.

The restricted learning process can also be used to find optimal feature subset. To get optimal feature

subset, we change the ǫ value from 0 to the upper limit of the searching scope, like 0.8, with a step of

0.01. For each ǫ value, we train a model with the DFL algorithm, then validate its performance with

cross validation or the testing data sets. The optimal model is the one which produces the best prediction

performance. As demonstrated in Figure 6 (a), the optimal ǫ value, ǫop. = 0.31, is chosen from the

training data set with a 10-fold cross validation. The features of the optimal model are thus chosen as the

optimal feature subsets that can be used by other classification algorithms. Actually, the features chosen

by the DFL algorithm in the LED+17 training data are the 7 true relevant features when ǫop. = 0.31,

as shown in Figure 6 (b). Furthermore, Figure 6 (a) and (b) also demonstrate that both the optimal

performance and optimal feature subsets are stable in the training and independent testing samples.

Entropy 2011, 13 880

6. Prediction Method

After the DFL algorithm obtains the classifiers as function tables of the pairs (u, y), or called

as rules, the most reasonable way to use such function tables is to check the input values u, and

find the corresponding output values y. This is due to the fact that the DFL algorithm is based on

Theorem 4. As demonstrated in Section 3.4, the learned model of the DFL algorithm is actually the

generation function as a truth table or an estimation of it in the ǫ value method. Like the way in which

people use truth tables, it is advisable to use a classification model as a truth table, or the estimation of

it, with the 1-Nearest-Neighbor algorithm [48] based on the Hamming distance [49]. In the prediction

process, if a new sample is of same distance to several rules, we choose the rule with the biggest count

value, which is obtained in the learning process. Although there exists the probability that some instances

of the EAs in the testing data set are not covered by the training data set, the 1NN algorithm still gives

the most reasonable predictions for such samples.

7. Implementation Issues

7.1. The Computation of Mutual Information I(X;Y)

As introduced in Section 1, it is not straightforward to compute high-dimensional MI. We will show

how we deal with the problem. We use Equation 2 to compute I(X;Y). The H(Y) does not change in

the searching process of the DFL algorithm. To compute H(X) and H(X, Y), we need to estimate the

joint distribution of X and (X, Y), which can be estimated from the input table T. The DFL algorithm

will construct a matrix containing the values of X. Then, it scans the matrix and finds the frequencies

of different instances of X, which are stored in a frequency table with a linked list. The size of the

frequency table grows exponentially with the number of variables in X, but will not exceed N . Next,

the DFL algorithm will obtain the estimation of H(X) with Equation 1. For each instance of X in T,

we need to update its frequency in the frequency table, which takes O(min(||X||, N)) steps. The total

complexity to compute H(X) is O(N ·min(||X||, N)). The computation of H(X;Y) is similar to that

of H(X). Hence, if X only contains a few variables, it will need approximate O(N) steps to compute

I(X;Y), since ||X|| is small. While |X| is large, the computation of I(X;Y) tends to take O(N2) steps

in the worst case.

However, the complexity for computing I(X;Y) can be improved by storing the frequencies of

different instances of X and {X, Y } in a hash table [43]. For each instance of X in T, it only takes O(1)

time to update its frequency in the hash table. Hence, the total complexity to compute H(X) is O(N).

The computation of H(X;Y) is similar to that of H(X). Therefore, it will only need approximate O(N)

steps to compute I(X;Y). An important issue to note is the appropriate setting of the initial capacity of

the hash table, since a too large value is a waste but too small value may incur the need to dynamically

increase the capacity and to reorganize the hash table, which is time-consuming.

In summary, if |X| and N are large at the same time and there are enough memory space available, it

is more advisable to use hash tables for calculating I(X;Y). While |X| or N is small and memory space

is limited, it is better to use linked lists or arrays to compute I(X;Y).

Entropy 2011, 13 881

7.2. Redundancy Matrix

The subroutine in Table 2 is recursive, which will introduce some redundant computation when

the DFL algorithm exhaustively searches the searching space SK . As discussed in Section 3.5 and

Figure 4, a feature subset with K features will be checked for K! times in the worst case.

However, this redundant computation can be alleviated by storing the information that whether a

subset has been checked or not with a Boolean type matrix. Let us consider the subsets with 2 variables.

We introduce an n by n matrix called redundancy matrix, booleanR(n×n). After a subset {Xi, Xj} and

its supersets have been checked, R[i][j] is assigned as true. Later, when the DFL algorithm is checking

{Xj, Xi}, it will first check whether R[i][j] or R[j][i] is true. If yes, it will examine next subset. By doing

so, the original worst time complexity becomes O((n + 1
2
[
(

n

2

)

· 2! + . . . +
(

n

K

)

· K!])N + nK log n) =

O((N +log n) ·nK). Although, this alleviated worst time complexity is in the same order as the original

one, but it saves about half of the run time. The space complexity of R is O(n2). But the type of R

is boolean, so R will cost very limited memory space. In addition, if run time is more critical and the

memory space is sufficient, higher dimensional matrices can be introduced to further reduce the run time

of the DFL algorithm.

For instance, as shown in Figure 4, after introducing the redundancy matrix, the exhaustive searching

of the DFL algorithm will take n+ 1/2 ∗ [
(

n

2

)

2! +
(

n

3

)

3! +...+
(

n

K

)

K!] = 34 steps, which is in the order

of O(n4) = O(44) but much smaller than 44. As shown in Figure 4 (b), there are totally 40 steps. But six

of them marked as red regions, as well as their supersets, are not computed by checking the redundancy

matrix.

To clearly show the implementation of the redundancy matrix R, an extended version of the main steps

of the DFL algorithm is provided in supplementary materials. The usefulness of redundancy matrix is

also validated in supplementary materials.

8. Results

8.1. Data Sets

We use the 24 data sets from the classic UCI machine learning repository [15] and high-dimensional

gene (or protein) expression profiles in [16–19], as summarized in Table 5, to compare the DFL algorithm

with other feature selection methods. We arrange the data sets in the ascending order of the number of

features. In all the data sets used, the missing values are dealt as an independent state marked with “?”.

For data sets with continuous features, we discretize their continuous features with the discretization

algorithm introduced in [50]. The discretization is carried out in such a way that the training data set

is first discretized. Then the testing data set is discretized according to the cutting points of variables

determined in the training data set. For the Breast data set, the attributes are numerical with some limited

integers. Therefore, we do not apply the pre-discretization method to this data set.

In this paper, we use the restricted learning method introduced in Section 5.2 to obtain optimal models

for the DFL algorithm, with the searching scope of the ǫ from 0 to 0.8. As introduced in 5.1, K is set

to n for data sets 1 to 14, and to 20 for other data sets. The detailed settings of the DFL algorithm and

detailed results are given in supplementary materials.

Entropy 2011, 13 882

Table 5. The benchmark data sets used in the experiments for comparison.

