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Abstract: In this paper, a nonlinear anti-sway controller for container cranes with load hoisting is 
investigated. The considered container crane involves a planar motion in conjunction with a 
hoisting motion. The control inputs are two (trolley and hoisting forces), whereas the variables to 
be controlled are three (trolley position, hoisting rope length, and sway angle). A novel feedback 
linearization control law provides a simultaneous trolley-position regulation, sway suppression, 
and load hoisting control. The performance of the closed loop system is shown to be satisfactory 
in the presence of disturbances at the payload and rope length variations. The advantage of the 
proposed control law lies in the full incorporation of the nonlinear dynamics by partial feedback 
linearization. The uniform asymptotic stability of the closed-loop system is assured irrespective 
of variations of the rope length. Simulation and experimental results are compared and discussed. 
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linearization. 
 

1. INTRODUCTION 
 
During the past two decades, the endeavor to 

enhance the handling efficiency of container cranes 
has pulled vigorous research in two directions: a new 
mechanism design with which the cycle time in 
transferring loads can be reduced [4,5,18] and the 
quick suppression of the sway of the loads despite 
faster trolley traveling [1-3,6-17,20-31]. The 
productivity of a container ship is directly related to 
how quickly containers are loaded or unloaded from 
the ship to/from container-carrying vehicles. The 
container crane dynamics are simpler than the 
overhead crane dynamics. But, the area of container 
crane control still draws attention from many 
researchers because the overall control performance is 
not satisfactory. Two main obstacles in achieving 
good control performance are that the container cranes 

operate outdoor confronting winds, and the structure 
becomes larger and larger, possibly resulting in 
structural vibrations. 

Early works on crane control in some optimizing 
sense can be traced back to [2,6,13-15,25,29]. More 
recent papers include [1,3,8-12,16,17,21-24,26-
28,30,31]. In contrast to the speed control of [2,13-
15,25,29], the torque control method applies control 
forces/torques in such a way that the dynamics of the 
controlled system meet a given reference signal. The 
torque control method is more attractive from the 
aspects of accuracy and energy saving.  

Recently, Lee [23] proposed an anti-swing control 
of overhead cranes with changing rope length, in 
which the trolley reference trajectory was modified to 
achieve a sufficient damping of the load sway and the 
asymptotic stability of the zero solutions of the 
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Fig. 1. Sway of the load caused by trolley movement.
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position and rope length tracking errors was proved. 
Also, Chung and Hauser [7] and Fang et al. [11] have 
addressed Lyapunov-function-based controls in order 
to incorporate the full nonlinear dynamics of crane 
systems. 

The crane is naturally an under-actuated mechanical 
system, in which the number of actuators is less than 
the degree of freedom of the system. For a container 
crane, the degree of freedom is three (i.e., trolley 
position, rope length, and sway angle; see Fig. 1), but 
the number of actuators is two (i.e., trolley and hoist 
motors). For a given target position of the load, the 
trolley should travel as fast as it can. On the other 
hand, such a fast trolley movement should not result 
in any residual sway of the load at the completion of 
the transference.  

In this paper, an energy-based nonlinear control 
design for container cranes is investigated, where the 
nonlinearity of the plant is fully incorporated into 
control law design when the energy function is 
differentiated along the plant dynamics. Unlike the 
controller of Lee [23], the proposed anti-sway 
controller, which guarantees an accurate control of the 
trolley position and rope length, is designed in such a 
way that the trolley reference trajectory needs not to 
be modified to achieve the sufficient damping of the 
load sway. Thus, there is no notch in the trolley 
velocity. Also, the asymptotic stability of the zero 
solutions of the trolley position and rope length 
tracking errors is guaranteed not only in the case of 
constant rope length but also in the case of varying 
rope length. That is, the uniform asymptotic stability 
of the closed-loop system can be guaranteed by a 
properly selected energy function. Furthermore, the 
parameters in the controller can be chosen in such a 
way that the transient performance (i.e., the rise time 
to a set position of the trolley or to a desired rope 
length) can be adjusted in a predictable way.  

The contributions of this paper are the following. 
An energy-based control law with improved rise time, 
sway suppression, and load hoist control capability for 
container cranes is proposed. The uniform asymptotic 
stability of the closed-loop system is assured. Finally, 
the developed algorithm is verified through 
simulations and experiments.  

The paper is structured as follows. In Section 2, a 
container crane model is introduced. In Section 3, the 
design of a Lyapunov-function-based control law is 
discussed and the uniform asymptotic stability of the 
closed-loop system is proved. In Section 4, 
simulations and experimental results are provided. In 
Section 5, conclusions are drawn. 

