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Abstract — We propose a new feedback-based adap-

tive coding scheme for a packet erasure broadcast

channel. The main performance metric of interest is

the delay. We consider two types of delay – decoding

delay and delivery delay. Decoding delay is the time

difference between the instant when the packet is de-

coded at an arbitrary receiver and the instant when it

arrived at the sender. Delivery delay also includes the

period when a decoded packet waits in a resequencing

buffer at the receiver until all previous packets have

also been decoded. This notion of delay is motivated

by applications that accept packets only in order. Our

coding scheme has the innovation guarantee property

and is hence throughput optimal. It also allows effi-

cient queue management. It uses the simple strategy

of mixing only the oldest undecoded packet of each

receiver, and therefore extends to any number of re-

ceivers. We conjecture that this scheme achieves the

asymptotically optimal delivery (and hence decoding)

delay. The asymptotic behavior is studied in the limit

as the load factor of the system approaches capacity.

This conjecture is verified through simulations.

I. Introduction

In today’s communication systems, the demand for sup-
porting real-time applications is growing rapidly. In pop-
ular applications such as live video streaming and video
conferencing, the user’s experience is very sensitive to the
per-packet delay. In pre-recorded video streaming (i.e.,
not live), a low delay is still preferable because that would
reduce the amount of buffering required for playback at
the receiver.

Note that this notion of per-packet delay is very dif-
ferent from download delay [1]. While downloading a
file, usually the main performance criterion is the time it
takes to complete the download. From the system point of
view, this goal essentially translates to a high throughput
requirement. The implicit assumption in such a scenario
is that the file is useful only as a whole.

From a throughput perspective, there are situations
where coding across packets is very useful. One reason
is that coding can help correct errors and erasures in the
network. Another reason is, in certain network topolo-
gies such as the butterfly network from the network cod-
ing literature [2], coding is necessary to share bottleneck
links across flows, in order to achieve the system capac-
ity. Similarly, in broadcast-mode links, especially with

erasures, coding across packets is critical for achieving a
high throughput [3].

Now, any form of coding comes with an associated de-
coding delay. The receiver has to wait to collect suffi-
ciently many coded packets before it can decode the orig-
inal packets. Therefore, in delay-sensitive applications, it
may be necessary to carefully design the coding scheme
so that it not only satisfies the criteria needed to ensure
high throughput, but also achieves a low decoding delay.

Motivated by this goal, we explore in our work, the
possibility of making use of feedback in order to adapt
the coding scheme in an online manner. We focus on the
single hop packet erasure broadcast channel with perfect
immediate feedback. We propose and study a new cod-
ing module for any number of receivers. We show that it
is throughput optimal and that it allows efficient queue
management. We also study two different notions of de-
lay. The first one is the decoding delay per packet. This
is simply the average over all packets of the time between
arrival and decoding at an arbitrary receiver. The second
notion, known as delivery delay, is a much stronger no-
tion of delay. It assumes that packets may be delivered to
the receiver’s application only in the order of their arrival
at the sender. These notions were also introduced in ear-
lier work [4], [5]. We conjecture that our scheme achieves
the asymptotically optimal expected decoding delay and
delivery delay.

The rest of the paper is organized as follows. In Sec-
tion II, we present the system model and the problem
statement. Section III then motivates the problem in
the context of related earlier work. Section IV presents
the new generalized coding module for any number of re-
ceivers. The performance of this algorithm is described
in Section V. In Section VI, we present our simulation
results. Finally, the conclusions and directions for future
work are presented in Section VII.

II. The system model

The system model is identical to that in [6] and [7]. It is
presented here for completeness.

Time is slotted. Packets of a fixed size arrive into an
infinite capacity buffer at a sender node according to a
Bernoulli process of rate λ. There are n receivers. This
stream belongs to a broadcast session that needs to be
delivered to all the receivers. The sender is connected to
the receivers by a packet erasure broadcast channel. This
channel accepts one packet as input in every slot and
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Figure 1: Relative timing of arrival, service and departure
points within a slot

either reproduces this packet without errors (with proba-
bility µ), or outputs an erasure symbol (with probability
1 − µ), independently at each receiver. The erasures are
independent across receivers and across time-slots, and
can be detected by the receivers. The presence of a per-
fect delay-free feedback link enables the sender to know
the exact state of knowledge of the receivers in every slot,
before deciding the transmission of that slot. The exact
order in which the various events occur in our system is
shown in Figure 1.