Dataset Ftr. #1 Cl. # Tr. # Te. # Ms. # Reference

1 Lenses 4 3 24 LOO2 0 [15]

2 Iris 4 3 100 50 0 [15]

3 Monk1 6 2 124 432 0 [15]

4 Monk2 6 2 169 432 0 [15]

5 Monk3 6 2 122 432 0 [15]

6 LED 7 10 2000 1000 0 [15]

7 Nursery 8 5 12960 CV103 0 [15]

8 Breast 9 2 699 CV10 16 [15]

9 Wine 13 3 119 59 0 [15]

10 Credit 15 2 460 230 67 [15]

11 Vote 16 2 435 CV10 392 [15]

12 Zoo 16 7 101 LOO 0 [15]

13 ImgSeg 19 7 210 2100 0 [15]

14 Mushroom 22 2 8124 CV10 2480 [15]

15 LED+17 24 10 2000 1000 0 [15]

16 Ionosphere 34 2 234 117 0 [15]

17 Chess 36 2 2130 1066 0 [15]

18 Anneal 38 6 798 100 22175 [15]

19 Lung 56 3 32 LOO 0 [15]

20 Ad 1558 2 2186 1093 2729 [15]

21 ALL 7129 2 38 34 0 [16]

22 DLBCL 7129 2 55 22 0 [17]

23 MLL 12582 3 57 15 0 [18]

24 Ovarian 15154 2 169 84 0 [19]

Ftr. #, Cl. #, Tr. #, Te. #, Ms. # and Ref. stand for the numbers of features, classes, training samples, testing

samples, missing values and reference respectively. 1 The number does not include the class attribute. 2 LOO

and 3 CV10 stands for leave-one-out and 10 fold cross validation respectively .

8.2. Comparison with Other Feature Selection Methods

We implement the DFL algorithm with the Java language version 1.6. All experiments are performed

on an HP AlphaServer SC computer, with one EV68 1 GHz CPU and 1 GB memory, running the Tru64

Unix operating system.

In this section, we compare the DFL algorithm with two well-known filter feature subset selection

methods, the CFS method [20] and the CSE method [21], and the wrappers subset selection method,

i.e., the WSE method [22]. The implementations of the CFS, CSE, and WSE algorithms in the Weka

software [51] are used here because Weka is also developed with the Java language. As discussed in

Section 2.1., the forward selection is used with the CFS, CSE and WSE feature subset selection methods.

Entropy 2011, 13 883

We choose three classification algorithms with different theoretical foundation, the C4.5 [52], Naive

Bayes (NB) [53] and Support Vector Machines (SVM) algorithm [54] implemented by the Weka

software, to validate different feature subset selection methods. For the SVM algorithm, the linear

kernels are used. These algorithms are applied to the DFL, CFS, CSE, and WSE features with discretized

values and original numerical values (see supplementary materials). The results for discretized values

are shown in Figure 8. The results for original numerical values are shown in supplementary materials.

Nevertheless, the results of both the discretized and numerical values are summarized in Table 7.

The CFS algorithm does not find a feature subset for the continuous MLL and Ovarian data sets. The

CSE and WSE algorithm do not find a candidate feature subset for the Monk2 data set. In addition, the

WSE algorithm when coupled with the SVM algorithm does not find a candidate feature subset for the

Lenses data set. Therefore, the accuracies for these cases are not shown in Figure 8.

For four well-studies data sets, Monk1, Monk2, LED and LED+17, the DFL algorithm correctly

and completely finds the true relevant features. From Figure 8, it is shown that the learning algorithms

generally perform better on the DFL features when the number of features in the data sets is large, such

as the data sets with index from 15 to 24, than on other features.

We also summarize the comparison of accuracies obtained by different feature selection methods in

Table 7. For two feature selection methods, we count the number of data sets, where the classification

algorithm applied to features of the first method performs better, equally to, or worse than applied to

features of the second one.

From Table 7, it can be seen that the DFL algorithm generally chooses more discriminatory feature

subsets than the CFS and CSE algorithm, as the learning algorithms show better prediction performances

on the DFL features than on those chosen by the CFS and CSE algorithm, as in Table 7 row 4 and 8.

The learning algorithms perform better, equally good and worse on the DFL features than on the WSE

features in 16, 20 and 32 cases respectively, as in Table 7 last row.

8.3. Comparison of Model Complexity

The accuracy is only one aspect of the performances. The model complexity is another aspect of the

performance of the feature selection algorithms. Thus, we also compare the number of features chosen

by different feature selection methods, as shown in Figure 8d–8f.

We also summarize the number of features for different feature selection methods in Table 6. For two

feature selection methods, we count the number of data sets, where the first method chooses smaller,

equal, bigger number of features than the second one does. As summarized in Table 6, the DFL chooses

comparable number of features to the CFS method, but less features than the CSE and WSE method.

8.4. Comparison of Efficiency

Next, we compare the run times of the DFL algorithm with other feature selection methods, as shown

in Figure 8g–8i. In Figure 8g–8h, it is shown that the the DFL algorithm uses less time than the CFS and

CSE algorithm in most data sets, 18 and 20 out of the 24 data sets respectively. The DFL algorithm is

overwhelmingly faster than the WSE algorithm, Figure 8i. Especially for the high-dimensional data sets,

those with index from 20 to 24, the DFL algorithm shows large reduction of run time when compared

Entropy 2011, 13 884

with other feature selection methods. These experimental results suggest that the DFL algorithm is faster

than other feature selection methods that we have compared.

Figure 8. The comparison of accuracies (a) to (c), number of features (d)-(f) and run time

(g)-(i) for different feature subset selection methods on the discretized data sets. (a) C4.5,

(b) NB, (c) SVM, (d) DFL vs CFS, (e) DFL vs CSE, (f) DFL vs WSE, (g) DFL vs CFS, (h)

DFL vs CSE, (i) DFL vs WSE.

0 5 10 15 20 25
50

60

70

80

90

100
C4.5 on Different Feature Subsets

Index of data sets

A
c
c
u
ra

c
y

DFL
CFS
CSE
WSE

0 5 10 15 20 25
50

60

70

80

90

100

index of data sets

A
c
c
u
ra

c
y

NB on Different Feature Subsets

DFL
CFS
CSE
WSE

0 5 10 15 20 25
40

50

60

70

80

90

100

index of data sets

A
c
c
u
ra

c
y

SVM on Different Feature Subsets

DFL
CFS
CSE
WSE

(a) (b) (c)

0 5 10 15 20 25
10

0

10
1

10
2 DFL vs CFS

index of data sets

N
o

.
o

f
fe

a
tu

re
s

DFL
CFS

0 5 10 15 20 25
0

5

10

15

20

25
DFL vs CSE

index of features

N
o
.
o
f
fe

a
tu

re
s

DFL
CSE

0 5 10 15 20 25
0

5

10

15

20
DFL vs WSE

index of data sets

N
o
.
o
f
fe

a
tu

re
s

DFL
WSE−C4.5
WSE−NB
WSE−SVM

(d) (e) (f)

0 5 10 15 20 25
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

DFL vs CFS

index of data sets

t
(s

)

DFL
CFS

0 5 10 15 20 25
10

−2

10
−1

10
0

10
1

10
2

10
3 DFL vs CSE

index of data sets

t
(s

)

DFL
CSE

0 5 10 15 20 25
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5 DFL vs WSE

index of data sets

t
(s

)

DFL
WSE−C4.5
WSE−SVM
WSE−NB

(g) (h) (i)

Entropy 2011, 13 885

Table 6. The comparison summary of the number of features chosen by different feature

selection methods.

Discretized D. S. Continuous D. S.

F.S. Pair Algo. <1 = > < = >

DFL:CFS NA2 9 6 8 7 6 9

DFL:CSE NA 17 4 2 17 5 1

DFL:WSE C4.5 6 9 8 8 7 8

NB 10 4 9 9 7 7

SVM 12 5 5 13 5 4

sub sum 28 18 22 30 21 17

total sum 54 26 34 54 30 29

1 The <, = and > column stand for the number of data sets, where the DFL algorithm chooses smaller, the

same and larger number of features than the compared feature selection algorithm. 2 NA means not applicable.

