
A Federated Experiment Environment for

Emulab-based Testbeds

Ted Faber, John Wroclawski
USC/ISI

4676 Admiralty Way
Marina del Rey, CA 90292

{faber, jtw}@isi.edu

Abstract—We describe an architecture for creating experimental
environments across multiple cooperating Emulab-based testbeds,
called the DETER Federation Architecture(DFA). The system uses
cooperative resource allocation and multiple-level testbed access to
create a cohesive environment for experimentation. Testbeds that
contribute resources continue to exert their own resource allocation
and access policies. The architecture is designed to scale. We
describe a prototype implementation.

Keywords-testbeds, federation, experimentation

I. INTRODUCTION

This paper lays out a model for allocating and configuring
experiments across multiple Emulab-based[1] testbeds, and
describes a prototype. The model employs a multi-level resource
allocation strategy that gives both the testbeds and the
experimenter influence over allocation decisions. It provides
Emulab-like support services to experiments using techniques
that both scale and allow testbeds to maintain control of their
resources. Federated experiments are administered as system
objects and may be queried or operated on by any user of the
federation system, subject to access controls. The prototype
uses several extensible technologies and is in use federating
experiments.

Network testbeds are invaluable for modern research,
making experiments more realistic and reliable. They can be
used to confirm the dynamics of network simulations and
distributed systems, to evaluate the behavior of existing network
artifacts (viruses, worms) under controlled conditions, and to
examine the interactions between a proposed system and
existing infrastructure. Doing this work on physical hardware in

 This material is based upon work supported by the National Science
Foundation under Grants Nos. CNS-0751027 and CNS-0714770.

Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views
of GPO Technologies, Corp., or the GENI Project.

This material is also based upon work supported by the Department of
Homeland Security, and Space and Naval Warfare Systems Center, San
Diego, under Contract No. N66001-07-C-2001.

Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views
of the Department of Homeland Security for the Space and Naval Warfare
Systems Center, San Diego.

a laboratory environment to which others have access improves
the quality of research.

Federation - combining the resources of more than one
independently controlled testbed - enhances the utility of
testbeds significantly. First, experimenters can access more
resources, increasing the scale of their experimentation.
Furthermore, individual testbeds may include unique hardware
or configuration properties that allow experimenters to embark
on new kinds of experiments. Finally, because testbeds act as
gathering points for experimenters in a given field, combining
testbed resources can promote collaboration between those
groups. For example, security experts and malware architects
can test each other's work in a testbed built partially from each
group's home testbed. Such collaboration can be cooperative or
competitive.

Two obvious ways of expressing federation of Emulab-class
testbeds are to create federated testbeds or to create federated
experiments. A federated testbed is a pool of resources that
export the interface of a testbed. A federated experiment is an
experiment constructed from the resources of many testbeds.
The DETER federation architecture creates federated
experiments. Our view is that federation should be a common,
simple, low commitment operation. Furthermore, testbeds must
retain control of their resources for federation to be effective.
Composing an experiment from sub-experiments administered
locally is a clear way to preserve autonomy while presenting
experimenters with a familiar environment.

Federating a few large testbeds is an easy way to create large
experiments and is often a focus of federation systems, but the
choice of federating many smaller testbeds is also attractive. A
federation system that allows many 10-15 computer testbeds to
come together may accumulate more resources than one that
supports only a few large testbeds. Successful federation
systems will scale not only in terms of available resources, but in
the numbers of users and testbeds. Scaling along these axes
requires decentralized global naming and trust architectures.

We have developed an approach for federation within
Emulab-based testbeds, called herein the DETER Federation
Architecture. The efforts originated in our Emulab-based
security testbed, DETER[2], though a federation system must
use other systems. We have developed the system across an

internal testbed – part of DETER managed independently for
this work – as well using other Emulab-based testbeds on the
Internet, including Emulab itself and WAIL[3]. No changes
were made to the code of the testbeds we do not manage.

This paper describes the resource allocation and experiment
creation aspects of that architecture. In the remainder of this
paper we describe the architecture, then discuss in more detail
the experiment creation model and how it fits in that
architecture, together with our prototype federator
implementation, fedd. In addition to describing the
implementation we describe some of our experience using fedd.

II. THE DETER FEDERATION ARCHITECTURE

The DETER project has created a federation architecture, the
DETER Federation Architecture (DFA), that frames the various
components needed to interconnect testbeds. The architecture is
designed to scale to hundreds of testbeds and thousands of
machines. The immediate goal of the architecture is to guide the
interconnection of Emulab-based testbeds.

The full federation architecture must provide three
capabilities. First, it must provide experimenters and their tools
with sufficient information to guide the process of decomposing
experiments into testbeds. To accomplish this the architecture
must provide scalable channels for testbeds to advertise or
respond to queries about the resources they permit to be
federated; this information may be filtered based on the identity
of the experimenter or abstracted for scaling. Secondly,
experiments must be decomposed and embedded into federated
testbeds. Finally the architecture must support experimentation
across the federated experiment. Part of this goal is to generate a
cohesive, scalable experimental environment that may be
represented differently to different experimenters. For example,
experimenters representing attackers and defenders in a
competitive experiment may be provided limited knowledge of
their opponents' topology. This paper focuses on the allocation
and configuration of resources – testbed nodes, testbed network
capacity and other elements needed to connect them - into
cohesive, scalable environments for experimentation.