The load factor ρ is defined to be ρ := λ/µ. In this pa-
per, we assume that the sender can only use linear codes.
In other words, every transmission is a linear combina-
tion of the current contents of the buffer. The coefficient
vector corresponding to a linear combination is conveyed
to the receiver through the packet header.

We will use two notions of delay. These notions were
also studied in [5].

Definition 1 (Decoding Delay). The decoding delay of
a packet with respect to a receiver is the time between the
arrival of the packet at the sender and the decoding of the
packet by the receiver under consideration.

Definition 2 (Delivery Delay). The delivery delay of
a packet with respect to a receiver is the time between
the arrival of the packet at the sender and the delivery
of the packet by the receiver to the application, with the
constraint that packets may be delivered only in order.

It is easily seen from these definitions that the delivery
delay is in general, longer than the decoding delay. It is
well known that in this model, the queue can be stabilized
as long as ρ < 1, by using linear network coding [3]. In
this work, we are interested in the rate of growth of the
decoding and delivery delay, in the asymptotic regime of
ρ approaching 1.

The problem we study in this paper is the following:
Is there an adaptive coding scheme that is throughput
optimal and at the same time achieves the best possible
rate of growth of the decoding and delivery delay, as a
function of 1/(1 − ρ)?

III. Motivation and related earlier work

Coding for per-packet delay has been studied in earlier
work by Martinian et al. [8]. However, that work con-
sidered a point-to-point setting unlike our broadcast sce-
nario. The problem of the delay for recovering packets

from a file has been studied in the rateless code frame-
work with or without feedback, by [9] and [10]. Reference
[11] also considered the problem of coding for delay using
feedback. The setting there is in terms of a fixed de-
lay model for point-to-point communication, where each
packet has a deadline by which it needs to be delivered.
A packet which does not meet its deadline is considered
to be in error, and the corresponding error exponents are
characterized.

In contrast, we consider the expected per-packet delay
in a queuing theoretic framework, with no strict dead-
lines. Besides, our setting is a point-to-multipoint (broad-
cast) packet erasure channel.

For the case of packet erasure broadcast channel with
two receivers, Durvy et al. [12] have proposed a feedback-
based throughput optimal coding scheme that ensures
that every successful innovative reception at any receiver
will cause it to decode an original packet. This property
is called instantaneous decodability. However, the authors
provided an example to show that for the three receiver
case, instantaneous decodability cannot be achieved with-
out losing throughput.

Keller et al. [13] also studied this problem and pro-
posed and compared several algorithms to reduce the de-
coding delay. This work did not consider the in-order
delivery problem. Both [12] and [13] consider the trans-
mission of a given finite set of packets. In contrast, [14]
assumes that packets arrive at the source according to a
stochastic process in a streaming manner and proposes a
coding scheme for two receivers. The focus however, is to
ensure stable throughput and not low delay. In [15], the
authors propose a greedy coding scheme for the case of
more than 2 receivers, which aims to maximize the num-
ber of receivers that can decode a packet instantaneously,
at the expense of losing throughput.

Our current work considers stochastic packet arrivals.
Whereas the earlier works did not consider the in-order
delivery constraint, we study the delivery delay as well.
We focus on throughput optimal schemes. Since instanta-
neously decodability cannot be guaranteed for more than
2 receivers, we consider the relaxed requirement of asymp-
totically optimal decoding and delivery delay, where the
asymptotics are in the limit of the load factor ρ → 1.

Reference [7] presented a lower bound on the asymp-

totic growth of the expected decoding delay of O
(

1

1−ρ

)

by arguing that even the single receiver case has this lin-
ear rate of growth in terms of 1

1−ρ
. For the two receiver

case, it can be proved that the algorithm of [12] indeed
achieves this lower bound for decoding delay, and seems
to achieve it for delivery delay as well, based on simula-
tions.

In other work, [6] (also in [5]) proposed a feedback-
based coding scheme for any number of receivers. The
main focus there, however, was to ensure efficient queue
management. The queue size growth was shown to be

O
(

1

1−ρ

)

. However, the decoding delay of the schemes



proposed there, are seen to have a quadratic growth in
1/(1 − ρ) based on simulations.

Reference [7] proposed a coding scheme for the case
of three receivers that was conjectured to achieve the
asymptotic lower bound. However, it was not general-
izable to multiple receivers. Reference [16] considers the
case of heterogeneous channels to the receivers, and pro-
poses a systematic online encoding scheme that sends
uncoded packets to enable frequent decoding at the re-
ceivers. However, no characterization of the asymptotic
behavior of the decoding or delivery delay is provided.
For more related work, the reader is also referred to [16]
and [5].