Table 7. The comparison summary of accuracies obtained by different feature selection methods.

Discretized D.S. Continuous D.S.

F.S. Pair Algo. >1 = < > = <

DFL:CFS C4.5 11 7 6 13 5 4

NB 8 6 8 8 5 9

SVM 12 5 7 9 6 7

sum 31 18 21 30 16 20

DFL:CSE C4.5 8 7 8 9 6 8

NB 8 6 9 10 5 8

SVM 11 7 5 10 5 8

sum 27 20 22 29 16 24

DFL:WSE C45 4 10 9 7 7 9

NB 7 4 12 7 4 12

SVM 5 6 11 4 5 13

sum 16 20 32 18 16 34

1 The >, = and < column stand for the number of data sets, where the classification algorithm in the Algo.

column performs better, the same and worse on the features chosen by the DFL algorithm.

9. Discussions

The DFL algorithm can be categorized as a feature subset selection method or a filter method.

However, the DFL algorithm is also different from other feature subset selection methods, like the

CFS, CSE and WSE methods. Based on Theorem 4, the DFL algorithm can produce function tables

for the training data sets, while other subset feature selection methods only generate a subset of features.

Entropy 2011, 13 886

Particularly, the DFL algorithm is different from existing feature subset selection methods based on

information theory in the following three aspects.

First, the stopping criterion of the DFL algorithm is different from those of existing methods. The

DFL algorithm stops the searching process based on Theorem 4. The existing methods stop the searching

process with a predefined k or threshold value of MI. Hence, the feature subsets selected by existing

methods may be sensitive to the k or threshold value of MI.

Second, the feature subset evaluation method of the DFL algorithm is different from those in existing

methods [3–9,11–13]. The DFL algorithm uses Equation 14, i.e., X(s) = argmaxi I(Us−1, Xi;Y), to

evaluate a new feature. But existing methods evaluate a new feature with algebraic combinations of two

dimensional MI, such as in Equations 5, 6, 7, 10, 11, 13 in Section 2..

Furthermore, the maximization of I(Us−1, Xi;Y) used in the DFL algorithm is more efficient than

penalizing the new feature with respect to every selected features, as done in [3–9,11–13]. As analyzed

in Section 7.1., to evaluate I(X;Y), O(n · N) operations are needed when adding each feature, and

O(k ·n ·N) operations are necessary to choose k features in the DFL algorithm. However, in calculating

Equations 5, 6, 7, 10, 11, 13 in Section 2., since there are already (s−1) features in Us−1 in the s iteration,

there would be (s−1)×O(n·N) operations in this iteration. Therefore, it needs
∑k

s=1(s−1)×O(n·N) ≈

O(k2 · n · N) operations to select k features, which is less efficient. The computational cost of the

backward selection for approximating Markov Blanket is at least O(2k · n ·N) [1], which is even worse

than the O(k2 · n ·N) of the forward selection in [5,6]. In addition, the correlation matrix of all features

needs to be computed in the approximation method of [1], which costs O(n2(log n+N)) operations.

Third, the searching method used by the DFL algorithm is also different from the greedy (forward)

selection searching [3–9,11–13] or the backward selection searching [1]. In the DFL algorithm, the

exhaustive search of all subsets with ≤ K features is guaranteed and can be terminated with the criterion

of Theorem 4. In some data sets, I(Xi;Y) = 0, ∀Xi ∈ X, as demonstrated by the example in Figure 9.

Existing feature selection methods based on MI [3–9,11–13] will fail for this kind of data sets. For the

example in Figure 9, it is shown that the three true relevant features, X21, X29 and X60, share smaller MI

with Y than many other irrelevant features. Actually, based on Theorem 1, ∀Xi ∈ V, I(Xi;Y) should

be zero in this data set since Xi and Y are independent. But they are still larger than zero, although very

small as shown in Figure 9, in practice. Hence, if a simple forward selection is used, existing feature

selection methods will choose X31, which is an irrelevant feature, in the first round of the forward

selection. Consider the selection criteria in Equation 5 [5,6] and Equation 10 [7]. First, I(Xi;Xj) =

0, since ∀Xi, Xj ∈ V, Xi and Xj are independent. Second, ∀Xi ∈ V, Xi and Y are independent.

Consequently, the criteria in Equation 5 and Equation 10 will become X(s) = argmaxXi∈P
I(Xi;Y).

In later rounds, many other irrelevant features will be added to the candidate feature subset, which will

also be incorrect, since they have larger MI than the relevant features do. However, the DFL algorithm

can still find the correct feature subsets in polynomial time for this kind of data sets, since it guarantees

the exhaustive searching of all subsets with ≤ K features and evaluates all selected features as a vector

with Equation 14. For the example in Figure 9, the DFL algorithm successfully finds the correct feature

subsets with less than 15 minutes in each fold of a 10 fold cross validation and obtains 100% prediction

accuracy in the cross validation in our experiment.

Entropy 2011, 13 887

Figure 9. The I(Xi;Y) in the data sets of 1000 samples generated with Y =

(X21

⊕

X29

⊕

X60), and V = {X1, . . . , X100}, ∀Xi, Xj ∈ V, Xi and Xj are independent.

The horizontal axis is the index of the features. The vertical axis is the I(Xi;Y) shown in

bits. The features pointed by the arrows are the relevant features.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8
x 10

−3

In summary, three unique properties of the DFL algorithm are prerequisite to solve feature selection

problems introduced by the data sets with I(Xi;Y) = 0, such as that in Figure 9. First, the candidate

features are considered as a vector to compute I(U;Y). Second, I(U;Y) is evaluated with respect to

H(Y) based on Theorem 4, which guarantees to find the correct feature subset. Last, the searching

schema of the DFL algorithm guarantees to exhaustively search all subsets of V with ≤ K features,

although its first round searching is greedy forward selection.

10. Conclusion

It is critical to find optimal feature subsets to overcome the curse of dimensionality. As an endeavor

to reach this goal, we prove that if I(X;Y) = H(Y), then X is a Markov Blanket of Y . We show that

by comparing I(U;Y) with H(Y), the DFL algorithm can find the optimal and complete feature subsets

in some cases. As shown in Section 8, the DFL algorithm successfully and completely finds the original

relevant features for Monk1, Monk2, LED and LED+17 data sets without any prior knowledge.

We have proved the correctness of the DFL algorithm, discussed the implementation issues and its

difference from existing methods. The usefulness of the DFL algorithm is validated with 24 benchmark

data sets.

We also show that high dimensional MI is not equal to the algebraic combinations of pairwise

ones. This conclusion is important and contributive since it can help to avoid other endeavors to find

low-dimensional replacement of high-dimensional MI. We show that if for any individual relevant

features Xi, I(Xi;Y) = 0, then (1) evaluating I(U;Y) with Equation 14, instead of Equations 5, 6,

Entropy 2011, 13 888

7, 10, 11, 13 in Section 2; (2) comparing I(U;Y) with H(Y); and (3) the exhaustive search method are

necessary to find correct feature subset.

Acknowledgements

The research was supported in part by a start-up grant of Fudan University and a grant of STCSM

(10ZR1403000) to ZY and Singapore MOE AcRF Grant No: MOE2008-T2-1-1074 to KCK.

