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Patterns were computer-generated about two prototypes to form schematic clusters of
three diameters about the cluster centroids. In a schematic concept-formation task,
recovery of a priori schematic class membership by Os varied inversely as physical cluster
diameter, with concept acquisition across trials evidenced in only the low-cluster-diameter
condition. For each 0 who failed to classify according to the schema rule, linear
discriminant function analysis was applied to his classes. In all cases, O-generated classes
were successfully recovered by the physical pattern features used a's predictors, the
mapping of these classes by the LDF exceeding that by the schema rule in accuracy at all
cluster-diameter levels.

cardboard squares, and were reproduced as
35-mm slides. A sample of patterns from
each prototype at each variability level is
given in Fig. 2.

Since the expected perturbation of any
radial or angle of a prototype was zero, the
mean pattern in a cluster, computed by
finding the mean X and Y coordinates of
corresponding vertices across the patterns,
should have been equal to the prototype.
TIle mean pattern for each cluster of 75,
compared with the prototype from which
it arose in Fig. 3, in all cases closely
approximated its prototype.

Observers
Thirty-six undergraduates served as Os

to satisfy a course requirement.
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Fig. I. Two prototypes used in the
experiment.

Experimental Designand Procedure
The 150 patterns at each variability level

were divided into three blocks of 50
patterns each. which contained 25 patterns
from each prototype. These blocks formed
the basis of a 3 by 3 balanced Latin square
design to control for order effects. Twelve
Os were assigned to each variability level,

40

Patterns
Patterns were generated to form clusters

in a coordinate space about two different
prototypes or class centroids (see Fig. I).
Construction of patterns about these two
prototypes began with the generation of
three sets of bivariate normal data. Both
variates of each distribution had an
expected value of zero; the intercorrelation
between the two variables was zero in all
sets. The three sets corresponded to three
variability levels, that is. standard
deviations of 4, 7, and 10.

Describing the prototype in polar
coordinates, patterns were generated by
perturbing the lengths of the radii of the
prototype patterns, and the angles between
these radii, by the addition of the
randomly generated values. This procedure
was followed for both prototypes at each
of the three variability levels. At each
variability level and for each prototype,
100 patterns were generated. Seventy-five
of each set were selected for use in the
experiment, any patterns containing three
collinear vertices being discarded so that all
patterns would be eight-sided. The 75
patterns of each set constituted a schema
class.

Patterns were normalized to a constant
area of I ,250 units, centered in a
100 by 100 unit field. and were plotted
using a Hybrid computer (P. M. Aiken,
1969). Hybrid plotting was used to avoid
the discontinuities associated with
conventional digital incremental plotting.
The patterns were then cut from black
construction paper, mounted 011 white

interested in evaluating the accuracy with
which classification behavior can be
mapped into an a priori classification
structure and in providing quantitative data
to assess the extent to which classification
can be predicted from pattern features.

METHOD

*This research was supported by Research
Grant HD-00909 from the National Institute or
Child Health and Human Development.

The concern of the present study,
observer sensitivity to relational invariants
from specific instances of stimulation, has
been discussed in a variety of contexts and
has been variously labeled from "pattern
conception" by Miller and Chomsky
(1958) to "schematic concept formation"
by Evans and his associates (e.g.. Evans.
1967).