The contribution of our current paper is to provide a
new coding module for any number of receivers, that is
at the same time, throughput optimal, allows asymptot-
ically optimal queue sizes and is conjectured to achieve

an asymptotically optimal O
(

1

1−ρ

)

growth for both de-

coding and delivery delay. It can be shown that the
two-receiver algorithm of [12] is a special case of our al-
gorithm. The delay performance conjecture is verified
through simulations.

IV. The coding algorithm

We now present the new coding module for the general
case of any number of receivers. First, we describe the
main ideas behind the algorithm. Then, we present the
detailed specification.

A. Intuitive description

The intuition behind the algorithm is to first identify for
each receiver, the oldest packet that it has not yet de-
coded, which we will call the request of that receiver.
The algorithm then transmits a linear combination that
involves packets from only within this set.

The linear combination is constructed incrementally.
The receivers are grouped according to their request, and
the groups are processed in descending order of their re-
quested packet’s index. First, the newest request (i.e., the
one with the largest index) is included in the linear com-
bination, as otherwise, the corresponding receivers, hav-
ing decoded everything older, will find the transmission
non-innovative1. Then, the algorithm checks whether the
linear combination formed thus far is innovative to every
receiver in the next group. If it is not innovative, then
the coefficient of the next group’s request is adjusted till
it is simultaneously innovative to the whole group. The
key idea is that, since the groups are processed in de-
scending order of their requests, the choices made for the
coefficient of subsequent groups’ requests will not affect
the innovation of earlier groups. This is because, the ear-
lier groups have already decoded the subsequent groups’
requests.

1A linear combination is said to be innovative if its coefficient

vector is linearly independent of previously received linear combi-

nations.

After processing all the groups in this order, the trans-
mitted linear combination is thus chosen so that it satis-
fies the innovation guarantee property2.

B. Representing knowledge

Before specifying the algorithm, we first propose a way
to systematically represent the state of knowledge of the
receivers. This is based on the representation used in [6],
with a key difference described below.

The kth packet to have arrived at the sender is said
to have an index k and is denoted by pk. Suppose the
total number of packets that have arrived at any time
t is denoted by A(t). Since we have a restriction that
the coding must be linear, we can represent the state of
knowledge of a node by a vector space consisting of all
the linear combinations that a node can compute using
what it has received thus far. We represent the state of
knowledge using a basis of this vector space. The basis
is represented as the rows of a matrix which is in the
row-reduced echelon form (RREF). The matrix has A(t)
columns, one for each packet that has arrived thus far.
While all this is identical to the representation in [6], the
main difference is in the ordering of the columns of the
basis matrix. We use the same framework, except that in
our current work, the columns are ordered so that packet
pk maps to column A(t)−k. In other words, the columns
are arranged in reverse order with respect to the order of
arrival at the sender.

Throughout this paper, we will use the RREF repre-
sentation of the basis matrix, with this reverse ordering
of the packets. We also make use of the notion of seen
packets that was introduced in [6]. Note however that the
definition becomes quite different from that in the previ-
ous work, if we use the reverse ordering on the packets.

Definition 3 (Seeing a packet). A node is said to have
seen a packet with index k if and only if the kth column
from the right, of the RREF basis B of the knowledge
space V of the node, is a pivot column. Alternatively,
a node has seen a packet pk if it has received enough
information to compute a linear combination of the form
(pk + q), where q is itself a linear combination involving
only packets with an index less than that of p. (Decoding
implies seeing, as we can pick q = 0.)

In contrast, the definition used in [6] had replaced the
word “less” with the word “greater” in the above state-
ment. We believe the reverse ordering is better suited to
analyzing the delivery delay. We now make some obser-
vations about the new definition.

Observation 1: As with the forward ordering, the no-
tion of seen with the reverse ordering also has connections
to the dimension of the knowledge space. In particular,
we can show that every innovative reception causes a new

2Innovation guarantee means the transmission is innovative to

every receiver except when the receiver already knows everything

that the sender knows.



packet to be seen. In other words, the number of seen
packets is equal to the dimension of the knowledge space.

Observation 2: Due to the reverse ordering of the pack-
ets, we have an interesting property. For any k > 0, if all
packets p1 to pk have been seen, then they have also been
decoded, and hence can be delivered to the application.

