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Résumé

Based on an original interpolation method we develop a beam �nite element formu-
lation on the Lie group SEp3q which relies on a mathematically rigorous framework and
provides compact notations. We work out the beam kinematics in the SE(3) context, the
beam deformation measure and obtain the expression of the internal forces using the
virtual work principle. The proposed formulation exhibits important features from both
the theoretical and numerical points of view. The approach leads to a natural coupling
of position and rotation variables and thus di�ers from classical Timoshenko/Cosserat
formulations. We highlight several important properties such as a constant deformation
measure over the element, an invariant tangent sti�ness matrix under of rigid motions
or the absence of shear locking.

INTRODUCTION

The fundamental relationships in structural mechanics involve quantities that are based
on position variables with respect to an inertial frame and its derivatives. For instance, the
potential energy in a gravitational �eld depends on the position, the kinetic energy depends
on the time derivative of the position, that is the velocity, and deformation energy depends
on the spatial derivatives of the position, namely the deformation gradient. In order to
describe particular bodies kinematic assumptions are made on the position of points of a
body. This can be conveniently made by introducing rotation variables which account for
some orientation. For example rotation variables can be used to describe the motion of a
rigid body [1] or of a cross-section of a beam [2]. In this article we use this kind of method
but notice that there are other methods which do not introduce any rotation �eld [3]. A
sound comparison can be found in [4]. The development of the equations of mechanics under
these assumptions leads in general to coupled di�erential equations that govern both the
rotation and the position variables. The rotations belong to a non-linear space of variables
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such that their handling in general is not trivial. Several methods have been explored to
deal with this such as the parametrization of rotation [1], the director vectors[5, 6] or the
Lie group methods[2, 7, 8, 9]. In this paper we consider Lie group methods. These methods
are based on the di�erential geometry of the non-linear con�guration space. The Lie group
R3 � SOp3q has been widely used for rigid body or beam formulations. Here, we consider
the Lie group SEp3q � R3�SOp3q which has been already applied to rigid body problems,
in particular in robotic applications [10].

In this paper we develop a straight beam �nite element formulation. In the �nite ele-
ment context a spatial discretization of the beam is introduced by an interpolation method
of nodal values in order to obtain a discrete problem from a variational principle. The re-
presentation of the rotations by interpolation of the nodal rotation variables is a non-trivial
issue due to the non-linearity of the con�guration space. For example, Cardona and Géradin
[11] and Simo [2] de�ned an interpolation method based on the increments of the rotations
and Cris�eld and Jelenic [12] proposed to interpolate the relative rotation matrix. In every
case, the positions and the rotations are interpolated separately since they are considered to
be fundamentally independent. In contrast, the SEp3q Lie group framework of this paper
allows to introduce a natural coupling of the position and the rotation variables thanks
to an exponential interpolation method and exhibits important theoretical and numerical
advantages. Let us mention that interpolation method in the SEp3q framework have been
addressed by [13] and [14] for motion interpolation of rigid bodies.

The paper is structured as follow. Firstly, some fundamentals about matrix Lie groups
are given in order to introduce SEp3q and the notations. Next, we consider the formulation
of a static beam �nite element. In particular, we work out the beam kinematics in the SEp3q
context, the beam deformation measure based on the proposed exponential interpolation
formula and obtain the expression of the internal forces using the virtual work principle.
Thirdly, we discuss some remarkable features of the approach in a few academic examples.
Finally, some conclusions and perspectives are presented.

FUNDAMENTALS ABOUT MATRIX LIE GROUPS

We introduce here only the necessary concepts required for our developments. For a
more general introduction to Lie groups see e.g. [10] or [15].

A group is a set of elements with a composition rule, that associates an element of the
group to two elements of the group : if q1, q2 P G, then q1 � q2 � q3 P G. In the present
case we consider matrix groups and the composition rule is the classical matrix product
written as q1q2 � q3. This composition rule has several properties as the existence of a
neutral element e (qe � eq � q), which is simply the identity matrix, and the existence of
an inverse (@q P G, D! q�1 : qq�1 � q�1q � e). It follows that the elements of such a matrix
group are square and invertible matrices. A matrix Lie group is a continuous matrix group
for which the composition rule and the inverse are smooth. Therefore a matrix Lie group is
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geometrically speaking a di�erentiable manifold, and di�erential geometry can be used to
perform operations on the group.