The experiment decomposition and embedding phase of the
DETER federation architecture can be viewed from several
perspectives - experimenters, the federation system, and the
federants all see the architecture differently.

An experimenter creates an experiment using whatever
domain-specific creation tools are available. Should the
experimenter or the tools decide that the experiment needs more
resources than one testbed can provide or that properties
generated by federation are key to the outcome, the tools will
invoke the federation system. After evaluating experimenter
requirements and available resources, the federation system will
divide the experiment among testbeds subject to his or her
constraints, create sub-experiments on each testbed, and then
interconnect them to form the federated experiment. The
instantiation and interconnection will be transparent to the user,
unless there is a reason to expose it.

For the system implementers the centerpiece of the
federation system is the federator. It takes input from
experimenters or their tools and creates an experimental

environment split across federant testbeds. Specifically, the
federator decomposes an experimenter's annotated topology into
federable sub-experiments, acquires access to appropriate
federants, embeds the sub-experiments in federants, and then
connects them into a shared environment. Figure 1 illustrates
this architecture.

The architecture is partitioned to separate concerns of the
various players. The partitioning of the experiment into pieces
suitable to federation depends on the nature of the experiment.
This split must be guided by the experimenter using knowledge
of the resources provided by the federation system. For example,
an experiment used to study throughput of a new protocol must
be aware which links are inside a testbed and completely
controlled and which are not, to ensure that the unpredictable
link performance does not invalidate the results. Collaborative or
adversarial experiments will divide along the lines of visibility
and testbed administrative boundaries.

Figure 1. DETER Federation Architecture

The output of this splitting step is a topology description in a
standard language, annotated to facilitate the decomposition.
The federator accepts these experiment topology descriptions.
Currently this language is the Emulab topology description
language, based on the ns simulator language. Each node is
annotated to indicate the testbed(s) in which it could be
embedded. This is a standard but low-level format: we assume
that in most cases this description will be generated by higher-
level, more sophisticated tools. The division allows development
of domain-specific annotation tools to proceed at the same time
as the federator is advanced.

On the other end, the federator must communicate with
federant testbeds for two basic operations: requesting permission
to access resources within the federant and embedding a
topology subgraph on that federant. Though testbeds have made
a decision to allow their resources to be shared, individual access
control decisions are made for each experiment.

The model and mechanism for this access control negotiation
has been described earlier[4], and is based on a generalization of
Emulab's project and user concepts. We review it briefly here to
frame our experiment creation system.

In our design, users, projects, and testbeds are globally
named and form the basis for individual testbeds' access control
decisions. These names are self-validating in that an entity using
a name can prove it has the right to do so and global in the sense
that two entities confronted with the same name can be certain it
pertains to the same entity. No third party is needed to assure

these properties. Here we extend this name space to include
federated experiments.

Though this name space is global, it is decentralized. Names
can be allocated using a probabilistic system, such as allocating
public keys, or random UUIDs. Testbeds may need to know
more than a user's self-generated identifier to make an access
control decision, but the identifier space itself does not constrain
system growth.

Access is first negotiated with each candidate testbed by
specifying the kind and number of nodes sought and the global
identity of the requester. The requester can be identified by any
combination of a user, project and testbed. Based on that
information the testbed may grant access, replying with the
information necessary to manipulate resources on the testbed, or
may deny the request.

Testbeds represent the access granted as membership in a
local project.1 The membership of a user in an Emulab project
controls what local resources that user can access and plays into
other local policy decisions. These projects and users may be
dynamically created or statically allocated.

When the requester has collected access to sufficient
testbeds, also called federants, the federation system begins
embedding the experiment.

In the same way that our earlier access control work
extended the access control aspects of Emulab projects into a
federated environment, this subsystem extends aspects of
projects and experiments related to the environment. In this
context a project is a set of related researchers who can access
experiment resources and support services. This usage is more
closely related to the local access control project than the global
naming construct. The services of interest include Emulab's
loosely coordinated event system and the shared file system used
in an experiment.

The process of creating a federated experiment is a departure
from the Emulab model. Our system coordinates the resource
allocation processes of several testbeds to build the experiment.
Any single Emulab is the sole controller of its experiments'
resources and the policies for their use. When federated,
testbeds retain control of their resource allocation policies, and
the federation system combines those allocations into a cohesive
global allocation. The federation system knows the topology and
allocation of the full experiment, while local testbeds are only
aware of their sub-experiment. This partition of information
means local testbeds need only administer and understand their
own resources, and cannot leak additional information in
competitive environments.

Mechanically, resources are allocated by the federator
through the Emulab allocation interfaces. Using the resource
information acquired during access control, the federator embeds
sub-experiments iteratively into appropriate federants until
sufficient resources are allocated across multiple testbeds to
make the experiment.

1The term “project” is overloaded to mean both a global grouping of related
users and a local access control construct. Projects in an Emulab similarly
embody several functions.

Different implementations of federators may use different
layout and backtracking algorithms. Sophisticated federators
may keep track of which testbeds are lightly used or take
advantage of seasonal load variations in scheduling embeddings.
Other federators may be tuned to split particular types of
experiments efficiently. The architecture does not constrain how
the federator accomplishes the embedding.

By partitioning the embedding problem into smaller sub-
problems, the system scales in terms of experiment size. Each
federant only allows embedding of sub-problems it is capable of
supporting, so if the federator is able to break up the experiment
across them the global embedding will be feasible.