C. Algorithm specification

Now, we present the formal coding algorithm. Let us
first define {u1, u2, . . . , um} to be the set of indices of the
oldest undecoded packets of the n receivers, sorted in de-
scending order (m ≤ n, since the oldest undecoded packet
may be the same for some receivers). Exclude receivers
whose oldest undecoded packet has not yet arrived at the
sender. We call this resulting set of packets the transmit
set, since the coding module will use only these packets
in computing the linear combination to be transmitted.

Let R(ui) be the group of receivers whose request is
pui

. We now present the coding module to select the
linear combination for transmission.

Initialize the transmit coefficient vector a to an all zero
vector of length Q, the current sender queue size.
for j = 1 to m do (Loop over the transmit set)

Initialize the veto list3 to the empty set.
for all r ∈ R(uj) do

Zero out the coefficient of all packets seen by re-
ceiver r from the current transmission vector a by
subtracting from a, suitably scaled versions of the
rows of the current RREF basis matrix, to get the
vector a′. (This is essentially the first step of Gaus-
sian elimination.) Hence, find out which packet
will be newly seen if the linear combination corre-
sponding to a is transmitted. This is simply the
index of the packet corresponding to the first non-
zero entry in a′.
if no packet is newly seen then

Append 0 to the veto list
else if the newly seen packet’s index is uj then

Append the additive inverse of the leading non-
zero entry of a′ to the veto list

else if the newly seen packet is anything else then

Do not add anything to the veto list
end if

end for

Arrange the elements of the finite field in any order,
starting with 0. Choose auj

to be the first element
in this order that is not in the veto list.

end for

Compute the transmit packet: g :=
∑Q

k=1
akpk

V. Properties of the algorithm

A. Throughput

To ensure correctness, the algorithm uses a finite field of
size at least as large as the number of receivers. Theorem

3This will hold the list of unacceptable coefficients of puj
.

1 shows that this is a sufficient condition to guarantee
innovation.

Theorem 1. If the field is at least as large as the num-
ber of receivers, then the above algorithm will always find
values for the ak’s such that the resulting transmission
satisfies the innovation guarantee property.

Proof. We first show that the choices made by the al-
gorithm guarantee innovation. For any j > 0, consider
the jth request group. Let a(j − 1) be the value of the
coefficient vector just before processing group j (Note,
a(0) = 0.).

Any receiver in group j has not decoded puj
yet.

Hence, it cannot know a linear combination of the form
a(j − 1) + βeuj

for more than one value of β, where euj

is the unit vector with a 1 in the uth
j coordinate and 0

elsewhere. (If it knew two such combinations, it could
subtract one from the other to find puj

, a contradiction.)
Suppose the receiver knows exactly one such linear

combination. Then, after the row reduction step, the vec-
tor a(j−1) will get transformed into a′ = −βeuj

. Hence,
the leading non-zero coefficient of a′ is −β, and its addi-
tive inverse gives β. (Note: the resulting value of β could
be 0. This corresponds to the non-innovative case.) If
the receiver does not know any linear combination of this
form, then packet uj is not seen, and nothing is added to
the veto list.

In short, the values that are vetoed are those values of
β for which some receiver knows a linear combination of
the form a(j − 1) + βeuj

. Hence, by picking a value of
auj

from outside this list, we ensure innovation. Thus,
the algorithm essentially checks for innovation by con-
sidering different coefficients β for including puj

into the
transmission and eliminating the ones that do not work.
Finally, processing subsequent groups will not affect the
innovation of the previous groups because the subsequent
groups will only change the coefficient of their requests,
which have already been decoded by the previous groups.

We now show that the algorithm always has enough
choices to pick such an auj

even after excluding the veto
list. As argued above, at any point in the algorithm, each
receiver adds at most one field element to the veto list.
Hence, the veto list can never be longer than the number
of receivers in the corresponding request group. Now, we
consider two cases.

Case 1: If the group requesting the highest request u1

does not include all the receivers, then none of the groups
contain n receivers. Hence, the veto list for any group will
always be strictly shorter than n, and hence if the field
size is at least n, there is always a choice left for auj

.
Case 2: If all n receivers request the highest packet

u1, then it has to be the case that they have all decoded
every packet before u1. Hence, the only coefficient that
any receiver would veto for pu1

is 0, thus leaving other
choices for au1

.
This completes the proof.



B. Decoding and delivery delay

We conjecture that the coding module described above
has good delay performance.

Conjecture 1. For the coding module in Section IV C,
the expected decoding delay per packet, as well as the ex-
pected delivery delay per packet with respect to a particu-

lar receiver, grow as O
(

1

1−ρ

)

as ρ → 1, which is asymp-

totically optimal.