Within our specific context, visual
pattern perception, it has been previously
noted that Os are sensitive to properties of
sets of patterns as well as to the properties
of the instances which define the sets (e.g..
Brown & Owen, 1967; Mavrides & Brown.
1969). As Os are sensitive to the rules
which define finite-state languages(Kolers,
1967), so are they sensitive to the
statistical structure which serves as the
rules by which sets of visual patterns are
generated (e.g., Bersted, Brown, & Evans,
1969; Mavrides & Brown, 1969). Given, in
addition, the physiological (e.g., Hubel &
Wiesel, 1968) and psychophysical (Aiken &
Brown, 1969a, b, c; Behrman & Brown,
1968; Brown & Andrews, 1968; Brown &
Brurnaghirn, 1968; Brumaghim & Brown,
1968; Stenson, 1968; Sternberg, 1967)
data, it seems reasonable to think that Os
are processing individual patterns in terms
of abstracted features and sets of patterns
in terms of the distributions of such
features in a multidimensional
cue-dimension space (Beach, 1964a, b).
Data in support of this general
conceptualization have been provided for
discrimination and reproduction tasks
(Mavrides & Brown, 1969) and for a
sorting task (Mavrides & Brown,
1970). The present study was designed to
provide further data in support of these
general notions. In particular, we were
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O-generated classes, all patterns wen
quantified by the 80 physical measure!
described by Brown and Owen (1967)
This large set of measures is primarily
comprised of indicants of compactness
jaggedness, elongation, and vertical an,
horizontal skew of the patterns.

To test the ability of physical patterr
features to distinguish between E-generatec
classes, stepwise discriminant analyseswert
constructed based upon the a priori scherru
classes. Predictors for the analyses wen
nine physical measures chosen to represen:
the factor structure of the 80 measure:
from which they arose. These measures,a
well as the point-biserial correlation
between each measure and clas
membership at all variability levels, an
givenin Table 1.

In the stepwise discriminant analyses 0

the a priori classes, recovery of thes
classes on the basis of two physica
measures, CGy and CGx , was almos
complete, there being 100%,97%, and 869
recovery for the low, moderate, and hig)
variability patterns, respectively. Whil
other predictors were significant in term
of accounting for between-class variatior
with the inclusion of only CGy and CG)
class recovery was maximal at all variabilit
levels (see Table 2). The location of a
patterns in two-spaces defined by tiles
two physical measures is shown i
Fig. Sa-c.

Observer Discriminant Analyses
Os were considered as being schematic'

own idea of the nature of the classes.
Exposure time for each pattern was 4 sec,
and Os responded by depressingone of two
response keys. No feedback was given.

Pattern Feature Analyses
For the purpose of feature analyses of

Control Design
An analysis of variance of the Latin

square control design at each variability
level in terms of accuracy of classification
according to the schema rule showed no
order effects to be present (F < I in all
cases). At the moderate and high variability
levels,no difference in difficulty was found
among the three blocks of 50 patterns. At
the low variability level, one block of
patterns proved slightly more difficult than
the other two (p ..; .05).

RESULTS

Schematic Concept Formation
The manipulation of variation about the

prototype had a marked effect upon
classification accuracy according to the
schema rule (p"; .001). As seen in Fig. 4,
at the low variability level, average
accuracy of classification exceeded 90% in
the third set of 50 patterns, while being
markedly lower for both the moderate and
high variability patterns. While all Os
received 150 trials, in order to allow an
opportunity for acquisition of the
classification rule, only in the low
variability condition did performance
improve over time (p ..; .05).
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Fig. 2. Sample of patterns from each
prototype at each variability level.

the 12 Os at each level being subdivided
randomly into three groups (N =4)
corresponding to the rows of the Latin
square.

Os were run individually in l-h sessions.
Each 0 viewed all ISO patterns within a
variability level in a different random
sequence. The patterns from both
prototypes were intermixed randomly
throughout the administration. Os were
informed that the patterns they would
view contained two classes, the nature of
which they were to discover. Each 0 was
asked to arbitrarily call the first pattern A
or B, thereafter responding A or B to each
stimulus in a fashion consistent with his
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Fig. 3. Mean pattern compared with prototype at each variability level and for both prototypes.
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Fig. 4. Mean percent of stimuli correctly
classified according to schema rule at each
level of variability.