Once created, the experiment has a global identity.
Controllers of the experiment can prove they are associated with
it and other elements in the system can unambiguously identify
it, even if they played no role in its creation. If the researcher
who created the experiment allows, others may be able to query
and manipulate the experiment referred to by the name.

Like other elements of our architecture, an experiment may
reveal different views of itself to different users. The federator
implements operations on the experiment, including the
modification, termination, and exporting the various views.

We are in the process of instantiating this architecture on
DETER and other testbeds. Experiment creation is operational,
and higher level functions are being developed.

A. Experiment Creation Model

Creating a federated experiment across federated testbeds
must accomplish three tasks. Resources for the experiment must
be gathered in accordance with the policies and availability of
the various testbeds, the resources must be configured into the
global topology and experimental services configured, and
appropriate infrastructure access granted to the experiment.

Emulab's abstraction of an experiment has proven to be an
effective model for network experimentation. That abstraction
consists of a controlled topology in which an experimenter can
access support services. The services provide configuration and
coordination of the nodes in the topology that support the study
being conducted. Our system preserves as much of that model
as possible while enhancing it to span administrative boundaries
and scale to larger experiments.

The two aspects of an experiment must be handled
differently. The configuration of resources into a topology and
local software and user configuration – the creation of the
experiment's world – is easier to generalize than the support
services. Topologies are connected across federants by
tunneling traffic from one sub-experiment to another.

Experiment support services are more specialized than traffic
forwarding. Support services visible inside an experiment
include the ability to access nodes through a control network
that is separate from the experiment's world, the configuration of
the same set of user accounts on each node and access of those
users to a shared file system, and access to a loosely
synchronized event-scheduling system. The shared file system

and account access is scoped to the members of a project2 and
the event system is per-experiment.

Finally there are infrastructure features of an experiment that
are either invisible from within the experiment, or more
conveniently and usually operated from outside the experiment.
Examples of this include the ability to control the power to a
node or reboot it forcibly. Such abilities are scoped by
experiment.

The first class of experiment services - accounts and events -
are extended by designating a master testbed that exports its
instances of those services into the federated experiment. This
has the effect of exporting much of the master's experimental
environment into the federated experiment. Users who have
accounts on the experiment/project created on the master testbed
have accounts on nodes in the experiment throughout the
federated experiment. All nodes see the master testbed's shared
filesystem. Master services must be properly scaled to work on
the entire federated experiment.

A testbed grants access to infrastructure services by granting
access to a local testbed account with appropriate local
privileges. The access control mechanism grants the federator
access to a federant testbed in order to configure an experiment.
Part of that configuration is granting the experiment appropriate
access to use infrastructure services. Specifically, the federator
is granted access to an account that can create experiments in a
project with appropriate local permissions, and to an account
with the rights to manipulate the experiment once created. The
second account may not have the right to create other
experiments and access to that account will be made available to
the experimenter.

The following subsections describe these operations in
detail.

1)Cooperative Resource Allocation
Allocating resources to an experiment is guided by the

federator and subject to the policies of testbeds. At allocation
time the federator has the annotated experiment description and
access to testbeds that have authorized the requesting
experimenter to access resources, but no hard allocations in-
hand.

Allocation is an iterative process whereby the federator
embeds sub-experiments it thinks are likely to be accepted by
the federants until the entire topology is created. An embedding
may fail because resources are not physically available at a
testbed or because the allocation would violate some other local
testbed policy.

When confronted with a failed sub-experiment allocation the
federator can either adjust the global embedding plan or attempt
to embed the same sub-experiment on another acceptable
testbed. Which choices are open to the federator depend on the
experimenter's preferences, expressed in annotations, and the
federator's knowledge of other testbeds' states.

Once the allocation is completed, the federator knows the
experiment's virtual topology and the physical realization of it.

2 If projects have sub-groups, account access is scoped by subgroup, but the
basic scoping is by project.

Both of these become resources accessible to the owner of the
experiment and to other experimenters that the owner
designates.

2)Infrastructure Access
As described above, each testbed maintains direct control

over its infrastructure and resources, even when these are being
used by a federated experiment. In order to use the
infrastructure services of a testbed, access must be granted by
that testbed. Under the Emulab model, a user can exercise
control over infrastructure dedicated to an experiment without
being able to create or destroy the experiment itself. As part of
negotiating access to a testbed, the federator acquires both the
rights to create experiments and the rights to infrastructure
services.

The rights to perform infrastructure access are passed back to
the experimenter rather than being used directly by the federator.
While this requires the experimenter (or the experimenter's
experiment control software) to be sophisticated enough to make
use of these rights, we believe that distributing those rights
scales better than making infrastructure service requests through
the federator. In addition, it allows experimenters to quickly
adopt new infrastructure services testbeds may offer.

Infrastructure access information is a resource of the
federated experiment, like the virtual topology or physical
instantiation information. Access to that information is
controlled by the federator and is provided in line with the
principles of least privilege. In a competitive experiment it may
be unfair to allow one team to control the other team's power.

Some testbeds will restrict access to experimental nodes'
control interfaces, usually by requiring the experimenter to
access the nodes from one of the local infrastructure machines.
In these cases the testbed can provide federated users access to
machines using the same mechanism as granting them access to
the infrastructure services.