References and Notes

1. Koller, D.; Sahami, M. Toward Optimal Feature Selection. In Proceedings of the 13th International

Conference on Machine Learning, Bari, Italy, 3-6 July 1996; pp. 284–292.

2. Hall, M.; Holmes, G. Benchmarking Attribute Selection Techniques for Discrete Class Data Mining.

IEEE Trans. Knowl. Data Eng. 2003, 15, 1–16.

3. Battiti, R. Using mutual information for selecting features in supervised neural net learning. IEEE

Trans. Neural Networks 1994, 5, 537–550.

4. Kwak, N.; Choi, C.H. Input feature selection for classification problems. IEEE Trans. Neural

Networks 2002, 13, 143 –159.

5. Vidal-Naquet, M.; Ullman, S. Object Recognition with Informative Features and Linear

Classification; IEEE Computer Society: Nice, France, 2003; pp. 281–288.

6. Fleuret, F. Fast Binary Feature Selection with Conditional Mutual Information. J. Mach. Learn.

Res. 2004, 5, 1531–1555.

7. Peng, H.; Long, F.; Ding, C. Feature Selection Based on Mutual Information: Criteria of

Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Trans. Pattern Anal. Mach. Intell.

2005, 27, 1226–1238.

8. Bonev, B.; Escolano, F.; Cazorla, M. Feature selection, mutual information, and the classification

of high-dimensional patterns. Pattern Anal. Appl. 2008, 11, 309–319.

9. Cai, R.; Hao, Z.; Yang, X.; Wen, W. An efficient gene selection algorithm based on mutual

information. Neurocomputing 2009, 72, 991 – 999.

10. Zhu, S.; Wang, D.; Yu, K.; Li, T.; Gong, Y. Feature Selection for Gene Expression Using

Model-Based Entropy. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2010, 7, 25–36.

11. Estévez, P.A.; Tesmer, M.; Perez, C.A.; Zurada, J.M. Normalized mutual information feature

selection. Trans. Neur. Netw. 2009, 20, 189–201.

12. Martı́nez Sotoca, J.; Pla, F. Supervised feature selection by clustering using conditional mutual

information-based distances. Pattern Recogn. 2010, 43, 2068–2081.

13. Vinh, L.T.; Thang, N.D.; Lee, Y.K. An Improved Maximum Relevance and Minimum Redundancy

Feature Selection Algorithm Based on Normalized Mutual Information. IEEE/IPSJ Int. Symp.

Appl. Internet 2010, 0, 395–398.

14. Zheng, Y.; Kwoh, C.K. Identifying Simple Discriminatory Gene Vectors with An Information

Theory Approach. In Proceedings of the 4th Computational Systems Bioinformatics Conference,

CSB 2005, Stanford, CA, USA, 8-11 August 2005; pp. 12–23.

15. Blake, C.; Merz, C. UCI Repository of Machine Learning Databases; UCI: Irvine, CA, USA, 1998.

Entropy 2011, 13 889

16. Golub, T.; Slonim, D.; Tamayo, P.; Huard, C.; Gaasenbeek, M.; Mesirov, J.; Coller, H.; Loh, M.;

Downing, J.; Caligiuri, M.; Bloomfield, C.; Lander, E. Molecular Classification of Cancer: Class

Discovery and Class Prediction by Gene Expression Monitoring. Science 1999, 286, 531–537.

17. Shipp, M.; Ross, K.; Tamayo, P.; Weng, A.; Kutok, J.; Aguiar, R.; Gaasenbeek, M.; Angelo,

M.; Reich, M.; Pinkus, G.; Ray, T.; Koval, M.; Last, K.; Norton, A.; Lister, T.; Mesirov, J.;

Neuberg, D.; Lander, E.; Aster, J.; Golub, T. Diffuse large B-cell lymphoma outcome prediction by

gene-expression profiling and supervised machine learning. Nat. Med. 2002, 8, 68–74.

18. Armstrong, S.; Staunton, J.; Silverman, L.; Pieters, R.; den Boer, M.; Minden, M.; Sallan, S.;

Lander, E.; Golub, T.; Korsmeyer, S. MLL translocations specify a distinct gene expression profile

that distinguishes a unique leukemia. Nat. Genet. 2002, 30, 41–47.

19. Petricoin, E.; Ardekani, A.; Hitt, B.; Levine, P.; Fusaro, V.; Steinberg, S.; Mills, G.; Simone, C.;

Fishman, D.; Kohn, E.; Liotta, L. Use of proteomic patterns in serum to identify ovarian cancer.

Lancet 2002, 359, 572–577.

20. Hall, M. Correlation-based Feature Selection for Machine Learning. PhD thesis, Waikato

University, Department of Computer Science, Hamilton, NewZealand, April 1999.

21. Liu, H.; Setiono, R. A Probabilistic Approach to Feature Selection - A Filter Solution. In

Proceedings of the 13th International Conference on Machine Learning, Bari, Italy, 3-6 July 1996;

pp. 319–327.

22. Kohavi, R.; John, G. Wrappers for Feature Subset Selection. Artif. Intell. 1997, 97, 273–324.

23. Liu, H.; Li, J.; Wong, L. A Comparative Study on Feature Selection and Classification Methods

Using Gene Expression Profiles and Proteomic Patterns. Genome Inf. 2002, 13, 51–60.

24. Xing, E.; Jordan, M.; Karp, R. Feature Selection for High-Dimensional Genomic Microarray Data;

In Proceedings of the 18th International Conference on Machine Learning. Morgan Kaufmann

Publishers Inc.: Williamstown, MA, USA, 28 June–1 July 2001; pp. 601–608.

25. Furey, T.; Cristianini, N.; Duffy, N.; Bednarski, D.; Schummer, M.; Haussler, D. Support vector

machine classification and validation of cancer tissue samples using microarray expression data.

Bioinformatics 2000, 16, 906–914.

26. van ’t Veer, L.; Dai, H.; van de Vijver, M.; He, Y.; Hart, A.; Mao, M.; Peterse, H.; van der Kooy,

K.; Marton, M.; Witteveen, A.; Schreiber, G.; Kerkhoven, R.; Roberts, C.; Linsley, P.; Bernards,

R.; Friend, S. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002,

415, 530 – 536.

27. Li, J.; Liu, H.; Downing, J.; Yeoh, A.; Wong, L. Simple rules underlying gene expression profiles

of more than six subtypes of acute lymphoblastic leukemia (ALL) patients. Bioinformatics 2003,

19, 71–78.

28. John, G.; Kohavi, R.; Pfleger, K. Irrelevant Features and the Subset Selection Problem. In

Proceedings of the 11th International Conference on Machine Learning, New Brunswick, NJ, USA,

10–13 July 1994; pp. 121–129.

29. Shannon, C.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press:

Urbana, IL, USA, 1963.

30. Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons, Inc.: New York,

NY, USA, 1991.

Entropy 2011, 13 890

31. Dumais, S.; Platt, J.; Hecherman, D.; Sahami, M. Inductive Learning Algorithms and

Representations for Text Categorization. In Proceedings of the 7th International Conference on

Information and Knowledge Management, Washington, DC, USA, 02-07 November 1998; pp.

148–155.