The composition operation can be seen as a particular map called the left translation
map

Lypqq : GÑ G, q Ñ yq (1)

The tangent space at q is a vector space and is denoted TqG. The notation δp
q means an
arbitrary in�nitesimal variation of the argument, and thus δq is an arbitrary element belon-
ging to TqG. Similarly, δpLypqqq belongs to TyqG, the tangent space at yq. The de�nition (1)
yields a relationship between the tangent spaces TqG and TyqG

δpLypqqq � L�pδqq � yδq (2)

where L� : TqG Ñ TyqG is an invertible linear map. The particular case y � q�1 leads to
an interesting fact : the tangent space of any q P G is related to the tangent space at the
identity element e through a linear map. The tangent space at the identity of a Lie group
is called the Lie algebra g. It is isomorphic to Rk through the invertible linear map�p
q : Rk Ñ g, x Ñ rx (3)

Using these notations in Eqn. (2), we obtain

δq � q�δq (4)

Notice the di�erence in the two following notations : �δq and δprqq. The former indicates an
in�nitesimal increment belonging to the Lie algebra, while the latter means the variation of
an element rq of the Lie algebra. Similarly, δq and δpqq stand for the associated expressions
in Rk of respectively the former and the latter notation. The derivative of q with respect
to any parameter s P R is written

dq

ds
� qru (5)

where ru is an element of the Lie algebra. Furthermore combining the derivative of Eqn. (4)
and the variation of ru yields a relationship that can be written in terms of vectors in Rk

δpuq �
dpδqq

ds
� puδq (6)

where p
 is a linear operator which maps a vector in Rk into a k � k matrix.
Eqn. (5) can be seen as a di�erential equation on the Lie group and its solution whenru does not depend on s is

qpsq � q0 exppsruq (7)

where q0 � qp0q and exp is the exponential operator which maps an element of the Lie
algebra to an element of the Lie group

exp : g Ñ G, rx Ñ expprxq (8)
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As the Lie algebra is isomorphic to Rk, the exponential map introduces a local parame-
trization of the Lie group around any q0 P G. Indeed, any q P G may be represented as a
function of rx P g using the exponential operator and the composition with q0 according to

q � q0 expprxq (9)

The exponential map has the series development in terms of the Lie algebra element

expprxq � 8̧

i�0

rxi

i!
(10)

By extension the notation exppxq is equivalent since the Lie algebra is isomorphic to Rk.
The comparison of the derivative with respect to s of Eqn. (9) with Eqn. (5) yields a linear
relationship from Rk to Rk

u � Tpxq
dx

ds
(11)

where Tpxq is called the tangent application of the exponential. Likewise we can write

δq � Tpxqδx (12)

The tangent application has a series expansion given by

Tpxq �
8̧

i�0

p�1qi
pxi

pi� 1q!
(13)

The inverse of the exponential map is called the logarithmic map and is de�ned as

logpqq : GÑ g, logpqq Ñ rx (14)

The series development of the logarithmic map is

logpqq �
8̧

i�1

p�1qi�1 pq � eqi

i
(15)

The Special Orthogonal group, SOp3q

The special orthogonal group, SOp3q, is a matrix Lie group that can be represented
by 3 � 3 orthogonal matrices R whose determinant is positive, that is detpRq � 1. In
particular, rotation matrices belong to SOp3q. The neutral element is I3�3 and the inverse
of an element R P SOp3q is RT P SOp3q, where 
T is the matrix transpose. The composition
rule is the matrix product. The Lie algebra, sop3q, is the space of skew-symmetric matrices
and is isomorphic to R3

Ω �

��Ω1

Ω2

Ω3

�� P R3 and rΩ �

�� 0 �Ω3 Ω2

Ω3 0 �Ω1

�Ω2 Ω1 0

�� P sop3q (16)
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In particular Eqn. (4) reads
δR � Rδ rΘ (17)

The p
 operator de�ned in Eqn. (6) is equivalent to r
. The exponential map has a compact
form given by Rodrigue's formula

expSOp3qpΩq � I3�3 �
sinp||Ω||q

||Ω||
rΩ�

1 � cosp||Ω||q

||Ω||2
rΩ2

(18)

The tangent application is given by

TSOp3qpΩq � I3�3 �
cosp||Ω||q � 1

||Ω||2
rΩ�

||Ω|| � sinp||Ω||q

||Ω||3
rΩ2

(19)

and the logarithmic map reads

logSOp3qpRq � rω �
θ

2 sin pθq
pR�RT q (20)

with θ � acos

�
1

2
ptracepRq � 1q



, |θ|   π. If R � I3�3, θ � 0 and rω � 03�3.