3)Experiment Environment
Creating the experiment's environment consists of

establishing the in-experiment topology and exporting the
master testbed environment to other federants. In order to
respect local control and to facilitate controlled visibility of the
experiment among participants care is taken to avoid
information pollution between testbeds. In order to simplify
testbeds sharing resources, no new interfaces are added to the
Emulab creation interfaces.

When the federator splits an experiment into sub-
experiments, it inserts additional nodes that operate as
connectors between sub-experiments. Two types of connector
nodes are inserted: topology connectors and service connectors.
These are logical entities that may be instantiated on the same
physical node. Connectors come in pairs, each estabilshing one
end of a tunnel to interconnect testbeds. Individual federants can
provide hints about how to configure these nodes in their access
negotiations. The hints may include particular local images or
local configuration scripts customized to allow access to external
testbeds. These local scripts also provide a hook for testbeds to
customize the federation process to enforce their policies

The purpose of a topology connector is to tunnel experiment-
generated packets between sub-experiments on different
testbeds. In Emulab terms, these nodes tunnel experimental
network interfaces between testbeds. Topology connectors can
tunnel links or local area networks transparently, and a single
connector may tunnel more than one connection. This places
minimal constraints on the federation software and users when
splitting experiments; the federator may split an experiment at
any interconnection point between nodes.

Service connectors provide services between the master
testbed and other federants. In Emulab terms, they forward or
proxy services provided on the control network. Unlike
topology connectors, service connectors tunnel or proxy traffic
selectively. Only recognized services are forwarded. This
constrains the services exported from the master and the ability
of sub-experiments to disrupt other testbeds infrastructure.
Service connectors can also be customized to provide testbed
policy guarantees.

The two kinds of connectors impose two name spaces on the
experiment. In the experimental topology – imposed by
topology connectors – IP addresses are unique through out the
experiment and, in principle, can be reached throughout the
experimental topology. In contrast the service connectors
impose a name space of services. The addresses on the
interfaces used to access services (that is the Emulab control
network) are not guaranteed to be unique across the federated
experiment. Those addresses are chosen by the federants
without coordination. Two federants that have chosen control
addresses from private address space[5] may allocate the same
control address to nodes that are eventually in the same
federated experiment.

Each sub-experiment is amended to include enough topology
connectors to form the topology and one service connector that
will connect to the master testbed. The master testbed is
allocated a service connector for each federant, along with the
relevant topology connectors. These connectors may map
many-to-one onto physical nodes.

Figure 2. Connectors in a testbed

Figure 2 illustrates connector's role in federating an
experiment. That figure shows an experiment federated across
one master and one federant. The lines ending in arrows
represent the use of infrastructure services and lines without
arrows represent experiment connectivity. The master testbed is
exporting services from its file server. Each experiment has a
physical node acting as both a service connector and topology
connector.

Connectors are designated as active or passive when
allocated by the federator, with the active end doing the work to
form the tunnels, after the passive end has laid any necessary
groundwork. Topology connectors can be started in any order,
but service connectors enforce a simple sequencing. The master
side of each service connector is the active pair, and these
connectors initiate their connections only after the master and all
federant sub-experiments have been established. As the master
services are activated in each federant, that sub-experiment
considers the federated experiment to be started. A rough
analog in Emulab terms is that experiment start commands can
fire when the master services appear.

B. Model Summary

This section has described the DETER federation model with
emphasis on the model for experiment resource allocation and
construction of the experimental environment. The two-level
resource allocation allows large experiments to be built up from
sub-experiments allocated in accordance with local testbed
policies. The experiment support services are comprised of
infrastructure services that are under the control of individual
federants and the services that create the exported master testbed
environment. The testbed composition primarily occurs at
topology and service nodes that tunnel experiment traffic and
master services, respectively.

The following sections describe our initial implementation of
this model.

III.FEDD: A FEDERATION DAEMON

Fedd is our evolving federation prototype, introduced in our
description of testbed access control.[4] It continues to support
global names as self-signed X.509[6] certificates and manage
access to testbeds through a generalization of the Emulab project
system. This section discusses the implementation of
experiment instantiation in that framework. We first describe
the resource allocation and access control extensions, then
describe the scalable experimental environment in more detail.

The protocols for communicating with the federation system
are expressed in the Web Service Description Language
(WSDL)[7] and are extensible at several points. Transport Layer
Security (TLS)[8] is used for mutual authentication and
encryption between the system and the experimenter. Because
the runtime system of our implementation also supports
XMLRPC[9], fedd exports an identical XMLRPC/TLS
interface. The authentication and authorization using TLS and
the parameters and their encodings are all the same, but the
additional interface makes porting some tools to use fedd easier.
Standard tools can generate code to make and serve requests

across this interface using a variety of implementation
languages.

A. Creating and Operating on Federated Experiments

When an experimenter, or more likely an experimenter's
domain-specific experiment creation application, requests the
creation of a federated experiment, it passes parameters in Table
1. As described above, the experiment will be issued a global
name, but a fedd may also issue a local, human-readable name to
simplify user interfaces; the experimenter may suggest a human-
readable name in his or her request, but fedd is free to ignore the
suggestion.

Based on user annotations in the Emulab/ns2 description of
the experiment and mapping suggestions, fedd selects testbeds
for embedding the experiment and gains access to them using
the DETER architecture's access control protocol[4]. We have
extended this protocol to separate the access granted to fedd to
create sub-experiments and for the experimenter to access
interface services.