32. Yang, Y.; Pedersen, J. A Comparative Study on Feature Selection in Text Categorization; Fisher,

D.H., Ed.; Morgan Kaufmann Publishers: San Francisco, CA, US, 1997; pp. 412–420.

33. Chow, T.W.S.; Huang, D. Estimating Optimal Features Subsets Using Efficient Estimation of

High-Dimensional Mutual Information. IEEE Trans. Neural Networks 2005, 16, 213–224.

34. Maji, P. Mutual Information Based Supervised Attribute Clustering for Microarray Sample

Classification. IEEE Trans. Knowl. Data Eng. 2010, 99.

35. McEliece, R.J. Encyclopedia of Mathematics and Its Applications. In The Theory of Information

and Coding: A Mathematical Framework for Communication; Addison-Wesley Publishing

Company: Reading, MA, USA, 1977. Volume 3.

36. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan

Kaufmann: San Mateo, CA, USA, 1988.

37. In [36], ‘-’ is used to denote the set minus(difference) operation. To be consistent to other parts

of this paper, we will use ‘\’ to denote the set minus operation. Particularly, A \ B is defined by

A \B = {X : X ∈ A and X /∈ B}.

38. Yaramakala, S.; Margaritis, D. Speculative Markov Blanket Discovery for Optimal Feature

Selection; IEEE Computer Society: Washington, DC, USA, 2005; pp. 809–812.

39. Tsamardinos, I.; Aliferis, C. Towards Principled Feature Selection: Relevancy, Filters and

Wrappers; In Proceedings of the Ninth International Workshop on Artificial Intelligence and

Statistics. Bishop, C.M., Frey, B.J., Eds.; Morgan Kaufmann Publishers: Key West, FL, USA,

2003.

40. Gray, R.M. Entropy and Information Theory; Springer Verlog: New York, NY, USA, 1991.

41. Tsamardinos, I.; Aliferis, C.F.; Statnikov, A. Time and sample efficient discovery of Markov

blankets and direct causal relations; ACM Press: New York, NY, USA, 2003; pp. 673–678.

42. Aliferis, C.F.; Tsamardinos, I.; Statnikov, A. HITON: A novel Markov Blanket algorithm for

optimal variable selection. AMIA Annu. Symp. Proc. 2003, 2003, 21–25.

43. Cormen, T.; Leiserson, C.; Rivest, R.; Stein, C. Introduction to Algorithms, Second Edition. MIT

Press: Cambridge, MA, USA, 2001.

44. Except Δ1 supersets, only a part of other Δi(i = 2, . . . , K − 1) supersets is stored in ΔTree.

45. Akutsu, T.; Miyano, S.; Kuhara, S. Identification of genetic networks from a small number of gene

expression patterns under the Boolean network model. In Proceedings of Pacific Symposium on

Biocomputing ’99, Big Island, HI, USA, 4-9 January 1999; Volume 4, pp. 17–28.

46. Zheng, Y.; Kwoh, C.K. Dynamic Algorithm for Inferring Qualitative Models of Gene Regulatory

Networks. IEEE Computer Society Press: Stanford, CA, USA, 2004; pp. 353–362.

47. Zheng, Y.; Kwoh, C.K. Dynamic Algorithm for Inferring Qualitative Models of Gene Regulatory

Networks. Int. J. Data Min. Bioinf. 2006, 1, 111–137.

48. Aha, D.W.; Kibler, D.; Albert, M.K. Instance-Based Learning Algorithms. Mach. Learn. 1991,

6, 37–66.

Entropy 2011, 13 891

49. Hamming, R. Error Detecting and Error Correcting Codes. Bell Syst. Techn. J. 1950, 9, 147–160.

50. Fayyad, U.; Irani, K. Multi-Interval Discretization of Continuous-Valued Attributes for

Classification Learning. In Proceedings of the 13th International Joint Conference on Artificial

Intelligence, IJCAI-93, Chambery, France, 28 August 1993; pp. 1022–1027.

51. Frank, E.; Hall, M.; Trigg, L.; Holmes, G.; Witten, I. Data mining in bioinformatics using Weka.

Bioinformatics 2004, 20, 2479–2481.

52. Quinlan, J. C4.5: Programs for Machine Learning. Morgan Kaufmann: San Francisco, CA, USA,

1993.

53. Langley, P.; Iba, W.; Thompson, K. An Analysis of Bayesian Classifiers. In Proceedings of

National Conference on Artificial Intelligence, San Jose, California, 12-16 July 1992; pp. 223–228.

54. Platt, J. Fast training of support vector machines using sequential minimal optimization; MIT Press:

Cambridge, MA, USA, 1999; Chapter 12, pp. 185–208.

55. Zheng, Y. Information Learning Approach. PhD thesis, Nanyang Technological University,

Singapore, 2007.

56. Akutsu, T.; Miyano, S.; Kuhara, S. Algorithm for Identifying Boolean Networks and Related

Biological Networks Based on Matrix Multiplication and Fingerprint Function. J. Computat. Biol.

2000, 7, 331–343.

57. Akutsu, T.; Miyano, S.; Kuhara, S. Inferring qualitative relations in genetic networks and metabolic

pathways. Bioinformatics 2000, 16, 727–734.

58. Akutsu, T.; Miyano, S.; Kuhara, S. A simple greedy algorithm for finding functional relations:

efficient implementation and average case analysis. Theor. Comput. Sci. 2003, 292, 481–495.

59. Ideker, T.; Thorsson, V.; Karp, R. Discovery of Regulatory Interactions Through Perturbation:

Inference and Experimental Design. In Proceedings of Pacific Symposium on Biocomputing, PSB

2000, Island of Oahu, HI, January 4-9, 2000, 5, 302–313.

60. Lähdesmäki, H.; Shmulevich, I.; Yli-Harja, O. On Learning Gene Regulatory Networks Under the

Boolean Network Model. Mach. Learn. 2003, 52, 147–167.

61. Liang, S.; Fuhrman, S.; Somogyi, R. REVEAL, a general reverse engineering algorithms for genetic

network architectures. In Proceedings of Pacific Symposium on Biocomputing ’98, Maui, HI, USA,

4-9 January 1998; Volume 3, pp. 18–29.

62. Maki, Y.; Tominaga, D.; Okamoto, M.; Watanabe, S.; Eguchi, Y. Development of a System for the

Inference of Large Scale Genetic Networks. In Proceedings of Pacific Symposium on Biocomputing,

PSB 2001, Big Island, HI, USA, 3-7 January 2001, 6, 446–458.

63. Schmulevich, I.; Yli-Harja, O.; Astola, J. Inference of genetic regulatory networks under the best-fit

extension paradigm. Presented at Nonlinear Signal and Image Processing, NSIP 2001, Baltimore,

MD, USA, 3-6 June 2001; pp. 3–6.

Entropy 2011, 13 892

Supplementary Materials

A. The Software

We have implemented the DFL algorithm with the Java language version 1.6 [14,55]. The

non-commercial license of the implementation software, called Discrete Function Learner, is available

upon request.

The experiments are conducted on an HP AlphaServer SC computer, with one EV68 1 GHz CPU and

1 GB memory, running Tru64 Unix operating system.

B. The Extended Main Steps of The DFL Algorithm

B.1. Redundancy Matrix

As discussed in the paper, a feature subset with K features will be checked for K! times in the worst

case.