The Special Euclidean group, SEp3q

The matrix Lie group, SEp3q, is the group of homogeneous transformations H �
HpR,xq, i.e. containing a rotation R P SOp3q and a position vector x P R3. They can
be represented by 4 � 4 matrices

H �

�
R x

01�3 1

�
(21)

The neutral element is I4�4 and the inverse of H P SEp3q is H�1 P SEp3q given by
H�1 � HpRT ,�RTxq. The composition rule is the matrix product. The Lie algebra, sep3q,
is the space of 4 � 4 matrices such as Eqn. (22) and is isomorphic to R6

h �

�
hU

hΩ

�
P R6 and rh �

� �hΩ hU

01�3 0

�
P sep3q (22)

where �hΩ P sop3q and hU P R3. It is clear from the argument whether the tilde operator
denotes the mapping to sop3q or sep3q. The p
 operator de�ned in Eqn. (6) is

ph �

� �hΩ
rhU

03�3
�hΩ

�
(23)

Eqn. (4) reads

δH � Hδrh ô

�
δR δx

01�3 1

�
�

�
R x

01�3 1

� �
δ�hΩ δhU

01�3 1

�
(24)
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in which δhU � RT δx and δrhΩ � RT δR. Accordingly, one has δhT �
�
δhT

U δhT
Ω

�T
. The

exponential map is given by

expSEp3qphq �

�
expSOp3qphΩq AphΩqhU

03�1 1

�
(25)

where AphΩq �
°8

i�0
�hΩ

i
{pi� 1q! � TT

SOp3qphΩq. The tangent application is given by

TSEp3qphq �

�
TSOp3qphΩq A1phU ,hΩq �

1

2
rhU

03�3 TSOp3qphΩq

�
(26)

where A1phU ,hΩq has the explicit form

1 � β

2
rhU �

1 � α

||hΩ||2
prhU

rhΩ � rhΩ
rhU q �

α� β

||hΩ||2
phT

ΩhU qrhΩ

�
1

||hΩ||2

�
β

2
�

3

||hΩ||2
p1 � αq



phT

ΩhU qrhΩ
rhΩ (27)

with α � sinp||hΩ||q{||hΩ|| and β � 2p1 � cosp||hΩ||qq{||hΩ||
2. Notice that A1phU ,hΩq

vanishes if hΩ � 0. The logarithmic map reads

logSEp3qpHq �

� rω A�1pωqx
01�3 0

�
(28)

where rω � logSOp3qpRq.

BEAM FINITE ELEMENT FORMULATION

We address the formulation of a straight beam element on SEp3q using a �nite element
method based on an exponential interpolation. We develop �rst the kinematics, then the
deformation measure and �nally the internal forces from the virtual work principle. The
developments are particularized to the small deformation and linear elasticity context.

Beam kinematics

De�ning s as the parameter along the neutral axis of the element, x0psq is the position
vector of a point of the neutral axis in the reference con�guration (see Fig. 1). Thus, the
position of any point p of the beam in the reference con�guration can be written as

x0
pps, t, uq � x0psq � tit � uiu (29)

where it and iu are the principal axes of the cross-sections, and t and u are the coordinates
of these axes. We assume that the principal axes are constant along the neutral axis, which

6



Figure 1 � Beam in the reference con�guration, with point A at s � 0 and point B at
s � L.

means that the beam is initially straight.

We introduce the following notation

x0
pps, t, uq � x0psq �O0ypt, uq (30)

in which ypt, uq �
�
0 t u

�T
, O0 �

�
is it iu

�
and is is the unit vector along the neutral

axis. O0 is a rotation matrix that accounts for the orientation of the reference con�guration
of the beam with respect to the inertial frame. We assume that the cross-sections remain
undeformed, which means ypt, uq does not depend on the con�guration. By extension, the
position of a point p in the current con�guration can be written as

xpps, t, uq � xpsq �RpsqO0ypt, uq (31)

where xpsq is the position vector of the neutral axis and Rpsq characterizes the rotation of
the cross-sections.