After this access phase, fedd has the right to attempt to
allocate resources on a set of testbeds. It this point, it breaks the
experiment description into sub-experiment descriptions along
lines suggested by the experimenter, considering the resources it
can potentially acquire. Fedd generates new sub-experiment
descriptions at this point that include topology and service
connectors. Some additional transformations are made to
establish the experimental environment; these are described
below. The sub-experiments also have all experimental IP
addresses assigned, to create a uniform in-experiment address
space and to avoid inconsistencies in how experimental
addresses are assigned by federants.

Field Purpose

Master The name of the master
testbed in the description

Experiment The experiment description

Access keys Keys to use for interface
access

Mapping Suggested mapping of testbed
names in description to
testbeds

Name Suggested local experiment
name

Table 1: Experiment Creation Request Parameters

Fedd now creates the slave sub-experiments on federants
using Emulab interfaces. Allocation of particular nodes and
switch interconnections on the federants is invisible to fedd.
Should one of these allocations fail, fedd can backtrack and re-
split the experiment or substitute another federant. Our current
implementation has yet to implement this backtracking, though
it will cleanly fail and deallocate any sub-experiments.

Once the sub-experiments are allocated and started, fedd starts
the master experiment. When the master sub-experiment has
started, the federated experiment is declared to be started, and

the experiment metadata is returned to the researcher. The
parameters in Table 2 are returned.

Field Purpose

Vtopo Federated experiment's virtual
topology

Vis Visualization of federated
experiment

Emulab Federant information
(including access keys)

Name Global name and optional
local name of federated
experiment

Table 2: Experiment Creation Response Parameters

The current implementation returns the global name as an
X.509 certificate and associated key pair. The exchange is
encrypted to avoid eavesdroppers acquiring the keys, and the
private key immediately destroyed on the fedd. This certificate
and key are controlled by the user application, and can be used
to act on the federated experiment. Any connection from a
holder of that certificate and its private key is allowed to operate
on the experiment. Additionally the experimenter who created
the experiment may act on it. Passing this certificate around is a
convenient way to delegate access to the experiment.

Once an experiment exists at a fedd, researchers with
appropriate permissions – creators or holders of the experiment's
private key - can query its virtual topology, its visualization
information, and deallocate it. Access to local nodes is through
the individual testbeds based on the access controls in the master
environment.

The infrastructure access information, in this case which ssh
key or X.509 certificate is valid on which testbed, is returned to
the requester. In addition to allowing users to access federants
to use infrastructure utilities, such as power cycling nodes, these
access keys may be necessary to access nodes through the
control interfaces., as described above.

B. Building a Scalable Experimental Environment

There are many details to get right when creating the
experimental environment. We discuss the export of the shared
file system and local accounts, custom software installation, and
the event system. In each case, the services were chosen
because DETER users make use of them commonly to facilitate
experimentation. Each of these services is implemented using
slightly different techniques, and together they illustrate some of
the range of techniques in service export.

In each case the services are provided by a combination of
reconfiguring experimental nodes in the federants and accessing
master testbed services using service connectors. These actions
are initiated using Emulab's start command interface. That
interface schedules a command for execution when all nodes in
the local experiment have reported themselves as configured.
When fedd rewrites the experiment descriptions, it adds start
commands that establish federated services before invoking any
user-specified start commands. These extra start commands are

invisible to the experimenter. The federation start commands on
experimental nodes are synchronized by the service connector in
the experiment. Service connectors are synchronized by the
master testbed. The result is an approximate synchronization
across the federated experiment.

Our current implementation uses the secure shell (ssh) to
tunnel services between master and federants. The fedd access
keys are used to secure the connections. Ssh was primarily a
choice of convenience; it is available, secure, and
straightforward to configure. We believe that the choice of ssh
in this role is not constraining. Any secure packet tunneling
system will have the same data management and key distribution
problems. Slotting IPSec or another secure tunneling system
should be a mater of getting the configuration details right, not
of changing the service connector model.

1)User Accounts and File Systems
Each node in a single-Emulab experiment has a unified user

name/user ID space and those users share a global file system.
This is one of the most commonly used services in Emulab –
DETER users make use of it so often that most would
characterize it not as a service, but as a fundamental property. It
is this combination that allows a user to access each
experimental node using the same ssh key installed on the users
node. A federation system without it would not really be
generalizing an Emulab experiment.

Overlaying the account information and importing the file
system makes the experimental machines accessible only to the
users in the project on the master testbed. The local federant can
still control the node to a degree through its control of
infrastructure.

Rather than using a network account management system
such as LDAP (the Lightweight Directory Access Protocol) or
NIS (the Network Information System, formerly Yellow Pages),
Emulab rewrites local account databases on each machine at
boot time using data from the local testbed infrastructure; user
accounts are imported via the Emulab testbed configuration
protocol (TMCD) interface. To import accounts from the master
testbed's project, Fedd inserts a script that deletes the local
project accounts and repeats the account addition process using
data tunneled from the master testbed. The service connector
forwards the TMCD connection from the master testbed.

Local Emulabs primarily use the Network File System (NFS)
[10] to share files, but the system also export the file systems
using Shared Message Block protocol/Common Internet File
System (SMB/CIFS)[11]. The DETER federation system uses
the SMB/CIFS file system on federant nodes.

