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ABSTRACT: A Matlab-FEM code has been developed for deformation analysis of sails as a MSc final 

project. Sails are modelled as isotropic homogeneous membranes reinforced with cables. The problem, fully 

non-linear, is resolved by assembling the global stiffness matrix of a mesh of membrane and cable elements 

in the Matlab™ environment to get an N-equations N-unknowns system. The solution is found with a Quasi-

Newton solver. Validation has been performed by comparing numerical results obtained from the developed 

code with analytical solutions of geometrically simple cases and with experimental data from tests carried 

out in the DINAV Ship Structures laboratory. A full Fluid Structure Interaction (FSI) analysis of a main sail 

has been carried out coupling the code with an aerodynamics panel code developed as another MSc final 

project (Vernengo, 2008). The result is in accordance with the physics of the phenomena and engineering 

judgment. 

1 INTRODUCTION 

In recent years technological innovations have 

introduced large improvements in sail design and 

construction. The work of sail-makers is more and 

more becoming a high-tech job in collaboration with 

skilled aerodynamicists and material scientists, 

especially when dealing with the most competitive 

sailing teams. Competitions like America’s Cup or 

Volvo Ocean Race are the best fields to improve 

optimisation processes. From those fields, studies 

have been developed widely and it’s often possible 

to see high-tech sails even on cruising boats used for 

local yacht club regattas. 

Furthermore, kites are nowadays becoming very 

popular, for both sport and as ships’ auxiliary 

propulsion. Implementing this technology, a 

significant decrease (10-35%) on average annual 

fuel cost is claimed (www.skysails.info). This 

system seems to gain success and many articles can 

be found in open literature. Studies are ongoing into 

wind turbines, demonstrating that their efficiency is 

increased by the kite’s ability to fly at high altitudes, 

not subjected to any wind gradient 

(www.kitegen.com). 

This kind of study is very challenging due to the 

large number of different interactions. Sails are in 

fact a typical example of Fluid-Structure Interaction 

(FSI) and need very different engineering skills to be 

merged. 

As a matter of fact, pressures generated by sails 

depend on the sail’s equilibrium shape. The 

equilibrium shape is a function of the applied load 

(sum of pre-loads and aerodynamic loads), structural 

stiffness and boundary conditions, as for example 

battens and rigging. 

The Finite Element (FE) tool described in this 

paper calculates the deformation of a sail loaded 

with a generic pressure load. The definition of loads 

has to be done by an external aerodynamic code 

analysing the wind flow over the deformed geometry 

of the sail. 

2 STRUCTURAL METHOD 

The method adopted for the sail-deformation 

calculation is the development of a finite difference 

code for 2-D beams used for teaching purposes 

(Carassale, 2007). Elements have been modified and 

are now 3D triangular isotropic homogeneous 

membranes and cable elements. Even if the 

assumptions adopted for this model are rather 

approximate, they have been considered acceptable 



as the starting point for future developments. On the 

other hand, cables can supply the lack of accuracy in 

the orthotropic materials and structural behaviour 

modelling. Actually, advanced sail-makers are using 

specific tools for sail design (e.g. Membrain - 

www.northsails.com , Relax - www.peterheppel.com 

, SA Evolution - www.smar-azure.com, SailFlex - 

www.yru-kiel.de) and the need to get more accurate 

results is represented in a continuous development of 

such codes. However, no specifically developed 

codes are available in open literature as existing 

ones are considered commercially sensitive. 

In the past, various papers have been presented on 

the modelling of sail structural behaviour, but often 

sails have been discretised with cables or beam 

systems, i.e. mono-dimensional elements (Hauville, 

2004; Fantini, 2004). However, membrane structural 

behaviour has been studied for different purposes 

and in other engineering fields. 

After a rather comprehensive literature review on 

the definition of membrane elements for FE codes, 

the elements implemented in the present work have 

been derived from the ones originally defined by Li 

and Chan (2004). In their article they further 

developed previous works by Tabarrok and Qin 

(1992) and Levy et al. (2004). Elements stiffness 

matrices are explicitly expressed in terms of 

geometric global coordinates of the nodes of the 

elements and of the material properties, so they are 

very straightforward to implement in a self-

developed FE code. 

 
Figure 1. Element geometrical definition. 
 

The basis of the FE theory is the Principle of Virtual 

Works (PVW), discretised and expressed in matrix 

form. Li and Chan’s paper proposes an element 

stiffness matrix composed by an elastic stiffness 

matrix (linear) plus a geometric stiffness matrix 

(nonlinear): 

GE KKK +=                                      (1) 

where K =Global Stiffness Matrix, 
EK = Elastic 

Stiffness Matrix,  
GK = Geometric Stiffness Matrix. 