 
2. SYSTEM DYNAMICS 

  
For the successful sway suppression and hoist 

control of a suspended load, it is important to know 

what part of the crane dynamics should be included in 
the control law design process and what part can be 
neglected. Fig. 1 shows the swing motion of the load 
caused by trolley movement, in which X is the trolley 
moving direction, Z is the vertical direction, ( )tθ  is 
the sway angle of the load, ( )x t  is the displacement 
of the trolley, ( )l t  is the hoist rope length, and xF  
and lF  are the control forces applied to the trolley in 
the X-direction and to the payload in the l -direction, 
respectively. 

The following assumptions are made: i) The 
payload and trolley are connected by a massless rigid 
rod, that is, a pendulum motion of the load is 
considered; ii) the trolley mass and the position of the 
trolley are known; iii) all frictional elements in the 
trolley and hoist motions can be neglected; iv) the rod 
elongation is negligible. The above assumptions give 
a three d.o.f. crane model, yielding the generalized 
coordinate vector 3( ) ,q t R∈  as follows:  

( ) [ ( ) ( ) ( )] .Tq t x t l t tθ=    (1) 

Let the coordinate of the payload be ( , ).p px z  Then, 

px  and pz are given by 

sin ,px x l θ= +  cos .pz l θ= −   (2) 

Using (2), the kinetic energy T  and the potential 
energy V  are given as follows: 

2 2 2

2

1 1 1( ) ( ) ( )
2 2 2

1( cos sin  ) ,
2

t p p l p

p

T m m x m m l m l

m x l l I

θ

θθ θ θ

= + + + +

+ + +
 (3) 

cos ,pV m gl θ= −    (4) 

where pm  is the payload mass, tm  and lm  are 
the equivalent mass of the trolley and hoist systems, 
respectively, I is the mass moment of inertia of the 
payload, and g is the gravitational acceleration. 
Finally, the equations of motion using the Lagrange’s 
equation are derived as follows: 

2

( ) sin cos

2 cos sin ,

t p p p

p p x

m m x m l m l

m l m l F

θ θθ

θ θ θθ

+ + +

+ − =
 (5) 

2sin ( )

cos ,
p p l p

p l

m x m m l m l

m g F

θ θ

θ

+ + −

− =
  (6) 

2cos ( ) 2

sin 0.
p p p

p

m l x m l I m ll

m gl

θ θ θ

θ

+ + +

+ =
  (7) 

The dynamic equations (5)-(7) can be rewritten as 

( ) ( , ) ( ) ,mM q q V q q q G q u+ + =   (8) 
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where 

11 12 13

21 22

31 33

0 ,
0

m m m
M m m

m m

 
 =  
  

 
12 13

23

32 33

0
0 0 ,
0

m m

m m

m m

V V
V V

V V

 
 =  
  

 

0 cos sin ,
T

p pG m g m glθ θ = −   

0 ,
T

x lu F F =    

11 ,p tm m m= +  12 sin ,pm m θ= 13 cos ,pm m l θ=  

21 sin ,pm m θ=  22 ,p lm m m= +  

31 cos ,pm m l θ=  2
33 ,pm m l I= +  

12 cos ,m pV m θ θ=  13 sin  cos ,m p pV m l m lθ θ θ= − +  

23  ,m pV m l θ= −  32 ,m pV m lθ=  and 

33 .m pV m l l=  

It is remarked that the inertia matrix ( )M q and the 
centripetal term ( , )mV q q  satisfy the skew-symmetric 
relationship. Therefore the following equation holds. 

1( ( ) ( , )) 0,
2

T
mM q V q qξ ξ− =   (9) 

where ( )M q  is the time derivative of ( )M q , and 
then the following inequalities hold. 