Several practical concerns led to this decision, but the upshot
is that SMB/CIFS is more straightforward to tunnel. NFS
generally makes export decisions based on the IP address of the
node making the requests, which means that service connectors
would have to perform network address translation on these
requests, rather than a straightforward tunneling. Because some
testbeds allocate control net addresses from private IP address
space, collisions are possible at the master server. Furthermore,
NFS is accessed using Sun RPC's dynamic port allocation and
portmapper, which is another somewhat complex service to
tunnel. Tunneling SMB/CIFS is a matter of encapsulating the

packets in the federant and sending them to the master. Only the
user's credentials are considered in accessing the file system, not
the node's origin.

Unfortunately, SMB/CIFS and NFS are client/server file
systems, and Emulab generally uses one file server per testbed.
The scaling implications here are obvious and unfortunate: a
testbed hosting a large federated experiment or many federated
experiments will eventually see its file server overloaded.

In this case, DETER federation chose compatibility over
scale. Requiring testbeds to support a new file system is too
high a barrier for adoption of federation. The system tries to
mitigate server load somewhat by mounting experimental node
file systems on demand, rather than all at start up. Fundamental
scaling issues remain, however.

 In the future those scaling issues can be addressed by using
one of the wide-area file systems built by the research
community. The architecture could easily support distributing
such a system if a testbed exported it. The Andrew File
System[12], or its Coda extension[13], are good candidates.
Both aggressively cache to achieve better scaling properties than
NFS. Coda's disconnected operation mode is particularly
attractive, as it may mitigate temporary connectivity failures
between federants. Their integration with Kerberos makes
deployment somewhat more complex than SMB/CIFS.

2)Custom Software Installation
A powerful feature of the Emulab configuration system is

the ability to install software from a tar file or an RPM onto
experimental nodes. DETER federated experiments support this
feature, and provide it directly and at scale.

Software installation is provided not by tunneling service
directly back to the master testbed, but by acquiring the
software, distributing it to testbeds during the sub-experiment
embedding process and using local testbed installation facilities
to install the local copies.

This requires fedd to acquire copies of the software (RPMs
may be specified by URL), use the access granted for
experiment instantiation to copy the software distribution into
federants, and rewrite the requests in the experiment to request
the local copies.

This two-tier distribution mechanism is more scalable than a
naïve tunneling of file system access for each distribution. All
accesses remain local and the software is transferred once for
each federant rather than once per node.

3)Loosely Scheduled Events
Emulab provides a simple event system for automating
experiment operation. Event delivery can result in changes in
link behavior or in commands running or terminating on
experiment nodes. Though events can be delivered to multiple
handlers, the synchronization is loosely defined. Essentially a
publish/subscribe system sends a message and the event occurs
at the node or link when the message arrives. Propagation
delays may vary, a process exacerbated by retransmissions or
delays induced by federation. Though simple, this system
provides sufficient synchronization for many experimenters and

some testbed operations. The architecture does not attempt to
replicate the event-based testbed operations.

The publish/subscribe system used internally by Emulab has
transitioned from the elvin[14] messaging/notification software
to their own system with similar features. Emulab also includes
a backward compatibility interface to their system than mimics
elvin. Emulab messages are collections of attribute/value pairs.

A key feature of these systems is that they allow nodes to act
as repeaters. A node can both accept subscriptions and
subscribe to other nodes' messages. This feature can be used to
build scalable distribution trees.

The DETER federation system starts a publish/subscribe
system on each service connector. Each system subscribes to
events for its local experiment on its local testbed and to the
remote testbed as an event generator. Any events generated by
the local testbed are forwarded to the remote side, after
addressing attributes are changed to reflect the remote
experiment and an attribute indicating the origin testbed has
been added. Inter-testbed events cross the connectors once, and
internally testbeds use whatever event distribution configuration
is appropriate for their scale and conditions.

The event repeater software is a service proxy, not a simple
tunnel. It understands the event message format and edits
messages to reflect their use in a federated environment.

4)Experimental Environment Summary
This section has described several of the more interesting

aspects of creating the shared environment, addressing
compatibility, scalability, and utility. The techniques cover
tuned use of existing services to install software, simple service
tunneling to provide file system access, and application proxies
to bridge scalable services between testbeds in our environment.

IV.EXPERIENCE

Though fedd is a new feature of DETER, we have had
experience using it to embed experiments. This section
discusses work embedding large experiments that helped assess
the interface compatibility and file system scaling properties as
well as the work done to provide an interface from DETER's
graphical experiment management tool, SEER[15], to fedd.

A. Implementation

The current implementation of fedd has brought together
several subsystem prototypes into a unified tool that is more
appropriate for general users. The design splits code along the
architectural functionality lines. Where necessary, explicit
interfaces, described in WSDL, enable a distributed
implementation. This distributed implementation is practical as
well as aesthetic; different testbed configurations and access
policies argue for different placement of fedd functionality on
boss and users.

The current implementation of fedd uses the python
programming language[16], because it supports clear modularity
boundaries without excessive complexity in enforcement.
Additionally, python has a broad range of support libraries that
simplify and encourage the use of standard interfaces. SOAP

remote procedure calls derived from WSDL descriptions are
readily supported. With minimal changes these same routines
allow XMLRPC access as well. The simple integration of
XMLRPC was practically useful as existing Emulab software
exports XMLRPC interfaces; SEER makes use of these
interfaces and providing XMLRPC access to fedd simplified
SEER integration considerably.