Physically, the stiffness matrix expresses a 

relationship between external applied loads and 

nodal displacements caused by applied loads and is a 

linear operator. For large displacement analysis, the 

problem becomes non-linear since the structure’s 

stiffness (necessary to calculate displacements) is 

not defined a priori but it has to be calculated as a 

function of nodal displacements. The problem is 

generally solved with an iterative procedure. 

For the implemented elements the elastic stiffness 

matrix is defined as: 

GN

T
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T

GE TTDTTK ⋅⋅⋅⋅⋅⋅= tA                    (2) 

where ijl0  are the length of the undeformed element 

sides and tA ⋅  is the undeformed element volume. 

Also, with reference to Fig. 1: 
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The geometric stiffness matrix is defined as: 
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While for cable elements: 
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(5)where: T is the cable tension. 



Once both element’s stiffness matrices are 

known, it is possible to assemble the global stiffness 

matrix [ ]GLOB
K as the sum of EK  and GK , which is 

now able to consider both elements contributions. 

Assembly is undertaken with proper Kronecker’s 

tensors, built up in order to position nodal stiffness 

values in the correct position of the global stiffness 

matrix as follows:  
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where: Oi is the element’s Kronecker tensor.  

Once the global stiffness matrix [ ]GLOB
K  is 

evaluated, it is possible to extract the stiffness matrix 

of free nodes 
LLK . This allows the definition of an 

N-equations N-unknowns system to be solved with a 

Quasi-Newton solver which is able to minimise the 

first term of the following equation: 

0=−⋅ LLLL PuK                                     (7) 

where: 
LLK = free nodes stiffness matrix; 

Lu = free 

nodes displacement vector; and 
LP = applied loads 

on free nodes vector.  

Three non-linearities are implemented in the 

Code: 

NL1_ The Geometric Stiffness Matrix 
GK  is non-

linear, since it is defined as a function of the 

element’s nodal displacements.  

NL2_ is due to large displacements: loads (defined 

as discretised pressure load, i.e. force on 

nodes) have to be rotated in order to remain 

perpendicular to the deformed membrane. 

NL3_ Material behaviour is non-linear, since 

membranes and cables are not reacting to 

compressive loads. In order to calculate the 

geometric stiffness matrix, when calculated 

tensions are negative they will be considered 

equal to zero in the iteration step and in the 

subsequent ones. 

As shown in Fig. 2, the calculation is stabilised 

with a relaxation routine, which is able to smoothen 

numerical instabilities affecting the calculation 

during iterations on the geometric stiffness matrix. 

The relaxation is simply obtained by averaging the 

increase of nodal displacements at each step i by: 
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where: ( )iu = Nodal displacements at i-th iteration 

In order to stabilise numerical results it has been 

observed that the convergence curve (assumed as the 

norm of nodal displacements sum) oscillates rather 

symmetrically over the final result (Fig. 3). The 

convergence has been forced imposing calculated 

displacements on the i-th iteration as an average 

between displacements calculated on the i-th and (i-

1)-th iteration. 
 

 
Figure 2. The flow chart of the calculation 

 

 
Figure 3. Convergence behaviour 

3 ANALYTICAL COMPARISON 

Code validation has been performed first 

comparing analytical results with numerical results. 

Later on, an experimental validation has been 

performed. 

The first analysis regards a holed membrane in 

tension. The analytical results are well known in 

terms of displacements and stresses and the stress 

concentration factor is 3.0 at hole’s quadrants. 

Analysis has been performed using three different 

meshes, adapting element size around the hole. A 

rather significant mesh-sensivity was experienced, 

but results are acceptable once the mesh is properly 

refined according to usual engineering judgment. 

In the test case, the membrane is 16mm wide and 

1mm thick. It is loaded with 17 concentrated loads 



of 100N each. The material Young Modulus is 

1000N/mm
2
.  

Therefore far-field stresses will be 
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Figure 4. Adopted mesh and results in term of tension stresses 

 

Numerical analysis gives displacements of about 

1.64mm and the error is approximately 3%. 

Calculated far-field stress is about 105.9 N/mm
2
 

with an error of approximately 0.3%. Neglecting 

some numerical residuals, the stress concentration 

factor is 2.9 at hole’s quadrants in tension and the 

error is approximately 3%. 

Instability of elements in compressed areas of the 

hole is also noted (Fig. 5). 