 2 2
1 2( ) ,Tk M q kξ ξ ξ ξ≤ ≤  3,Rξ ∈  (10) 

where 1 2,k k  are positive constants. 
In order to separate the unactuated dynamics (θ - 

dynamics) from the actuated dynamics (( , )x l - 
dynamics), (7) is rewritten as 

2
1 ( cos 2 sin ).p p p

p
m l x m ll m gl

m l I
θ θ θ θ= − − −

+
(11) 

It can be seen from (11) that a change of the rope 
length leads to a change of the sway dynamics. This 
coupling effect has to be effectively controlled. Using 
(11), (5) and (6) can be rewritten as 

( )
( )
( )

2 2 2 2

2 2

2 2

cos /( ) sin

2 cos  /( ) 1

sin  cos /( ) ,

p t p p p

p p p

p p p x

m m m l m l I x m l

m l m l m l I

m l m gl m l I F

θ θ

θ θ

θ θ θ

+ − + +

= + −

+ + + +

 (12) 

2sin ( ) cos .p p l p p lm x m m l m l m g Fθ θ θ+ + = + +  (13) 

Now, we introduce a new vector [ ]Tr x l=  for the 
purpose of partial feedback linearization and the 
tracking of both trolley and hoist dynamics at the 
same time (see Section 3). Then, the coordinate vector 

can be written as [ ] [ ] .T T Tq x l rθ θ= =  And, by 
rearranging the terms in (12)-(13), the r -dynamics 
become 

( ) ,r P F W PF W= + = +  (14) 

where 

111 12 '

21 22

2 2 2

2

sin
1 ,cos

det( ) sin

p l p

p
p p t

p

p p
P M

p p

m m m

m l
M m m m

m l I

θ

θ
θ

∆ −   = =    
+ − 

 
=  

′ − + − 
+  

 

M ′  is the inertia matrix of ( , )x l -dynamics, 

( )2 2 2 2

2 2

det ( ) cos /( )

( ) sin ,

p t p p

p l p

M m m m l m l I

m m m

θ

θ

′ = + − +

× + −
 

,
T

xF F F =    

1 2 ,
T

W w w PW = =   and 

( )
( )

2 2

2 2

2

2 cos  /( ) 1

.sin  cos /( )

cos

p p p

p p p

p p

m l m l m l I

W m l m gl m l I

m l m g

θ θ

θ θ θ

θ θ

 + −
 
 = + + + 
 

+  

 

 
3. CONTROL LAW DESIGN 

 
In this section, a nonlinear control law for 

suppressing the sway angle of the suspended load and 
controlling the trolley position and the hoisting rope 
length is derived. The novelty of this law lies in 
improving the transient performance and also 
guaranteeing the asymptotic stability of the trolley 
position and hoisting rope length tracking errors, 
irrespective of the variations of the rope length. The 
information on the sway angle, sway angular velocity, 
trolley displacement and velocity, hoisting rope length 
and its time rate of change is assumed to be known. 
Let the tracking errors of the trolley position and the 
hoisting rope length be defined by 

[ ] ,T
d e ee r r x l= − =    (15) 

where [ ] ,T
d d dr x l=  ,e dx x x= −  ,e dl l l= −  and 

dx  and dl  are the desired trolley position and 
hoisting rope length, respectively.  

To improve the transient performance in positioning 
and load hoisting control, and sway suppression, the 
following new control law is proposed: 
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 1 ,
0d p d
f

F P r K e K e W−   
= ⋅ − − − +  

  
 (16) 

where 2 ,pK K=  2 ,dK K=  diag( ,  ),x lK k k=  

 ( / 2 ) cos ,df f x k a lθθ θ θ= − + −   (17) 

 2 ,p

p

m l
a

m l I
=

+
    (18) 

 
2 *2 ( )sin ( cos )

( 2 ),

x e x ef k x k x c c a

kθ

θ θ

κ θ θ

= + + −

⋅ +
 (19) 

where ,xk ,lk ,kθ
*,c and c are positive constants. 

Here, 
*c satisfies 

* 2: /( )p pc c m gl m l I> = +  and ( )xκ  
is defined as 

sgn( )     if   ( )
( )

sin( )  if   ( ),
( ) 2

x x t
x x x t

t

γ
κ π γ

γ

 ≥
= 

⋅ <


       (20a) 

where sgn( )x  is defined such that sgn( ) 1x =  for 
0,x >  sgn( ) 1x = −  for 0,x <  and sgn( ) 0x =  for 
0,x =  ( ) 0tγ >  is given by 

 t
1    if   0

e
( )

1   if   ,
e f

f

fT

t T

t
t T

η

η

α β
γ

α β

 ≤ ≤ += 
 >
 +

        (20b) 

and ,α  ,β  ,η  fT  are positive constants such that 
0 ( ) 1tγ ε< ≤ <<  for a positive constant ε  and 

( )xκ  converges to sgn( ).x  
Theorem 1: Consider the plant (11) and (14) with 
(0) 2θ π<  and (0) 0,l >  and the control law given 

by (16)-(19). Then, the tracking errors of the trolley 
position and hoisting rope length ( ex  and el ) and the 
swing angle θ  converge to zero asymptotically. 