The exact analysis of the delay and the proof of this
conjecture are open problems. We believe that the notion
of seen packets will be useful in this analysis. In partic-
ular, to analyze the delivery delay, we can make use of
Observation 2 from Section IV B. A packet is delivered
if and only if this packet and all packets with a lower in-
dex have been seen. This condition is the same as what
arises in problems involving a resequencing buffer. Thus,
we can formulate our delivery delay problem in terms of
traditional queuing problems.

In our formulation, we break down the delivery delay
of a packet for a particular receiver into two parts, as
though the packet has to traverse two queues in tandem.
The first part is simply the time till the packet is seen.
Once it is seen, the packet moves into a second queue
which is essentially a resequencing buffer. The second
part is the time spent in this buffer waiting for all older
packets to be seen.

The expectation of the first part is easy to calculate,
since every innovative reception causes a new packet to
be seen. By Little’s theorem, the delay is directly pro-
portional to the size of the queue of unseen packets. This
queue’s behavior was studied in [6]. Although that work
used the older notion of seeing a packet, it can be shown
that the analysis still holds even if we use the new notion
of seen packets based on reverse ordering. Hence, we get

a O
(

1

1−ρ

)

bound on the first part of the delay. The anal-

ysis of the second part of the delay however, seems more
complicated.

C. Queue management

The coding module described above makes use of only
the oldest undecoded packet of each receiver in any given
time-slot. Since our definition of seen packets uses reverse
ordering of the packets (see Section IV B), the oldest
undecoded packet is always an unseen packet. In other
words, the algorithm never uses packets that have been
seen by all the receivers. This implies that the algorithm
is compatible with the drop-when-seen queuing algorithm
that was proposed and analyzed in [6], provided we use
the new definition of seen. As pointed out in Observation
1 in Section IV B, the new definition of seeing a packet
has the same relation to the dimension of the knowledge
space as the old definition of [6]. Thus, we can obtain all
the queue size guarantees that were obtained in the ear-

lier work. In other words, we can get a provable O
(

1

1−ρ

)
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Figure 2: Linear plot of the decoding and delivery delay

growth of the expected queue size at the sender, in ad-
dition to the provable innovation guarantee property and
the conjectured delay guarantees.

VI. Simulation results

We now evaluate the performance of the newly proposed
coding module through simulations. In particular, we
study the behavior of the decoding delay and the deliv-
ery delay as a function of the load factor ρ, in the limit
as ρ approaches 1, i.e., as the loading on the system ap-
proaches capacity.

The probability of reception in any slot is µ = 0.5. The
packets arrive according to a Bernoulli process, whose ar-
rival rate is calculated according to the load factor ρ. The
load factor is varied through the following values: 0.8, 0.9,
0.92, 0.94, 0.96, 0.97, 0.98 and 0.99. The decoding delay
and delivery delay are averaged across the packets over a
large number of slots. The number of slots is set to 106

for the first four data points, 2 × 106 for the next two
points, and at 5 × 106 for the last two points.

We consider two different cases. In the first case, there
are three receivers. The entire operation is therefore per-
formed over a GF (3) (i.e., integer operations modulo 3).
In the second case, we consider the situation where there
are five receivers. In this case, the operations are per-
formed over a field of size 5.

Figure 2 shows the plot of the decoding and delivery
delay as a function of 1

1−ρ
for both the three and the

five receiver cases. Figure 3 shows the same plot in a
logarithmic scale. From both these figures, it is clearly
seen that the algorithm achieves a linear growth of the
delay in terms of 1

1−ρ
. We have thus verified Conjecture

1 for the case of 3 and 5 receivers, using simulations.

VII. Conclusion

In this work, we have thus proposed a new coding mod-
ule which not only achieves optimal throughput, but is
conjectured to achieve asymptotically optimal decoding
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and in-order delivery delay as well. In addition, it also
allows efficient queue management, leading to asymptoti-
cally optimal expected queue size. The algorithm applies
to the case of any number of receivers. The conjecture on
low delay is verified through simulations.

Our work introduces a new way of adapting the encod-
ing process based on feedback so as to ensure low delay
in combination with high throughput. In the future, sev-
eral extensions are possible. Of particular interest is the
study of the effect of delayed or imperfect feedback on
the code design. We believe that the main ideas of the
coding algorithm will extend to the case where we have
imperfections in the feedback link.

Also of interest for the future is the proof of Conjec-
ture 1. The delivery delay is closely related to the prob-
lems concerning resequencing buffers, which have been
studied in a different context in the literature. The tech-
niques used in those works might be useful in studying
this problem as well.
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