 

 
Figure 5.  Zoom on the hole and principal stresses 

 

Such results can be explained bearing in mind 

that in the code no model for wrinkling has been 

included. This assumption has been made in order to 

simplify the code in a first step of its development. 

On the other hand in the future a wrinkling model 

will be included in order to increase the accuracy of 

the calculation. In fact, as it is possible to see in Fig. 

6, wrinkling can be significant in membrane 

deformation. In the literature many interesting 

references can be found, both in theoretical papers 

(Stanuszek, 2003; Lee, 2006; Diaby, 2006) and in 

some sail analysis devoted papers (Heppel, 2002). 

 
Figure 6. Wrinkling test 

 

Without a wrinkling model able to deal with out-of-

plane deformations, elements at the upper and lower 

quadrant of the hole are compressed but unable to 

react. This happens since the definition of the 

element’s stiffness matrix does not deal with 

negative stresses (NL3). Therefore, compressed 

elements are “collapsed” in the plane and this can 

cause a large nodal displacement, as shown by the 

test of Fig. 6.  

In the following, a sphere loaded with internal 

pressure has been analysed. The analytical solution 

is known and it is reported in the following. The 

increase in sphere-radius can be calculated as:    
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Due to the sphere symmetry, circumferential and 

tangential stresses will be equal and calculated as:  
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In the test case it has been assumed: 
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Therefore expected results will be: 
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As far as both deformation and stress is 

concerned, the numerical calculation gives rather 

accurate results: radius R’ is in fact 5.97mm. The 

error is approximately 0.5%. 

 

 
Figure 7. Nodal displacements 



The stress value oscillates between  
2

360350
mm

N
−  

with the corresponding error being about 2.5%. 

 

 
Figure 8. Stress values 

 

The error value increases (up to 5%) on the 

clamped node at the base of the sphere (Fig. 8). 

Even if the sphere is not loaded by any own-weight 

load, the symmetry of the stress increase in this zone 

is noticeable. Actually, the explanation is that some 

numerical residuals would have brought the 

structure to a deformation which is not exactly 

symmetrical. The following reaction is supported by 

the only clamped node at the base, thus correcting 

the error caused by residuals. This causes a small 

distortion in the stress field. In fact, the value of the 

boundary reaction is 326 N, i.e. 4% of total load. 

This value is in agreement with the error already 

found for stresses. 

Thereafter, a cylinder has been loaded with 

internal pressure as follows: mmR 5.2= ; mmt 1= ; 

2100
mm

NP = ; 21000
mm

NE =                   

 

From the analytical solution it was found that: 
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Numerical results obtained are again acceptable, 

in fact radial displacements are about 0.562mm. The 

error is 4%. 
 

 
Figure 8.  Nodal displacements 

 

Calculated stress is 
2245

mm
N , the error is 2%. 

 
Figure 9.  Principal stresses 

 

4 EXPERIMENTAL MEASUREMENTS  

Validation is continued comparing numerical data 

with experimental measurements. Two different 

experimental campaigns have been carried out. The 

first one was intended to measure the material’s 

mechanical properties to be used in the calculation. 

The second one was intended to measure 

deformation of a flat membrane loaded with constant 

pressure. 

Some tension tests have been carried out in order 

to find the stress-strain curve, i.e. the Young 

Modulus for 5 different sail materials. The weight of 

the sail fabric is generally measured in “sail maker’s 

ounces” (smOz) where 1smOz = 43.3 2
m

g
. For 

fibre-reinforced material, the currently adopted unit 

is the Denier per Inch (Dpi). This is the number of 

fibres per every inch in the warp direction. A second 

value is sometimes reported for the fill direction. In 

the present case, tested materials are: Dacron (7.5 

smOz, 0° and 90°); Spinnaker’s Nylon (1.5 smOz, 

0° and 90°); Mylar and Kevlar (19 Dpi). The latter 

has been assumed isotropic.  

 

 
Figure 10.  Traction tests 

 

Measurements have been performed with 

laboratory machines for tension tests, able to obtain 

the force-displacement curve (Fig. 10).  

From those tests, the Young Modulus of fabrics 

has been estimated considering the linear part of the 

plot and disregarding the initial and final parts of the 

curves, as reported in Fig. 11 and Table 1.  

 



 
Figure 11.  Force-Displacement curves 

 
Table 1.  Material properties 

E    2
mmN  

Dacron (ortotropic) tested @ 0° 1667 

Dacron (ortotropic) tested @ 90° 1712 

Spinnaker (ortotropic) tested @ 0° 294 

Spinnaker (ortotropic) tested @ 90° 458 

Kevlar (isotropic) 1935 

 

In order to test the accuracy of the code, the 

deformation of an initially flat Dacron membrane 

loaded with constant pressure has been measured. 