Proof: By substituting (16) into (14) and 
rearranging the terms, the position and load hoisting 
error dynamics become 

 .
0d p
f

e K e K e
 

+ + =  
 

   (21) 

Rewriting of (21) and the θ -dynamics in (11) 
become 

 22 ,e x e x ex k x k x f+ + =    (22) 

 22 0,e l e l el k l k l+ + =    (23) 

 
2( ) cos  2

sin 0.
p p p

p

m l I m l x m ll

m gl

θ θ θ

θ

+ + +

+ =
  (24) 

First, a positive definite function for the x- and l-
dynamics is considered as follows: 

 1 ( ) ( ) 2.TV e Ke e Ke= + +    (25) 

Then, the time derivative of (25) using (22)-(23) 
becomes 

 

1

2 2

( ) ( )

    ( ) ( )
0

   ( ) ( ) ( )

    ( ) ( )
( ) .

T

T

T
e x e

x e x e l e l e

e x e

V e Ke e Ke

f
e Ke K e Ke

e Ke K e Ke x k x f

k x k x k l k l
x k x f

= + +

  
= + − + +  

  

= − + + + +

= − + − +

+ +

 (26) 

Also, using (22) and (17), the sway dynamics (24) are 
expressed as 

1 2 ,θ θ=          (27a) 
2

2 1 1

2

sin cos ( 2 )
,

x e x ec a f k x k x
kθ

θ θ θ
θ

= − − − −

−
  (27b) 

where 1 ,θ θ=  2 ,θ θ=  and 2 ( ).p pc m gl m l I= +  
A Lyapunov function candidate for system (27a,b) 

(i.e., a positive definite function for the sway 
dynamics) is considered as follows: 

2 2 *
2 2 1 2 11 2 1 2 ( ) 2 (1 cos ).V k cθθ θ θ θ= ⋅ + ⋅ + + −   (28) 

Then, using (27b) and (19), the time derivative of (28) 
is given by 

*
2 2 2 1 2 1 2 1 1

*
1 2 2 1 2 2 1 2

*
1 2 2 1 2 1 2 1

2
1 2 1

1 2 2
* 2

1 1 2

( )( ) 2 sin

 ( 2 ) ( ) 2 sin

( ) 2 sin ( 2 ) sin

( 2 ) cos ( 2 )
( 2 )

 sin (

x e x e

V k k c

k k k c

k k c k c

k a f k x k x
k k

k c k c

θ θ

θ θ θ

θ θ θ

θ

θ θ

θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

θ θ θ
θ θ θ

θ θ θ

= + + + + ⋅

= + + + + ⋅

= + + ⋅ − +

− + ⋅ − −

− +

= − − + *
1 2 1

2
1 1 2

* 2
1 1 2 1 1 2

2 *
1 1

* 2
1 1 2 1 1 2

2 *

)( 2 )sin

cos ( 2 )( 2 )

 sin cos ( 2 )

{2 ( )sin /( cos ) }

sin cos ( 2 )

2 ( )sin ( cos )

{1 

x e x e

x e x e

x e x e

c k

a k f k x k x

k c k a k

k x k x c c a f

k c k a k

k x k x c c a

θ

θ

θ θ θ

θ θ θ

θ θ θ

θ θ θ

θ θ θ θ θ θ

θ θ

θ θ θ θ θ θ

θ θ

κ

− +

− + − −

= − − + +

× + + − −

≤ − − + +

× + + −

× − ( 2 )}.kθθ θ+
(29) 
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Then, (20a) and (20b) can be used to show that θ  
and θ  asymptotically converge to the set {( , ) :θ θ  

2 ( )}k tθθ θ γ+ ≤  which becomes sufficiently small 

as time goes on, due to the property of ( )tγ  in (20b). 
Here, note that 1 1sinθ θ  in (29) is always positive if 

12 2.π θ π− < <  Then, we can see that as (29) 

becomes * 2
2 1 1 2sinV k c kθ θθ θ θ ε≤ − − + for sufficiently 

small constant 0ε >  as time goes on, 1 0θ →  and 

2 0θ →  as t →∞  accordingly. That is, as ,t →∞  
the sway angle is suppressed (i.e., 0θ → ) and 
(27a,b) is asymptotic stable. 