However, this redundant computation can be relieved by storing whether a subset has been checked

or not with a Boolean type matrix. Let us consider the subsets with 2 variables. We introduce an n by n

matrix called redundancy matrix, boolean R(n×n), after a subset {Xi, Xj} and its supersets have been

checked, R[i][j] is assigned as true. Later, when the DFL algorithm is trying {Xj, Xi}, it will first check

whether R[i][j] or R[j][i] is true. If yes, it will examine next subset. By doing so, the original worst time

complexity becomes O((n+ 1
2
[
(

n

2

)

·2!+ . . .+
(

n

K

)

·K!])N+nK log n) = O((N+log n) ·nK). Although,

this alleviated worst time complexity is in the same order as the original one, but it saves about half of

the run time. The space complexity of R is O(n2). But the type of R is boolean, so R will cost very

limited memory space. In addition, if run time is more critical and the memory space is sufficient, higher

dimensional matrices can be introduced to further reduce the run time of the DFL algorithm.

B.2. Extended Main Steps

The extended main steps of the DFL algorithm are listed in Table 8. As shown in line 21 to 23 of

Table 9, R[X[0]][X[1]] will be set to true if all Δ supersets of X have been checked. When the DFL

algorithm is trying to check X later, it will find that X and its Δ supersets have been checked in line 3

and 14 respectively. For instance, {A,B} has been checked when the DFL algorithm is examining the

supersets of {A}. Later, when it trying supersets of {B}, the DFL algorithm will revisit {A,B}, but this

time the computation of {A,B} and its supersets will be saved by checking R. Thus, the computation

of all subsets with equal to or more than 2 elements is reduce to half of the original computation without

introducing redundancy matrix R, as analyzed in Section B.1..

B.3. Experiments to Show The Usefulness of Redundancy Matrix

The complexity of the DFL algorithm has been validated with comprehensive experiments elsewhere

[47,55]. Here, we will validate the usefulness of the redundancy matrix in reducing run times.

Entropy 2011, 13 893

Table 8. The extended version of the DFL algorithm.

Algorithm: DFL(V,K,T)

Input: a list V with n variables, indegree K,

T = {(vi, yi) : i = 1, · · · , N}. T is global.

Output: f

Begin:

1 R ← boolean[n][n]; //initialize R, default value is false

2 L ← all single element subsets of V;

3 ∆Tree.F irstNode ← L;

4 calculate H(Y); //from T

5 D ← 1; //initial depth

6∗ f = Sub(Y,∆Tree,H(Y), D,K);

7 return f ;

End
∗ Sub() is a subroutine listed in Table 9.

We first present the synthetic data sets of Boolean networks [45,47,56–63]. For a Boolean network

consisting of n genes, the total state space would be 2n. The v of a transition pair is randomly chosen

from 2n possible instances of V with the Discrete Uniform Distribution, i.e., p(i) = 1
2n

, where i is

randomly chosen one value from 0 to 2n − 1 inclusively. Since the DFL algorithm examines different

subsets in the kth layer of ΔTree with lexicographic order, the run time of the DFL algorithm may be

affected by the different position of the target subsets in the kth layer of ΔTree. Therefore, we select the

first and the last k variables in V as the inputs for all X
′

i . The data sets generated from the first k and last

k variables are named as “head” and “tail” data sets. There are 22
k

different Boolean functions when the

indegree is k. Then, we use OR function (OR), AND function (AND), or one of the Boolean functions

randomly selected from 22
k

possible functions (RANDOM) to generate the v
′

, i.e., f1 = f2 = . . . = fn.

If a data set is generated by OR function defined with the first or last k variables, then we name it as an

OR-h or OR-t (OR-tail) data set, and so on.

Next, we generate 200 data sets, 100 RANDOM-h and 100 RANDOM-t data sets, with Boolean

functions of indegree k = 3 randomly chosen from 22
3

functions. The DFL algorithm counts the checked

subsets for inferring one Boolean function, denoted with m. The histogram of m is shown in Figure 10

(a). The run times for these data sets are shown in Figure 10 (b).

From Figure 10 (a), it is shown that the original Boolean function for X
′

i can be found after checking

O(k · n) subsets in 178 of out the 200 random functions. The complexity of the DFL algorithm will

become O(k · (N + log n) · n2) for reconstructing the Boolean networks for the 178 random functions.

The corresponding run times of the 178 cases are only a few seconds, as demonstrated in Figure 10 (b).

As shown in Figure 10 (a), for 20 out of the remaining 22 cases, the original Boolean function for X
′

i can

be found after checking several thousands or less than n2 subsets of V. The last two cases are learned

after the DFL algorithm checked less than n3 = 106 subsets of V. The last two cases are generated with

special Boolean functions, similar to X
′

i = X1 · ¬X2 · ¬X3+¬X1 ·X2 ·X3. In these Boolean functions,

I(Xij;X
′

i) is zero, which makes the DFL algorithm be more computationally complex than for other

data sets. In summary, the worst time complexity of the DFL algorithm, O(N · nk), happens with about

2/200 = 1% frequency for inferring random Boolean functions with indegree of 3.

Entropy 2011, 13 894

Table 9. The extended version of the subroutine of the DFL algorithm.

Algorithm: Sub(Y,∆Tree,H,D,K)

Input: variable Y , ∆Tree, entropy H(Y), current depth D, maximum indegree K

Output: function table for Y , Y = f(X)

Begin:

1 L ← ∆Tree.DthNode;

2 for every element X ∈ L {

3∗ if ((|X| == 2) && (R[X[0]][X[1]] == true || R[X[1]][X[0]] == true)) {

4 continue; //if X has been checked, continue to check next element in L

}

5 calculate I(X;Y); //from T

6 if(I(X;Y) == H) { //from Theorem 4

7 extract Y = f(X) from T;

8 return Y = f(X) ;

}

9 else if (D == K) && X is the last element in L) {

10 return “Fail(Y)”;

}

}

11 sort L according to I;

12 for every element X ∈ L {

13 if(D < K){

14 if ((|X| == 2) && (R[X[0]][X[1]] == true || R[X[1]][X[0]] == true)) {

15 continue;

}

16 D ← D + 1;

17 ∆Tree.DthNode ← ∆1(X);

18 f = Sub(Y,∆Tree,H,D,K);

19 if f = “Fail(Y)” {

20 return f ;

}

21 else if (|X| == 2){

22 R[X[0]][X[1]] ← true; //if all ∆(X) have been checked, set R[·][·] to true.

23 continue;

}

}

}

24 return “Fail(Y)”; //fail to find function for Y

End

∗ The && and || represent the logic AND and OR operations respectively.

For the 200 RANDOM data sets, the DFL algorithm finds the correct Boolean networks in 196 cases,

and finds 2/3 correct edges of the original Boolean networks in the remaining 4 cases. Hence, the

average sensitivity of the DFL algorithm is 596/600 ≈ 99.3% for inferring general Boolean networks

from noiseless data sets.

From the experimental results for general Boolean networks, it is known that the DFL algorithm can

find most Boolean functions with k inputs in O(k · (N + log n) · n) time.

Entropy 2011, 13 895

Figure 10. The histograms of the number of subsets checked, m, and run time of the DFL

algorithm for learning one Boolean function in RANDOM data sets, when n = 100, k = 3

and N = 200. For part (b) and (c), the cases pointed by arrows are the worst ones. (a)

The histogram of m without using redundancy matrix R. (b) The histogram of run time, t

(horizontal axis, shown in seconds). (c) The histogram of run time after using the redundancy

matrix R introduced in Section B.1..