The DFA definitions break fedd implementation into
modules that manage experiment creation and manipulation, that
manage access, and that convert access decisions into concrete
testbed configurations. The fedd implementation is comprised
of modules that accomplish those tasks. This factoring is visible
in the structure of the python classes that make up fedd and in
the published interfaces between modules.

The ability to locate different fedd functions on different
physical machines allows administrators to install it in their
testbed without great disruption. For example, an administrator
who is going to dynamically allocate testbed resources must run
that function on the machine that hosts the Emulab configuration
database, a risk static allocators can avoid.

The various design specifications and source code for fedd,
as well as information on configuring and installing it is
available from http://fedd.isi.deterlab.net.

B. A Large Experiment

One of the earliest tests of fedd was to take a simple
experiment being run by a user who was uninvolved with the
federation system development and see how well they were able
to use it to scale up their experiment.

Our test researcher was able to scale their experiment up to
more than 210 nodes and run an experiment larger than any of
the three testbeds would have supported at the time. We note
that the experimenter was competing against other users for
federated testbed resources and that other testbeds were not
granting this researcher unusual priority. The 210-node number
is not an upper bound on the system's scale.

The key lessons from this large experiment were to make the
Emulab notion of non-essential nodes visible in federated
experiments, to make fedd's experiment creation process
incremental, and to implement the on-demand file system
mounting discussed above.

An individual testbed may mark nodes as non-essential to
the experiment by using an Emulab command to set that
attribute. When such a node cannot be started, the Emulab
considers the experiment creation to be a success, though the
experimenter cannot access that node. This becomes key when
creating large experiments as load on the local experiment
creation and experiment management services, e.g., the shared
file system, can be considerable.

This feature is useful, but it becomes more so when
combined with iterative federated experiment creation. If fedd is
instructed to create an experiment that is already instantiated, it
modifies the experiment in place rather than removing it from
the local testbeds and reallocating them, assuming local testbed
policy permits this.

While it can be difficult to capture a large number of nodes
from many testbeds in one gulp, an iterative expansion of the
federated experiment can be more successful. This iterative
expansion was used to acquire the largest set of nodes.

The experiment did not make aggressive use of the exported
file systems, but at times the load caused by the large experiment
was considerable. An experiment that was more demanding
may have disrupted service on the master testbed, which was
exporting files to 130 nodes more than it was configured to
support. This heavy loading led us to implement the on-demand
file system mounting in the federation configurations today.

Overall this experience was valuable in showing the system's
ability to scale to useful sizes and that the shared environment
conformed closely to the familiar experimental interface. It was
also encouraging that the user was able to adopt intuitive
methods for allocating a large experiment without prompting.
He simply tried to swap in a larger experiment as if on a local
Emulab, and the system behaved as he expected.

C. SEER

To DETER users, SEER[15] is an approachable experiment
management tool. It allows users to create experiments on
DETER, configure traffic, initiate complex actions, and graph
traffic in real time. To the federation developers it represents
both a complex testbed application to support and a significant
improvement in usability of the system. The latest SEER
supports federated experiments.

Figure 3. The SEER view of a federated experiment

SEER is the most complex system we have federated to date.
It makes aggressive use of the event system, loads support
software on all participating experimental nodes, and
communicates with the outside world through a controller node
in the experiment. It was created before the DETER federation
system was planned, so its design made no accommodation for
federation.

Fortunately SEER's design was sound. Because the SEER
controller used the Emulab event system to coordinate with
SEER processes on other nodes rather than creating its own
control net protocol, it was amenable to federation.

Before modifying SEER, we were able to make use of basic
functionality by connecting it to one of the sub-experiments as
though it was a full experiment. We could issue SEER
commands to the sub-experiment (and beyond) though only the
subnet was visible. Changes to SEER were required to make it a
federated experimentation tool.

The issues to be resolved were acquiring information about
the global experiment topology and restricting naming to in-
experiment names.

SEER uses topology information to draw a representation of
the experiment and allow the experimenter to manipulate those
elements, e.g., starting or stopping traffic flow or an aspect of
the system being studied. This information is available for sub-
experiments through an Emulab XMLRPC interface. For
federated experiments, SEER needs to contact the controlling
fedd and request the information with the local alias or global
name. This functionality was added to SEER. For simplicity in
early prototyping SEER accesses fedd through the XMLRPC
interface, as SEER already has an extensive XMLRPC runtime
system.

Figure 4. The sub-experiments

A more key change in SEER was restricting the naming to
names that were meaningful to the federated experiment. In
some cases, SEER addressed events to machines using their
control network IP address. As we have mentioned, the IP
addresses in the experimental topology are visible across the
entire federation, but the control net addresses are not. They
may not be routable on another testbed or may be aliased by a
local choice. In general, these addresses were used to optimize
event routing, not define it, so the federation event proxy was
able to remove the incorrect optimization information from the
nodes.

As we revamp SEER to function more cleanly in a federated
world, we are removing such dependencies on per-experiment
information and restricting it to using information in the
federated experimental name space. This includes the symbolic
names of hosts or global names.

Experimenters can currently use SEER to create, manipulate,
and delete federated experiments in ways analogous to single
testbed manipulations. Figure 3 shows the SEER view of the
two combined experiments shown in Figure 4. Both figures are
screenshots, Figure 3 from SEER and Figure 4 from the DETER
web interface.