As , 0,θ θ →  f  approaches zero (see Remark 2). 
Then, the third term in the right hand side of (26) 
approaches to zero and (26) is given as follows: 

 

2 2
1

2 2

1

( ) ( )

min( , ){( ) ( ) }
2min( , ) .

x e x e l e l e

x l e x e e l e

x l

V k x k x k l k l

k k x k x l k l
k k V

= − + − +

≤ − + + +

≤ −

 (30) 

Hence, e and e  in (25) tends to zero exponentially. 
Since ex  and el  are considered as states and θ  as 
input, the unforced system (i.e., 0)f = is exponentially 
stable. With this reason, (22) and (23) is input-to-state 
stable. Consequently, the closed-loop system with the 
proposed control law is asymptotically stable ([19], p. 
174).                                       

Remark 1: Whereas the anti-swing control law 
proposed in [23] guarantees the asymptotic stability 
only in the case of constant-speed hoisting zone, the 
proposed controller in this paper guarantees the 
asymptotic stability in any varying-speed hoisting 
zone.  

Remark 2: The crane control problem is a 
regulation problem, not a tracking problem. In general, 
the target trolley position dx  may not be constant. 
But, for loading/unloading purpose, dx  can be 
considered as constant and hence dx  is zero. For this 
reason, it can be concluded that f  converges to zero 
(or becomes sufficiently small) as θ  and θ  
converge to zero (or become sufficiently small). The 
function ( )xκ  in (19) makes the control input f  
with a signum function smoother and renders the 
boundary layer of the swing surface to vanish, so that 
the stability of the system is retained. Another notable 
contribution is that Theorem 1 does not require 

0,d dl l= =  as was done in [23], for the convergence 
of ,ex  ,el  and θ  to zero, and thus the result in this 
paper is more general.  

Remark 3: We used the feedback of the sway angle 

and the sway angular rate to reduce the payload 
swing; see (17). In case that only the sway angle is 
measured, the sway angular rate can be estimated by 
implementing an appropriate observer; see [21]. It is 
remarked that the inclusion of the sway angular rate 
term makes the control system robust to the change of 
payload weight and the existence of an initial swing 
angle. 

 
4. SIMULATION AND EXPERIMENT 

 
Now, computer simulations and experimental 

results of the proposed feedback linearization control 
law in Section 3 are discussed. The system parameters 
of the pilot crane in Fig. 2 are  

pm =0.73kg, tm =1.06kg, lm =0.5kg, and 
 I = 0.005 kgm2.    (31) 

For comparison purpose, the same values are used in 
both simulation and experiment.  

The 3-D crane used in experiment is an InTeCo 
3DCrane. As shown in Fig. 2, it consists of a trolley, a 
girder and a payload hanging at the end of a string 
whose top end is hinged by a pulley, which is again 
mounted on the trolley. The trolley is capable of 
rectilinear motions along the girder in the X-direction. 
The 3DCrane is driven by three DC motors. It has five 
encoders to measure five variables; the trolley and 
girder displacements, the string length, and the two 
swing angles of the payload. All five encoders are 
physically identical. The trolley and hoist motors are 
driven by a power interface board, which amplify the 
signals from PC to DC motors and transmit the pulse 
signals of the encoder after converting them to 16-bit 
digital signals. The PC communicates with the power 
interface board via an internally equipped RT-DAC 

 

 

Fig. 2. The 3D pilot crane used in experiment. 
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multi-purpose digital I/O board. Since we are focusing 
on controlling the sway motion during loading and 
unloading, we consider only the trolley motion, not 
the girder motion. 

The sampling time was 0.01 sec. The initial 
displacement of the trolley and the initial length of the 
rope were set to 0.2 m, respectively, whereas their 
target values were set to 1.0 m, respectively. Fig. 3 
compares the sway angles of the load with (i.e., 

1,xk =  1,lk =  6,kθ =  * 14,c =  0.5,α =  0.5,β =  
0.5,η =  10fT = ) and without control, that is, f in 

(16) was set to zero. It is seen that, without control, 
almost the same magnitude of the sway motion 
remains after the trolley reaches its target position. 

Fig. 4 compares the control performance of four 
different sets of control gains. As seen in Fig. 4(a), the 
transference time of the trolley reduces as the gain 

xk  increases (i.e., if the trolley positioning problem 
is seen as a regulation problem, the rise time to the 
trolley target position improves as xk  increases). On 
the other hand, as seen in Fig. 4(b), the rope length 
control improves as the gain lk  increases.  