0 2000 4000 6000 8000 10000
0

50

100

150

200

m
0 50 100 150 200

0

50

100

150

200

t (s)
0 50 100 150 200

0

50

100

150

200

t (s)

(a) (b) (c)

To prove the usefulness of the redundancy matrix R introduced in Section B.1., we also perform the

same experiments on these 200 RANDOM data sets after deploying the redundancy matrix in the DFL

algorithm. Figure 10 (c) demonstrates that the run time of the worst case has been reduced from 203

to 127 seconds, which equals to a reduction of 37%. This is slightly smaller than the 50% reduction

analyzed in Section B.1.. We attribute this to the access and exchange of the memory used by R.

C. The Detailed Settings

For data sets with continuous features, we discretize their continuous features with the discretization

algorithm introduced in [50]. The discretization is carried out in such a way that the training data set

is first discretized. Then the testing data set is discretized according to the cutting points of variables

determined in the training data set. For the Breast data set, the attributes are numerical with some limited

integers. Therefore, we do not apply the pre-discretization method to this data set.

In this paper, we use the restricted learning method introduced in the paper to obtain optimal models

for the DFL algorithm, with the searching scope of the ǫ from 0 to 0.8. As introduced in paper, K is

set to n for data sets 1 to 14, and to 20 for other data sets. We have implemented the DFL algorithm

with the Java language version 1.4.1 [14,55]. The experiments are conducted on an HP AlphaServer SC

computer, with one EV68 1GHz CPU and 1GB memory, running Tru64 Unix operating system.

Table 10 gives the settings of the DFL algorithm for the used data sets. The features chosen by the

DFL algorithm for them are given in Table 11.

D. The Detailed Results

In this section, we compare the DFL algorithm with two well-known filter feature subset selection

methods, the CFS method by Hall [20] and the CSE method by Liu and Setiono [21], and the wrappers

subset selection method, i.e., the WSE method, by Kohavi and John [22]. We use the CFS, CSE and WSE

Entropy 2011, 13 896

implemented by the Weka software [51] to compare their results with those from the DFL algorithm. The

forward selection is used with the CFS, CSE and WSE feature subset selection methods.

Table 10. The settings of the DFL algorithm. To get optimal model, we change the epsilon

value from 0 to 0.8, with a step of 0.01. For each epsilon value, we train a model with the

DFL algorithm, then do corresponding test for the selected data sets. In our implementation

of the DFL algorithm, the process to choose optimal model can be automatically fulfilled.

For those data sets whose testing processes are performed with the cross validation, the

number of features k and the number of the rules r in the classifier are from the most

frequently obtained classifiers.

Performances Settings Classifiers

Data Set Accuracy (%) Time(s) n K ǫ k r k/n(%)

1 Lenses 75.0 0.03 4 4 0.26 3 12 75.0

2 Iris 96.0 0.01 4 4 0.08 2 6 50.0

3 Monk1 100.0 0.01 6 6 0 3 35 50.0

4 Monk2 73.8 0.02 6 6 0.21 6 168 100.0

5 Monk3 97.2 0.01 6 6 0.64 2 17 33.3

6 LED 74.9 0.08 7 7 0.29 7 207 100.0

7 Nursery 93.1 20.21 8 8 0.13 5 541 62.5

8 Breast 95.0 0.20 9 9 0.05 3 185 33.3

9 Wine 98.3 0.01 13 13 0.04 4 29 30.8

10 Credit 88.3 0.01 15 15 0.57 2 11 13.3

11 Vote 95.7 0.22 16 16 0.11 4 41 25.0

12 Zoo 92.8 1.24 16 16 0 5 21 31.3

13 ImgSeg 90.6 0.01 19 15 0.16 3 41 15.8

14 Mushroom 100.0 11.45 22 22 0 4 96 18.2

15 LED+17 75.4 0.83 24 20 0.31 7 286 29.2

16 Ionosphere 94.9 0.11 34 20 0.12 6 96 17.6

17 Chess 97.4 13.30 36 20 0.01 19 844 52.8

18 Anneal 99.0 0.22 38 20 0.04 5 44 13.2

19 Lung 62.5 0.10 56 20 0.44 2 12 3.6

20 Ad 95.0 42.80 1558 20 0.23 6 104 0.4

21 ALL 94.1 0.02 7129 20 0.3 1 3 0.014

22 DLBCL 95.5 0.01 7129 20 0.52 1 4 0.014

23 MLL 100.0 0.48 12582 20 0.06 2 11 0.016

24 Ovarian 98.8 0.31 15154 20 0.29 1 4 0.007

average 91.0 3.82 1829 14 0.20 4 117 31.5

Entropy 2011, 13 897

We choose three classification algorithms with different theoretical foundation, the C4.5 [52], Naive

Bayes (NB) [53] and Support Vector Machines (SVM) algorithm [54] implemented in the Weka software,

to validate different feature subsets selection methods. For the SVM algorithm, the linear kernels are

used. These algorithms are applied to the DFL, CFS, CSE, and WSE features with discretized values

and original numerical values.

Table 11. The features chosen by the DFL algorithm.

Feature Index

Data Set k Discretized Data Continuous Data

1 Lenses 2 1,3,4 1,3,4

2 Iris 2 3,4 3,4

3 Monk1 3 1,2,5 1,2,5

4 Monk2 6 1,2,3,4,5,6 1,2,3,4,5,6

5 Monk3 2 2,5 2,5

6 LED 7 1,2,3,4,5,6,7 1,2,3,4,5,6,7

7 Nursery 5 1,2,5,7,8 1,2,5,7,8

8 Breast 3 1,3,6 1,3,6

9 Wine 4 1,7,10,13 1,7,10,13

10 Credit 2 4,9 4,9

11 Vote 4 3,4,7,11 3,4,7,11

12 Zoo 5 3,4,6,9,13 3,4,6,9,13

13∗ ImgSeg 3 1,13,15 2,17,19

14 Mushroom 4 5,20,21,22 5,20,21,22

15 LED+17 7 1,2,3,4,5,6,7 1,2,3,4,5,6,7

16 Ionosphere 6 3,5,6,12,21,27 3,5,6,12,21,27

17 Chess 19 1,3,4,6,7,10,15,16,17,18,20, 1,3,4,6,7,10,15,16,17,18,20,

21,23,24,30,32,33,34,35 21,23,24,30,32,33,34,35

18 Anneal 5 3,5,8,9,12 3,5,8,9,12

19 Lung 2 6,20 6,20

20 Ad 6 1,2,3,352,1244,1400 1,2,3,352,1244,1400

21∗ ALL 1 234 1882

22∗ DLBCL 1 55 506

23∗ MLL 2 709,1550 2592,5083

24∗ Ovarian 1 839 1679

∗ For these 5 data sets, the discretized data sets is preprocessed by deleting the features with only 1 value. Hence, the index

of discrete data sets are different from those for continuous data sets.

Entropy 2011, 13 898

The DFL algorithm is used to choose feature for discretized data sets. Then, discretized and

continuous values for the features chosen by the DFL algorithm are used to build classification models.

The prediction accuracies of different classification algorithms on the DFL features are shown in Table

12. The CFS, CSE and WSE algorithm are applied to discretized and continuous data sets to choose

features respectively. The prediction accuracies for the CFS, CSE and WSE features are shown in Table

13, 14 and 15 respectively.