In the SEp3q framework the neutral axis on the beam is described by a mapping R Ñ
SEp3q : s Ñ Hpsq. Accordingly, the neutral axis of the beam element is described by
Hpsq � HpI3�3,x

0psqq in the reference con�guration and Hpsq � HpRpsq,xpsqq in the
current con�guration. Based on Eqn. (31) the con�guration of the beam at any point p of
coordinates ps, t, uq is given by

Hpps, t, uq � Hpsq

�
I3�3 O0ypt, uq
01�3 1

�
� HpsqHypt, uq (32)

where Hpps, t, uq � HpRppsq,xpps, t, uqq and Rppsq � Rpsq since the beam kinematics
assumes that the cross-sections do not deform, namely they remain straight. Hence, Hypt, uq
does not depend on the con�guration but Hpsq does.
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Beam �nite element discretization

Similarly to linear space formulation, the discretization of the neutral axis of the beam
is introduced by an interpolation between two end nodes A at s � 0 and B at s � L with
a variable s P r0, Ls along the neutral axis and L is the length of the element. Using the
SEp3q framework, we introduce an interpolation based on the exponential formula

Hpsq � HA expSEp3qp
s

L
rhq (33)

where we de�ne the relative con�guration vector rh � logSEp3qpH
�1
A HBq that is invariant

under rigid body motions.
Notice that in the reference con�guration HA � HpI3�3,x

0
Aq and HB � HpI3�3,x

0
Bq

such that hU � x0
B � x0

A and hΩ � 03�1. Hence, the rotation �eld over the element in the
reference con�guration is Rpsq � I3�3. The con�guration of the beam is readily obtained
introducing Eqn. (33) into Eqn. (32).

Beam deformation measure

The deformations of the neutral axis are introduced from the deformation gradient of
the material frame on the neutral axis. Owing to the Lie group derivative, the deformation
gradient is a Lie algebra element denoted as rf P sep3q and is de�ned from

dHpsq

ds
� Hpsqrf (34)

f can be split into two contributions

f � f0 � ε (35)

where f0 refers to the values in the reference (undeformed) con�guration and ε accounts
for the deformations. Thus, ε vanishes in the reference con�guration. ε has the structure�
γT κT

�T
where γ and κ P R3. Considering Eqn. (33), the derivative of the interpolation

formula reads
dHpsq

ds
� Hpsq

�
Tp

s

L
rhqh
L


r� Hpsq
rh
L

(36)

and, comparing to Eqn. (34), we have f � h{L, fU � hU{L and fΩ � hΩ{L. Consequently,
the deformations are computed as

γ �
hU � h0

U

L
(37)

κ �
hΩ

L
(38)
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The deformations are thus constant over the length of the element. The deformations at
any point of the cross-section can be computed from the derivative with respect to s of
(32), which leads to

BHpps, t, uq

Bs
� Hpps, t, uqrfp (39)

in which rfp � H�1
y
rfHy, such that

fp �

�
fpU
fΩ

�
(40)

where fpU � fU��O0yfΩ � phU��O0yhΩq{L. According to Eq. (35), we can write fp � f0
p�εp

where εp �
�
γp κ

�
with γp � fpU � f0

pU � γ ��O0yκ � phU � h0
U ��O0yhΩq{L. Let us

now consider the metric tensors in order to build deformation tensors. g, the metric tensor
in the current con�guration, is de�ned as

gij � p
Bxpps, t, uq

Bi
qT
Bxpps, t, uq

Bj
(41)

with i, j � ts, t, uu. Using Eqn. (31) and Eqn. (40) to develop the derivatives, we have

Bxpps, t, uq

Bs
� RpsqfpU (42)

Bxpps, t, uq

Bt
� Rpsqit (43)

Bxpps, t, uq

Bu
� Rpsqiu (44)

The polar decomposition of the deformation gradient F � RU � R
�
fpU it iu

�
is straight-

forward. The metric tensor in the reference con�guration, denoted g0, has the same de�ni-
tion as g, but involves x0

p, f0
pU and Rpsq � I3�3. Notice that due to the assumption that

the cross-sections remain underformed, it and iu are identical in any con�guration.