However, as xk  increases, the sway angle gets 
bigger, as seen in Fig. 4(c). The best sway control, 
among these four cases, is achieved when 1,xk =  

1,lk =  and 6.kθ =  These results could have been 
expected because xk  and lk  were the two 
weighting factors on ex  and el  in (26), respectively, 
and the Lyapunov function candidates 1V  and 2V  
were designed independently. These effects can be 
strategically utilized by separating the loading and 
unloading cycle into two regions, that is, i) a quick 
transference region and ii) a sway suppression and 
rope length adjustment region. 

Fig. 5 illustrates the suppression of impulse 
disturbances to the load of -2 N at 3 sec and +3 N at 6 
sec, respectively, where negative sign means against 
the trolley movement. It is seen that such disturbances 
brought up instantaneous increases of the sway angle, 
but the increased sway angle died out immediately 
because the control law was made in such a way that 
the time derivative of the Lyapunov function was 

negative definite. 
Fig. 6 compares the control performance of the 

proposed controller with that of [23], in which the 
convergence pattern looks similar but an improved 
performance of the proposed control law is 
demonstrated. This is because the trolley position and 
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Fig. 3. Comparison of the sway angles with and
without control, that is, f = 0 in (16). 
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(b) Rope length. 
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(c) Sway angle. 
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(d) Control force for trolley. 
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Fig. 4. Control performance comparison of four sets 

of control gains: simulation results. 



A Feedback Linearization Control of Container Cranes: Varying Rope Length                  385 
 

rope length errors decrease exponentially with the 
proposed control law. 

Finally, Fig. 7 verifies the correctness of the 
simulation results through experimentation. As seen in 
Fig. 7(a)-(c), the closeness between simulation and 
experimental results are first demonstrated. The 
disturbance in simulation was given in the form of an 
impulse, i.e., -2 N and +3 N at 3 and 6 seconds, 
respectively. On the other hand, that in experiment 
was given in the form of an impact at 3 and 6 seconds, 
hitting the load with a stick. The exact realization of 

the disturbance in experiment may not have been done. 
Except such an instantaneous disturbance, all other 
types of disturbance were hardly feasible. However, it 
can be said that the sway suppression capability of the 
proposed controller in the presence of disturbance has 
been demonstrated experimentally. Through both 
simulation and experiment, the effectiveness of the 
proposed controller has been firmly demonstrated. 

Remark 4: If the rope length is l, the natural 
frequency of a sway motion is given by / .n g lω =  
If the length of the hoist rope in the pilot crane is 
reduced by 1/ ,κ  where κ  is the scaling factor, it 
will not yield the same natural frequency because the 
gravitational acceleration g cannot be reduced by the 
factor of κ . Assuming that the rope lengths of the 
pilot and real cranes are 1 m and 40 m, respectively, 
κ =40. With the rope length reduced by ,κ  the sway 
frequency increases by .κ  If following the work of 
[21], tω  can be maintained constant. Hence, if the 
velocity profile in the real crane is ( ),v t  the profile 

in the pilot crane has to be modified to ( )v t / .κ  
Also, if the target error range of the load in the real 
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Fig. 5. Suppression of the disturbances of -2 N at 3 
sec and +3 N at 6 sec, respectively ( xk = 1, 

lk = 1, kθ = 6). 

 

(a) Trolley position. 
 

 

(b) Rope length. 
 

 

(c) Sway angle. 

Fig. 6. Comparison of the proposed control law with
the one in [23]: simulation results. 

 

 

(a) Trolley position. 

(b) Rope length. 

 

(c) Sway angle. 

Fig. 7. Comparison of simulation and experimental 
results. 

 



386 Hahn Park, Dongkyoung Chwa, and Keum-Shik Hong 

crane is ± 30 mm, then that in the pilot crane should 
be ±30/ κ  mm. However, unfortunately, since the 
used pilot crane can not provide torque control, that is, 
the exact performance of the control law (17) cannot 
be verified, it was used only for relative-comparison 
purpose.  

 
5. CONCLUSIONS 

 
In this paper, a nonlinear control law for container 

cranes with load hoisting using the feedback 
linearization technique and the decoupling strategy of 
θ -dynamics from ( , )x l -dynamics was investigated. 
Even though the feedback linearization method has a 
weak point in handling model uncertainty in general, 
it was proven effective in compensating a large 
nonlinearity and known variations, for instance, the 
rope length change in our case. Simulations and 
experimental results revealed that the proposed 
nonlinear controller could achieve the position control 
of the trolley and the quick swing suppression of the 
payload under the change of rope length. An extension 
of the proposed controller to a 3-D overhead crane 
with load hoisting can be pursued as a future work. 
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