Table 12. The accuracies of different algorithms on the features chosen by the

DFL algorithm. The accuracies for those data sets with numerical attributes are for

discretized/numerial data sets.

Data Set C4.5 NB SVM

1 Lenses 87.5 75.0 66.7

2 Iris 94.0/92.0 94.0/94.0 94.0/96.0

3 Monk1 88.9 72.2 72.2

4 Monk2 65.0 61.6 67.1

5 Monk3 97.2 97.2 97.2

6 LED 74.6 75.1 75.3

7 Nursery 93.1 89.1 90.4

8 Breast 94.8 96.2 95.0

9 Wine 93.2/93.2 96.6/98.3 94.9/98.3

10 Credit 87.4/87.4 87.4/87.4 87.4/87.4

11 Vote 94.9 92.2 94.9

12 Zoo 90.1 93.1 94.3

13 ImgSeg 90.4/90.8 90.8/84.3 90.7/76.1

14 Mushroom 100.0 98.6 100.0

15 LED+17 75.1 74.2 75.1

16 Ionosphere 93.2/94.9 95.7/94.0 94.9/80.3

17 Chess 99.0 90.5 96.1

18 Anneal 84.0/84.0 80.0/74.0 89.0/88.0

19 Lung 68.8 56.3 71.9

20 Ad 92.6/94.4 93.2/92.4 94.4/92.6

21 ALL 94.1/94.1 94.1/94.1 94.1/82.4

22 DLBCL 95.5/95.5 95.5/90.9 95.5/77.3

23 MLL 93.3/93.3 100.0/100.0 100.0/73.3

24 Ovarian 98.8/98.8 98.8/98.8 98.8/97.6

average 89.4/89.5 87.4/86.7 88.7/85.2

Entropy 2011, 13 899

The CFS algorithm does not find a feature subset for the continuous MLL and Ovarian data sets. The

CSE and WSE algorithm do not find a candidate feature subset for the Monk2 data set. In addition, the

WSE algorithm when coupled with the SVM algorithm does not find a candidate feature subset for the

Lenses data set. Therefore, the accuracies for these cases are shown as NA (not available) in Table 13

to 15.

Table 13. The accuracies of different algorithms on the features chosen by the CFS algorithm

[20]. The accuracies for those data sets with numerical attributes are for discretized/numerial

data sets. NA means not available.

Data Set C4.5 NB SVM

1 Lenses 70.8 70.8 50.0

2 Iris 94.0/92.0 94.0/94.0 94.6/96.0

3 Monk1 75.0 75.0 75.0

4 Monk2 67.1 63.0 67.1

5 Monk3 97.2 97.2 97.2

6 LED 74.6 75.1 75.3

7 Nursery 71.0 71.0 71.0

8 Breast 94.7 97.3 95.8

9 Wine 93.2/93.2 98.3/98.3 96.6/96.6

10 Credit 87.4/87.4 87.4/87.4 87.4/87.4

11 Vote 95.6 95.6 95.6

12 Zoo 91.1 94.1 95.3

13 ImgSeg 90.9/90.3 91.7/86.0 90.3/87.9

14 Mushroom 98.5 98.5 98.5

15 LED+17 73.4 72.9 73.8

16 Ionosphere 91.5/93.2 94.9/93.2 91.5/80.3

17 Chess 90.1 90.1 90.1

18 Anneal 90.0/92.0 87.0/64.0 91.0/81.0

19 Lung 53.1 71.9 59.7

20 Ad 94.2/94.1 94.4/93.2 94.1/92.9

21 ALL 91.2/91.2 91.2/91.2 91.2/79.4

22 DLBCL 95.5/86.4 95.5/95.5 95.5/81.8

23 MLL 86.7/NA 100.0/NA 100.0/NA

24 Ovarian 98.8/NA 95.2/NA 95.0/NA

average 86.1/85.1 87.6/85.2 86.3/83.1

Entropy 2011, 13 900

Table 14. The accuracies of different algorithms on the features chosen by the CSE algorithm

[21]. The accuracies for those data sets with numerical attributes are for discretized/numerial

data sets. NA means not available.

Data Set C4.5 NB SVM

1 Lenses 83.3 70.8 65.4

2 Iris 94.0/92.0 94.0/94.0 94.0/92.0

3 Monk1 88.9 72.2 72.2

4 Monk2 NA NA NA

5 Monk3 97.2 97.2 97.2

6 LED 74.6 75.1 75.3

7 Nursery 97.2 90.3 93.1

8 Breast 94.9 96.9 95.8

9 Wine 98.3/96.6 96.6/94.1 100.0/100.0

10 Credit 88.7/86.1 87.8/80.4 87.4/87.4

11 Vote 95.4 91.0 96.5

12 Zoo 91.1 94.1 94.2

13 ImgSeg 86.8/90.3 88.5/80.8 89.1/80.3

14 Mushroom 100.0 98.5 99.7

15 LED+17 74.1 74.9 73.9

16 Ionosphere 91.5/92.3 94.9/94.0 94.0/81.2

17 Chess 93.9 93.9 93.5

18 Anneal 88.0/89.0 89.0/64.0 92.0/83.0

19 Lung 53.1 62.5 49.7

20 Ad 94.4/94.6 94.2/93.7 94.8/93.7

21 ALL 91.2/91.2 91.2/91.2 91.2/79.4

22 DLBCL 95.5/95.5 90.9/86.4 95.5/77.3

23 MLL 73.3/66.7 73.3/66.7 80.0/46.7

24 Ovarian 98.8/100.0 98.8/100.0 98.8/100.0

average 88.9/88.6 87.7/85.3 88.0/83.8

Entropy 2011, 13 901

Table 15. The accuracies of different algorithms on the features chosen by the WSE

algorithm [22]. The accuracies for those data sets with numerical attributes are for

discretized/numerial data sets. NA means not available.

Data Set C4.5 NB SVM

1 Lenses 87.5 87.5 NA

2 Iris 94.0/92.0 94.0/94.0 94.0/96.0

3 Monk1 75.0 75.0 75

4 Monk2 NA NA NA

5 Monk3 97.2 97.2 97.2

6 LED 74.6 75.1 75.3

7 Nursery 94.8 87.8 93.1

8 Breast 95.0 97.5 96.4

9 Wine 96.1/93.2 98.3/96.6 98.3/94.9

10 Credit 87.4/86.1 87.4/87.4 87.4/87.4

11 Vote 95.6 96.1 95.6

12 Zoo 94.1 92.1 98.1

13 ImgSeg 91.4/91.5 90.4/87.2 91.4/87.8

14 Mushroom 100.0 99.7 100.0

15 LED+17 75.2 74.4 74.5

16 Ionosphere 91.5/85.5 91.5/91.5 91.5/86.3

17 Chess 93.9 93.9 93.5

18 Anneal 93.0/95.0 94.0/90.0 93.0/92.0

19 Lung 68.8 78.1 73.4

20 Ad 95.2/95.2 94.8/94.2 94.7/95.0

21 ALL 91.2/91.2 91.2/91.2 91.2/73.5

22 DLBCL 95.5/90.9 90.9/81.8 81.8/86.4

23 MLL 93.3/73.3 80.0/80.0 100.0/93.3

24 Ovarian 98.8/100.0 100.0/100.0 100.0/100.0

average 90.4/88.9 89.9/89.1 90.7/89.3

c© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution license

http://creativecommons.org/licenses/by/3.0/.