Table I
Physical Measures· Used in Pattern Analyses

Point-Biserial Correlation with
Class Membership

(N = 150)

Low Variability Patterns
Predictor' CGy CGx SIP A31

p" .001 .001 .001 .005
N**' ISO ISO 150 150

Moderate Variability Patterns
Predictor CGy CGx A31

p .00I .005 .05
N 143 145 144

High Variability Patterns
Predictor CGy CGx AE

p .001 .025 .025
N 120 129 124

"Significant predictors in order ofoccurrence
in progressive steps of LDF analysis.

'"'"Level of significance of variable as a
discriminator of class centroids in a system
containing other variables.
'"'"'"Number correctly classified at point of
entry of variable (of 150).

Table2
Final Model Discriminant System at

Eaeh Level of Variability

DISCUSSION
When the cluster diameter of classes in a

physical feature space is allowed to
increase, as with the pattern generation
procedure described herein, we find this
manipulation retlected in a decrease in the
ability of the 0 to map the a priori class
structure inherent in the patterns. With
weakly constrained pattern clusters, Os fail
to exhibit knowledge of class structure, as
reflected in their near-chance accuracy of
pattern classification according to the
a priori rules.

Given this failure to recover the class
structure. a consequent question
concerning the nature of the O's perceptual
behavior arises: If the 0 fails to extract the
structure imposed in pattern generation,

classes were best distinguished by feature
measures of angularity (AI, A[, A3d
alone. For another 17% of Os, their classes
were best described by measures of
compactness and elongation (P, PM 2,
V/H).

nonschernatic, based upon the nature of
the classes each generated in his final 50
trials. An a was defined as schematic if he
had achieved 90% accuracy of classification
according to the a priori schema rule. By
this criterion, 12 as, 9 in the low
variability and 3 in the moderate variability
condition, qualified as schematic.

For the 12 schematic as, as expected,
individual LDFs constructed from their
classes in the final 50 trials closely
resembled the model LDF equations
generated from the schema classes, i.e.,
equations contained primarily the measures
CGy and CGx as significant predictors. For
all schematic as, one of these measures was
the strongest predictor in the equation. and
for 8 of the 12 schematic as, these two
measures were the best predictors. as had
been the case in the model equation. As
seen ill Fig. 6. no distinction could be
made in accuracy of mapping of
a-generated classes by the LDF vs the
a priori schematic rule.

For the 24 nonschematic Os, their
groupings were successfully recovered by
the LDF based on features. The mapping
of O-generated classes was quite accurate in
terms of the feature analysis. being at
worst about 80'.: accurate in the
moderate-variability condition (see Fig. 7).
For all Os, significant predictors among the
nine measures could be found which
differentiated between their specific
classes. in all cases significant
difIc rcntiation between classes being
achieved (see Table 3I.

III contrast to the schematic as, for
nonschernat ic Os. individual LOFs based
upon their classes were necessarily at wide
variance with the model equations. While
in 37'( of these LOFs an areal skew
measure did occur as the best or second
best predictor, never did both the horizon­
tal and vertical areal skew measures
occur together. as had been the case in the
model cquat ion. For ~5(/ of the Os, their
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Mea- Low Moderate High
sure Variability Variability Variability

P -.10 -.13 -.03
PM2 .05 .01 .05
A[ .57 .38 .25
AI .38 .07 -.13
A31 -.70 -.43 -.07
V/H -.02 .12 .10
SIP .18 .20 .09
CGx .82 .55 .32
CGy -.96 -.85 -.66

"See Brown & Owen, 1967. jar a more complete
definition of pattern measures.
P'<Numbcr of units in tile perimeter
PM2-Maximum second perimeter moment of X
AE-Size in degrees ofthe smallest exterior angle
Aj-Size in degrees of the smallest interior angle
A3I-Third moment of interior angles
VIH-Ratio of vertical to horizontal extent
SiP-Ratio of largest side to perimeter
CGx-X coordinate of areal center of gravity
CGy - Y coordinate of areal center 01 gravity
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Fig. 5. Location of schematic patterns in a two-space defined by the X and Y coordinates 0' the areal center of gravity of each
pattern for the low- (a), moderate- (b), and high- (c) variability patterns.
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indicate that such an approach is applicable
to classification behavior and should be
useful in future research in this area. The
assessment of observer feature utilization
in classification is easily extended to an
examination of its relationship to perceived
similarity, which variable is expected to be
closely related to perceived class
membership.