This test has been designed in order to assess the 

code’s behaviour in a limit case, where the expected 

error is rather large. In fact, since the initial structure 

is flat, the elastic stiffness matrix is singular. The 

accuracy of the solution for very small deformations 

can therefore be expected not to be very accurate. 

On the other hand, the curvature of the structure is 

dramatically changing, from zero to larger values. 

 

 
Figure 12.  Box for deformation test 

 

A wooden box has been built and a Dacron 

membrane has been fixed on the top (Fig. 12). The 

box has been made air-proof by a gasket and a 

special paper on the edges, normally used for the 

construction of church organs. The Dacron fabric 

has been fitted onto the box with fibres oriented 

along the box directions. 

Compressed air has been pumped into the box 

and the pressure has been measured by water 

columns, providing very accurate measurements 

(Fig. 13) in the range of interest (11 to 88 OcmH 2  

i.e. 10 – 80 mbar). 

 

 
Figure 13.  Measurement System 

 

A laser device, able to measure distances, has 

been used to obtain the fabric deformations. 

Measurements have been carried out for 6 pressures 

in the range of interest. For some pressure values, 

deformation of 6 box’s sections has been measured 

from the centre of the box. The data oscillations 

reported in Fig. 14 are probably due to noise 

(vibrations of the compressor, electromagnetic 

interferences on the measurement system, etc.). It 

has however been judged acceptable and have been 

smoothed by a 2
nd

 order polynomial interpolation. 

 

 
Figure 14.  Measured deformed sections 

 

Once the deformed shapes and material elastic 

properties were known, a comparison between 

numerical and experimental results was carried out. 

This was done for two sections (see Fig. 15) and for 

six different pressures in the range of interest. 

A 784 element mesh has been adopted (Fig. 15) 

and the FE deformed shape seems rather different 

compared to the experimentally deformed one, 

especially at midspan. The calculated shape doesn’t 

look smooth as in the experimental one, as the 



sections remain flat near the edges and suddenly 

bend in the centre. Also, caused by the low value of 

the initial curvature, vertical displacement of the 

nodes is magnified in the centre of the membrane, 

providing an important source of error. 

 

 

 
Figure 15.   Numerical results of box test 

 

In Fig. 16 (left) the comparison for the central 

section loaded with an 88cm water column (0.086 

bar) is reported. The error is maximum at 

membrane’s centre, i.e. in the most distant point 

from fixed edges and where curvature is smallest. 

 

 
Figure 16.  Measured vs computed results and error values 

 

In Fig. 17 the graph reports a response surface of 

the error for six different tested pressures at central 

section and at @0,25L section. Therefore Fig. 17 

reports the same values as Fig. 16 (right), but for 

many different tested pressures. This graph shows 

the error value is largest at the centre and it takes 

larger values for section @0,25L where final-

curvature is lower. The error does not show a strong 

dependency on applied pressure. 

It is worth pointing out that such error is not due 

to the Quasi-Newton solver converging to a local 

minimum. In fact, modifying the initial curvature of 

the membrane does not appear to be relevant for the 

final result. Similarly, the mesh refinement does not 

seem to influence the results: using an 1196 element 

mesh, finer in the central zone of the membrane, the 

error values decreases by about 1%. It is not easy to 

explain the origin of such an error, and in the future 

this subject will need more attention. 

 
Figure 17.  Error value for different pressures 

5 QUALITATIVE RESULTS  

In the following, some additional comparisons are 

reported for cases whose analytical solution is not 

known. Validation is based on qualitative judgment 

of results. A cylinder loaded with very high internal 

pressure is studied first. In the first iteration of the 

calculation, Loads are radial and deformation is 

consequently found to be radial: 
 

 
Figure 18.  First iteration of cylinder in high pressure 

 

Loads are rotated in subsequent iterations according 

to large displacement theory and the deformation 

shown in Fig. 19 seems to be consistent. Lateral 

edges are in fact rotated as shown: 

 

Figure 19.  Equilibrium shape of cylinder in high pressure 

 

Then, a spinnaker in sailing conditions has been 

analysed. The fabric has been loaded with a constant 

pressure equivalent to a 14 knots wind speed 

(3mbar). The Young's modulus is calculated as the 



average of the 2 measured values (Table 1, @0° and 

@90°) i.e. 375 N/mm
2
. In the “design shape” the sail 

is 6000 mm high, the chord is 3750 mm and the max 

camber is 1670 mm. Some cable elements have been 

assembled on the foot, leech and luff of the sail. The 

results can be considered globally consistent, but the 

uncertainty is rather high, especially in the area of 

clew and tack. In those zones the increase in fabric 

thickness, due to additional layers sewn as 

reinforcement, has not been taken into account. 