The experiment in Figure 3 is nodes a, b, and c connected
directly, with node c sharing a local area network with nodes d
and e. The unconnected control node is the SEER controller. It
communicates with the other nodes through the event system
and has no connections in the experimental network. Only the
federated experimental network is displayed by SEER, and
federation infrastructure is similarly invisible.

The experiment has been split by fedd between node b and
node c. Figure 4 shows the instantiation of the two sub
experiments on two Emulabs. The left sub-experiment includes
nodes a and b and the control node. The Fourth node is a node
hosting the topology and service connectors. The right hand
testbed hosts nodes c, d, and e on their LAN as well as a
combined topology and service connector.

V.CONCLUSIONS AND FUTURE WORK

This work has described the DETER federation architecture's
model for creating federated experiments, including the multi-
phase cooperative resource allocation system, the access control
levels, and the construction of a cohesive experimental
environment. Later sections described our ongoing
implementation, fedd, and discussed our experiences creating
large experiments and adding support to experiment
management tools.

The architecture has shown itself to be powerful and
extensible as we have developed and expanded it. The
implementation supports large experiments and complex
systems, such as SEER.

Future work focuses on realizing more parts of the
architecture and expanding the function of existing
implementations. The core federation implementation has
reached the point where it can support domain-specific
experiment design tools that are aware of federation. Such tools
are a necessary next step in making testbeds more useful in
research and it is key that federation be designed in them from
the beginning.

Competitive experiments are an exciting possibility opened
up by federation, and expanding the fedd implementation to
support multiple experimenters is key to realizing that
possibility. The experiment descriptions need to be further
annotated so that the federation system can determine the levels
of visibility and access control to services. From that fedd's
query system and experiment creation systems need to be
extended to support experiments that appear differently to the
competitors.

While X.509 certificates have been a useful initial
implementation of our global namespace, future versions will
support more ways for name holders to authenticate themselves.
We are working to adapt fedd's interfaces to support other
authentication systems.

The point of these various thrusts is to make federation more
accessible and powerful in ways that allow new kinds of
research to be done in federated testbeds. We believe that the
DETER federation architecture will support these new directions
and the fedd is promising evidence that the architecture is
realizable.

VI.REFERENCES

[1] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M.
Hibler, C. Barb, and A. Joglekar, “An Integrated Experimental
Environment for Distributed Systems and Networks,” OSDI 2002,
December 2002.

[2] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower, R.
Ostrenga, and S. Schwab, “Experience with DETER: a testbed for security
research,” Proceedings of Tridentcom (International Conference on
Testbeds and Research Infrastructures for the Development of Networks &
Communities), March 2006.

[3] http://wail.cs.wisc.edu/projects.html

[4] T. Faber and J. Wroclawski, “Access Control for Federation of Emulab-
based Network Testbeds,” In Proceedings of the CyberSecurity
Experimentation and Test (CSET) Workshop, San Jose, July 2008.

[5] Y. Rekhter, R. Moskowitz, D. Karrenberg, G. J. De Groot, E. Lear,
Address Allocation for Private Internets,, RFC1918, ISOC, February 1996.

[6] ITU-T Rec. X.509: Information Technology Open Systems Interconnection
- The Directory: Interconnection framework, June 1997.

[7] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web Services
Description Language (WSDL) 1.1,, http://www.w3.org/TR/wsdl

[8] T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol
Version 1.1, RFC4346, ISOC, April 2006.

[9] D. Winer, “The XMLRPC Specification,” http://www.xmlrpc.com/spec,
June 2003.

[10] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, “Design
and Implementation of the Sun Network File System,” USENIX
Conference, USENIX, June 1985, 119-130.

[11] Microsoft Corp., “Microsoft SMB Protocol and CIFS Protocol Overview”,
http://msdn.microsoft.com/en-us/library/aa365233.aspx .

[12] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M.
Satyanarayanan, R. N. Sidebotham, and M. J. West, “Scale and
performance in a distributed file system,” ACM Trans. Comput. Syst. 6, 1
(Feb. 1988), 51-81.

[13] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the coda
file system,” ACM Transactions on Computer Systems, ACM, vol. 10, no.
1, 1992, 3-25

[14] B. Segall and D. Arnold, “Elvin has left the building: a publish/subscribe
notification service with quenching,” Proceedings of AUUG97, Brisbane,
Australia, September 1997.

[15] S. Schwab, B. Wilson, C. Ko, and A. Hussain, “SEER: a Security
Experimentation EnviRonment for DETER,” In Proceedings of the
DETER Community Workshop on Cyber Security Experimentation and
Test, August 2007.

[16] Python Software Foundation, http://www.python.org.

http://wail.cs.wisc.edu/projects.html
http://msdn.microsoft.com/en-us/library/aa365233.aspx
http://www.xmlrpc.com/spec
http://www.w3.org/TR/wsdl

	I. Introduction
	II. The DETER Federation Architecture
	A.Experiment Creation Model
	1)Cooperative Resource Allocation
	2)Infrastructure Access
	3)Experiment Environment

	B.Model Summary

	III.Fedd: A Federation Daemon
	A.Creating and Operating on Federated Experiments
	B.Building a Scalable Experimental Environment
	1)User Accounts and File Systems
	2)Custom Software Installation
	3)Loosely Scheduled Events
	4)Experimental Environment Summary

	IV.Experience
	A.Implementation
	B.A Large Experiment
	C.SEER

	V.Conclusions and Future Work
	VI.References