The Green-Lagrange strain tensor GLij �
1

2
pgij�g0

ijq can now be computed. It involves

three kinds of terms

GLss �
1

2
pfTpU fpU � f0T

pU f0
pU q (45)

GLsi �
1

2
γT
p ii (46)

GLij � 0 (47)

with i, j � tt, uu. GLij vanish and GLsi takes into account the cross-section are undefor-
mable. Also, assuming that the deformations γ and κ are small, we can linearize the second
order term fTpU fpU in GLss (Eqn. (45)) as 2γT

p f0
pU � f0T

pU f0
pU and we obtain

GLss � γ
T
p f0

pU (48)
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It is remarkable that the Green-Lagrange strain tensor has a simple compact form and is
constant over the length of the element.

Internal Forces

The virtual work principle

δpWq �

»
V

S : δpGLq dV (49)

where S is the second Piola-Kirchho� stress tensor, allows to computed the internal forces of
the �nite element. The variation of the Green-Lagrange strain tensor, de�ned in Eqn. (45�
48), involves only the variation of γ and κ (through γp). Owing to the fact that γ and κ
are constant over the cross-section, we obtain

δW �

»
L
pδpγqTn� δpκqTmq ds (50)

where n and m are respectively the resulting forces and momenta over the cross-sections.
For a linear elastic material the constitutive law can be expressed as�

n
m

�
�

�
CU 03�3

03�3 CΩ

�
looooooomooooooon

�C

�
γ
κ

�
(51)

where C contains the usual sti�ness parameters. It depends on the constitutive law and is
obtained from an integration over the cross-section. For simple cases, it is diagonal and
CU � O0diagpEA,GAt, GAuqO

T
0 contains the axial and shear sti�nesses while CΩ �

O0diagpGJ,EIt, EIuqO
T
0 contains the torsional and bending sti�nesses. Notice that this

analysis of the constitutive law and of the shape of the cross-sections must be carried out
only once (in the reference con�guration) and the resulting constitutive relationship is valid
in any con�guration.

Using the de�nition (33) and (36), the variation of h and of f can be expressed in

terms of variation δhAB �
�
δhT

A δhT
B

�T
, the 12 � 1 virtual increment vector with δhA ��

δhT
UA δhT

AΩ

�T
, δhB �

�
δhT

UB δhT
BΩ

�T
as

δpεq � δp
h

L
q �

Pphq

L
δhAB (52)

in which Pphq �
�
�TSEp3qp�hq�1 TSEp3qphq

�1
�
is constant over the element. We can

now substitute the variation of the deformations with the virtual displacements (Eqn. (52))
in Eqn. (50) to obtain the internal forces fint

δW � δhT
ABPphqTC

�
γ
κ

�
� δhT

ABfintphq (53)
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The integration over the length can be performed exactly since all the terms are constant
over the length. The tangent sti�ness matrix is given by

KT �
1

L
PphqTCPphqloooooooomoooooooon

�Km

�
dPphqT

dhAB
C

�
Γ
κ

�
loooooooomoooooooon

�Kg

(54)

The so-called material part Km is obtained straightforwardly and the so-called geometric
part Kg can be neglected without impeding the numerical convergence in case of small
deformations.

We observe that the internal force and the tangent sti�ness matrix can be obtained by
exact integration over the element and that they are expressed in compact form. Moreover
P, γ and κ depend on HA and HB only through the relative con�guration vector h.
Consequently, fint and KT only depend on h and are thus invariant under rigid body
motions.

A FEW GOOD REASONS TO CONSIDER THE PROPOSED

FORMULATION

Several observations are now discussed in order to highlight some important features of
the proposed formulation.