 

 
Figure 20.  Spinnaker’s design shape 

 

 
Figure 21.   Nodal horizontal displacements 

 

 
Figure 22.  Principal stresses on spinnaker 

 

Finally, a mainsail has been loaded with constant 

pressure equivalent to a 15 knots wind. Deformation 

seems to be consistent both in terms of nodal 

displacement and tension. It should be remarked that 

at this stage of the analysis the sail has not been pre-

loaded, thus explaining the low value of tension on 

the head of the sail:  

 

 
Figure 23.  Nodal displacement and principals stresses  

 

6 FLUID-STRUCTURE INTERACTIONS 

An aerodynamic method has been developed to 

estimate loads on sails in a parallel MSc final project 

(Vernengo, 2008). It consists of a Vortex Lattice 

Method, able to calculate the circulation field, i.e. 

the pressure over a sail subjected to a wind flow. As 

a potential code, its validity is limited “close hauled 

course”. The Fluid Structure Interaction (FSI) 

analysis has been carried up over a mainsail 12m 

high, with a chord of 5m, sailing upwind with a 

wind speed of 15 knots. 

Coupling has been performed as follows: once the 

initial sail geometry 0X  (design shape) is defined, 

the aerodynamic code calculates pressure 
0p  

assuming a rigid profile. Pressure values are then 

passed to the structural code (present work) which 

defines the deformed geometry 1X . The latter is 

introduced again in the aerodynamic code, in order 

to calculate new pressures 1p , used in turn to 

deform the initial design shape 
0X  and to calculate a 

new deformed geometry 
2X . It is worth noting that 

structural analysis is always performed for the same 

initial geometry 
0X , loaded by an updated pressure’s 

field. 
0X  is in fact the “design shape”, i.e. the sail 

shape as built by the sail maker. 

The procedure continues until achievement of a 

convergence criterion, based on the evaluation of the 

nodal displacement modulus, as in Fig. 26. In the 



present case, the sail was subjected to a parabolic 

wind profile, reaching a maximum velocity value of 

20kts. The wind velocity vector presents a linear 

twist from the sea surface to the mast head, where it 

reaches its maximum value (45°). Since the sail has 

a variable geometric twist, the angle of attack has 

locally variations along the mast, given by the 

combination of geometric and aerodynamic twist. 

From a structural point of view, the fabric is 

described as:  
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A very satisfactory convergence has been achieved 

in 13 iterations (error less than 1%):  
 

 
Figure 26.  FSI convergence 

 

 
Figure 27.  Aerodynamic Calculation 

 

In Fig. 27, the behaviour of the wake developed 

from the sail in the equilibrium configuration is 

shown, and in Fig. 28 the corresponding sail 

deformation, shown laterally, from top and from aft, 

rotated 90° clockwise. Nodal loads deriving from 

calculated pressures are represented by arrows. 

 
Figure 28.   Final deformed shape (color map of deflections) 

 

7 FUTURE DEVELOPMENT 

The developed FEM method adopts many 

assumptions, which have been accepted as a starting 

point for future development. 

Implemented elements are membranes and 

cables. In the future, battens will be included as a 

very important element for sail deformation analysis. 

In the present code, battens have been neglected 

since the implementation would require large 

programming effort but only offers small conceptual 

improvements. In fact, membranes and cables are 

both defined with three degrees of freedom at nodes, 

i.e. no bending strength. In order to include battens 

all nodes will have to pass from three to six degrees 

of freedom (DOF), thus modifying the architecture 

of the whole code. Moreover, the additional DOF 

should be coupled with membranes’ nodes which by 

definition do not have bending DOF. On the other 

hand, completing the code makes it possible to take 

into account the rigging, which has a large influence 

on sail deformation. 

The elements used are isotropic homogeneous 

membranes. In the future, an important development 

will be to implement some anisotropic elements with 

variable thickness, in order to simulate more 

accurately sail-making materials and the stiffened 

zones close to the sail's corners. Cable elements will 

be used also for the correct modelling of fibres 

included in the sail, as in modern sail materials (Fig. 

10). 

As described in Section 3, no wrinkling model 

has been included into the code, even if wrinkling is 

a quite important phenomenon in thin laminate 

analysis (Fig. 6). 

As the structural model gets closer to physical 

reality another experimental tests campaign will be 

necessary.  
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