The problem of how an 0 reduces input
from the environment by the imposition of
class structure has been dealt with in a
perceptual context by other researchers
(e.g., Rodwan & Hake, 1964; Imai &
Garner, 1968; Handel & Preusser, 1969;
Wing & Bevan, 1969; and Aiken & Brown,
1971). However, this problem is best
considered as a special case of a more
general question concerning the
development of models which map the
organism's attempts to structure his
environment.
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does he simply behave randomly, or
alternatively, or does he attempt to impose
structure through the use of pattern
features which appear salient to him? For
all Os who failed to classify according to
the a priori rules, physical features could
be found which, to a large extent,
reproduced their unique classifications,
strongly suggesting that the first
alternative, i.e., random behavior in the
absence of clearly defined classes, may be
eliminated.

If an 0 consistently used classification
rules based on features which differ from
the features defining a priori cluster, then
this would be reflected operationally in the
divergent weights assigned various physical
pa t tern features in O-generated
discriminant equations from those weights
occurring in model equations. This was, in
fact, what occurred for nonschematic Os:
The significant physical measures in the
individual LDFs differed, in some cases
markedly, from those in the schematic
model equation. Thus it appears that the
0, in dealing with a relatively weakly
structured stimulus configuration, will
impose a consistent structure of his own
generation, to organize the stimulus
configuration.

FenkerI, expanding upon the work of
Rodwan and Hake (1964), has suggested a
generalization of the Brunswik lens model
to include discriminant analysis as a
procedure for investigating feature
utilization in complex pattern
classification. The results of this study
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PATTERN VARIABILITY CONDITIONS

Fig. 7. Average number of patterns in O-generated classes correctly classified according
to SCF and LD F classification systems for nonschematic Os.
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Table 3
Summary of Individual Linear Discriminant

Systems for Nonschematic Ss

Number
of Model

Predic- Predic-
S tors'' torsb NLDFc NSCFd pe

Low Variability Condition
I 2 0 46 35 .001
2 3 I 45 44 .001
3 2 I 43 42 .001

N: 44.7 40.3

Moderate Variability Condition
I 4 0 44 30 .001
2 3 0 38 32 .01
3 I I 41 40 .001
4 2 0 38 36 .001
5 2 I 36 35 .001
6 2 0 42 38 .001
7 2 0 37 25 .01
8 2 I 38 26 .005
9 2 I 37 39 .001

N: 39.0 33.0

High Variability Condition

I I 0 33 26 .005
2 2 0 41 29 .001
3 2 I 39 31 .001
4 I I 38 38 .001
5 6 0 44 33 .001
6 4 0 42 31 .001
7 3 0 41 26 .001
8 4 0 43 27 .005
9 3 0 38 27 .005

10 2 0 37 30 .005
II 3 0 43 31 .001
12 2 0 41 30 .001

N: 40.0 29.9

aNumber of significant predictors (p ~. 05) ill
the final LDF. bFrequency ofoccurrence of the
best two predictors ill the model equations.
i.e.. CGy and CGx. as the best two predictors
in observer-generated equations. cNumber of
patterns (of 50) correctly classified by LDF.
dNumber of patterns (of 50) correctly classi­
fied according to schema rule. eLevel of signifi­
cance of F approximation to Wilk's lambda.
a test of overall equality of class means in the
predictor space.
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Fig. 6. Average number of patterns in
Q-generated classes correctly classified
according to SCF and LDF classification

systems for schematic Os.
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