Natural coupling and non-linear interpolations

Classical beam theories imply that position and the rotation variables are kinematically
coupled and the equations of mechanics developed under such kinematic assumptions yield
in general coupled di�erential equations that govern both the position and the rotation
variables. Consequently, the cross-sections rotate under a shear load and a bending moment
involves a displacement of the neutral axis. However, the position and the rotation variables
are treated as independent variables as well as their increments in usual �nite element
discretization schemes. It is not the case with the proposed formulation. Indeed, the position
of a point of the neutral axis computed via the interpolation formula (33) reads

xpsq � xA �RAAp
s

L
hΩq

s

L
hU (55)

where we observe that both the parts hU and hΩ of the relative con�guration vectors are
involved. It means that the coupling is deeper compared to usual formulations. Moreover,
the interpolation of the positions in Eqn. (55) is strongly non-linear due to the A matrix
from the exponential map. The interpolation of the rotations is also non-linear and reads

Rpsq � RA expp
s

L
rhΩq (56)
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which is identical to the formula used by Cris�eld and Jelenic [12].
According to Eqn. (55), the interpolation method allows to describe a non-linear dis-

placement �eld. In order to discuss the geometry of the displacement �eld, let us computed
the curvature k of the neutral axis using the classical formula

k � ||
dtpsq

ds
|| �

||rhΩhU ||

L
(57)

since
d

ds

�
tpsq



�

d

ds

�
dx

ds
||
dx

ds
||�1



� Rpsq

rhΩhU

L
(58)

where tpsq is the unit vector which is tangent to the curve. We observe that the curvature is a
constant over the element. Therefore the proposed interpolation method allows to represent
exactly an element of constant curvature thanks to the non-linear coupling between the
rotation part and the position part in Eqn. (55).

Absence of shear locking

The �nite element formulation of shear deformable beam, usually called Timoshenko
or Cosserat beam theory, with linear interpolation and exact integration exhibit a shear
locking phenomenon [1]. It can be discussed by considering the shear in a cantilever beam
submitted to a bending moment at its free end. Theoretically, the shear strain should
vanish since pure bending does not produce any shear force. Numerically, such an element
subjected to pure bending undergoes spurious shear deformations, the shear energy does
not vanish and a too sti� behaviour is observed. The problem can classically be removed
by a reduced integration method that �lters high order bending contribution to shear. The
proposed shear deformable beam �nite element turns out to be shear locking-free. This
can be observed by inspecting the tangent sti�ness matrix of one element in a straight
con�guration, that is hΩ � 0,

KT �
1

L

������
CU �CU

rhU
2 �CU �CU

rhU
2

rhUCU
2 CΩ �

rhUCU
rhU

4 �
rhUCU

2 �CΩ �
rhUCU

rhU
4

�CU
CU

rhU
2 CU

CU
rhU

2
rhUCU

2 �CΩ �
rhUCU

rhU
4 �

rhUCU
2 CΩ �

rhUCU
rhU

4

������ (59)

It appears that this matrix is similar to the one obtained by reduced integration of stan-
dard shear deformable beam formulation. In particular, there is no energy contribution of
the shear sti�ness when computing the energy in pure bending, that is 0.5BTKTB, where
B � r 0T

3�1 bT 0T
3�1 � bT s, b � r 0 bt bu sT . Hence the proposed formulation exhibits

naturally a shear locking-free behaviour for bending about a straight con�guration. Notice
that the residual bending �exibility correction can be applied to our formulation [1] such

12



that the exact solution of linear theory in displacement is recovered. When the beam ele-
ment is deformed, the terms in KT change, and a more involved discussion is necessary to
prove the absence of locking. This will be done in a further work.

We compared the proposed formulation to the one presented in [1] for the large displace-
ment case of a cantilever beam (see Fig. 2). A 5 m long beam is subjected to a vertical force
of 6e5 N at its free end. The properties of the beam are the cross-section area A � 4.8e� 3
m2, the bending sti�ness EI � 9.345e6 Nm2 and the shear sti�ness kGA � 3.213e8 Nm2.
The residual bending �exibility correction was taken into account. The reference solution
was computed with 600 elements. Both methods yield a very close result for such number of
elements. The comparison in Fig. 3 indicates that the proposed formulation leads to better
accuracy for small number of elements.

0 5

0

Figure 2 � Cantilever beam subjected to a vertical load at is free end.

10 1001 5 20 50

number of elements

relative error

Figure 3 � Relative error on the vertical displacement of the free end obtained with the
proposed formulation (blue circles) and with the reference (red squares).
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Exact displacement �eld in pure bending

Let us consider a planar cantilever beam submitted to a bending moment at its free
end. From strength of material, the solution is known to be a pure bending deformation
and a neutral axis of constant curvature. Here, we show that the proposed method provides
the geometrically exact result in pure bending. Let us consider that the beam is initially
aligned with the x�axis of the inertial frame in the reference con�guration and a moment
M is applied about the z�axis (see Fig. 4). The exact solution in pure bending reads

xpsq �
1

k
sinpskq (60)

ypsq �
1

k
p1 � cospskqq (61)

zpsq � 0 (62)

where k �M{pEIq is the curvature. Regarding our formulation, the reference con�guration
is characterized by hU � rL 0 0sT and hΩ � r0 0 0sT . In pure bending, the neutral
axis does not undergo any axial or shear deformations such that hU does not change,
however the neutral axis gets a curvature k in the xy�plan and we have hΩ � Lr0 0 ksT .
Introducing these in the non-linear interpolation �eld in Eqn. (55) turns out to yield the
exact solution given in Eqn. (60-62). The sin and cos functions come from the A operator
of the exponential.

0

0

Figure 4 � Cantilever beam subjected to a moment M at its free end. The reference
con�guration is initially horizontal and the deformed con�guration is a planar curve of
constant curvature.

In previous sections we discussed that the proposed formulation is shear locking-free and
that the non-linear formula for the interpolation of position was such that the element is
able the represent exactly a curve of constant curvature. Since the exact solution of the
planar cantilever beam problem is a curve of constant curvature the �nite element solution
matches it exactly even with one single element.
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Invariant tangent sti�ness matrix under rigid body motions

As mentioned earlier, the relative con�guration vector h in Eqn. (33) is invariant under
rigid body motions and so is the tangent sti�ness matrix KT in Eqn. (54). In order to reduce
computational costs in small deformation context, we suggest to keep the tangent sti�ness
matrix computed in the reference con�guration for a whole simulation. The number of
iterations might increase since we neglect the deformation contributions, but the iteration
matrix can be assembled and inverted only once for the whole simulation. In order to
illustrate the advantage, let us consider a sti� horizontal beam connected to a wall by a
small rotational sti�ness and subjected to a small vertical load at its free end. The position
at the wall is �xed. As a numerical example, the beam is made of steel, 1 m long and has a
square cross-section of area 0.01 m2, the rotation sti�ness is 100 N/radians and the vertical
load is 50 N. The beam is discretized with 5 elements. The solution is plotted in Fig. 5. The
beam undergoes large displacements but small deformations and the solution was obtained
using a constant tangent sti�ness matrix namely the tangent sti�ness matrix computed in
the reference con�guration.

If the deformations are not negligible a non-systematic update procedure of the tangent
sti�ness matrix could be considered to reduce computational costs.

0 1

0

Figure 5 � Large displacement and small deformation of a sti� beam connected to a wall
by a small rotational sti�ness and subjected to a small vertical load at its free end.

CONCLUSIONS AND PERSPECTIVES

We have presented a straight beam �nite element formulation on SEp3q based on a
non-linear interpolation method. The SEp3q framework allows well de�ned and compact
notations, and introduces a natural coupling between the position and the rotation variables.

The proposed beam �nite element formulation exhibits some important features. The
deformation terms are clearly separated from the global motion terms such that rigid body
motions do not come into play in the evaluation of the elastic forces and the tangent sti�ness
matrix. The interpolation formula leads to constant deformation measures over the length
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of the element. Consequently, the internal forces and the tangent sti�ness matrix can be
integrated exactly over the length of the element and are expressed in compact forms.

Some particular situations were discussed to present the advantages of the proposed
method. It was shown that the proposed method is naturally shear locking-free. We also
showed that the exact displacement �eld in case of pure bending can be obtained with one
single element thanks to the non-linear interpolation of the position �eld due to the SEp3q
framework.

The authors think that numerical evaluation procedures of the tangent sti�ness matrix
could be investigated in order to fully bene�t from the invariance under rigid body motions.
Dynamic formulation of the beam element could also bene�t much from the proposed
framework. It would also be interesting to extend the proposed method to curved beam
elements or plate and shell elements. Higher order polynomials in the argument of the
exponential map might also be investigated.

The �rst author would like to acknowledge the Belgian National Fund for Scienti�c
Research for its �nancial support (FRIA fellowship).
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