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Abstract

Various robust versions of the classical methods of power spectra estimation are con-
sidered. Their performance evaluation is studied in autoregressive models with contami-
nation. It is found out that the best robust estimates of power spectra are based on robust
highly efficient estimates of autocovariances. Several open problems for future research
are formulated.
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1. Introduction

Robust methods ensure high stability of statistical inference under uncontrolled deviations
from the assumed distribution model. Much less attention is devoted in the literature to robust
estimation of data spectra as compared to robust estimation of location, scale, regression
and covariance (Huber, 1981; Hampel, Ronchetti, Rousseeuw, and Stahel, 1986; Maronna,
Martin, and Yohai, 2006). However, it is necessary to study these problems due to their
both theoretical and practical importance (estimation of time series power spectra in various
applications, such as communication, geophysics, medicine, etc.), and also because of the
instability of classical methods of power spectra estimation in the presence of outliers in the
data (Kleiner, Martin, and Thomson, 1979).
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There are several classical approaches to estimation of the power spectra of time series, e.g.,
via the nonparametric periodogram and the Blackman-Tukey formula methods, as well as via
the parametric Yule-Walker and filter-based methods (Blackman and Tukey, 1958; Bloomfield,
1976; Brockwell and Davis, 1991). Thereafter, we may consider their various robust versions:
to the best of our knowledge, a first systematic study of them is made in the dissertation of
Bernhard Spangl (Spangl, 2008).

In what follows, we partially use the aforementioned study as a baseline, mostly follow the
classification of robust methods of power spectra estimation given in (Spangl, 2008), spec-
ify them and propose some new approaches with their comparative performance evaluation.
Basically, to obtain good robust estimates of power spectra, we use highly efficient robust
estimates of scale and correlation (Shevlyakov and Smirnov, 2011).

Our main goals are both to outline the existing approaches to robust estimation of power
spectra and to indicate open problems, so our paper is partially a review and partially a
program for a future research.

The remainder of the paper is as follows. In Section 2, classical methods of power spectra
estimation are briefly enlisted. In Section 3, robust modifications of classical approaches are
formulated. In Section 4, a few preliminary results on the comparative study of the perfor-
mance evaluation of various robust methods are represented. In Section 5, some conclusions
and open problems for future research are drawn.

2. Classical estimation of power spectra

2.1. Nonparametric estimation of power spectra

The nonparametric approach to estimation of power spectra is based on smoothed peri-
odograms (Blackman and Tukey, 1958; Bloomfield, 1976).

Let xt, t = 1, . . . , n be a second-order stationary time-series with zero mean. Assume that
the time intervals between two consecutive observations are equally spaced with duration ∆t.
Then the periodogram is defined as follows:

ŜP (f) = ∆t/n
∣∣∣ n∑
t=1

xt exp{−i2πft∆t}
∣∣∣2 (1)

over the interval [−f(n), f(n)], where f(n) is the Nyquist frequency: f(n) = 1/(2∆t).

The Blackman-Tukey formula gives the representation of formula (1) via the sample autoco-
variances ĉxx of the time series xt (Blackman and Tukey, 1958):

ŜP (f) = ŜBT (f) = ∆t
n−1∑

h=−(n−1)

ĉxx(h) exp{−i2πfh∆t} . (2)

It can be seen that the periodogram ŜP (f) (1) at the frequency f = fk = k/(n∆t), where k is
an integer such that k ≤ bn/2c, is equal to the squared absolute value of the discrete Fourier
transform X(fk) of the sequence x1, . . . , xn given by the following formula

X(fk) = ∆t
n∑
t=1

xt exp{−i2πfkt∆t} . (3)

To reduce the bias and variance of the periodogram ŜP (f), the conventional techniques based
on tapering and averaging of periodograms is used (Bloomfield, 1976).
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2.2. Parametric estimation of power spectra

The widely used form of a parametric power spectra estimation procedure exploits an au-
toregressive model of order p for the underlying power spectrum S(f). A stationary AR(p)
process xt with zero mean is described by the following equation

xt =
p∑
j=1

φjxt−j + εt , (4)

where εt are i.i.d. Gaussian white noises with zero mean and variance σ2
ε . The power

spectrum estimate ŜAR(f) has the form (Bloomfield, 1976)

ŜAR(f) =
∆tσ̂2

ε∣∣∣1−∑p
j=1 φ̂j exp{−i2πfj∆t}

∣∣∣2 , |f | ≤ f(n), (5)

where φ̂1, . . . , φ̂p and σ̂2
ε are the maximum likelihood estimates of the model parameters.

3. Robust estimation of power spectra

3.1. Preliminaries

A natural way to provide robustness of the classical estimates of power spectra is based on
using highly robust and efficient estimates of location, scale and correlation in the classical
estimates. Here we enlist several highly robust and efficient estimates of scale and correlation.
Robust Scale: The median absolute deviation MADn(x) = med |x−medx| is a highly robust
estimate of scale with the maximal value of the breakdown point 0.5, but its efficiency is
only 0.37 at the normal distribution (Hampel, Ronchetti, Rousseeuw, and Stahel, 1986).
In (Rousseeuw and Croux, 1993), a highly efficient robust estimate of scale Qn has been
proposed: it is close to the lower quartile of the absolute pairwise differences |xi − xj |, and
it has the maximal breakdown point 0.5 as for MADn but much higher efficiency 0.82. The
drawback of this estimate is its low computation speed; the computation of Qn requires an
order of greater time than of MADn.
In (Smirnov and Shevlyakov, 2010), an M -estimate of scale denoted by FQn whose influence
function is approximately equal to the influence function of the estimate Qn is proposed

FQn(x) = 1.483MADn(x)
(

1− (Z0 − n/
√

2)/Z2

)
, (6)

Zk =
n∑
i=1

uki e
−u2

i /2 , ui = (xi −medx)/(1.483MADn), k = 0, 2; i = 1, . . . , n.

The efficiency and breakdown point of FQn are equal to 0.81 and to 0.5, respectively.
Robust Correlation: A remarkable robust minimax bias and variance MAD correlation coef-
ficient with the breakdown point 0.5 and efficiency 0.37 is given by

rMAD(x, y) = (MAD2(u)−MAD2(v))
/

(MAD2(u) +MAD2(v)), (7)

where u and v are the robust principal variables (Shevlyakov and Smirnov, 2011)

u =
x−medx√

2MADx
+

y −med y√
2MADy

, v =
x−medx√

2MADx
− y −med y√

2MADy
.

Much higher efficiency 0.81 with the same breakdown point 0.5 can be provided by using the
FQ correlation coefficient (Shevlyakov and Smirnov, 2011)

rFQ(x, y) = (FQ2(u)− FQ2(v))
/

(FQ2(u) + FQ2(v)) . (8)
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3.2. Robust Lp-norm analogs of the discrete Fourier transform

Since computation of the discrete Fourier transform (DFT) (3) is the first step in periodogram
estimation of power spectra, consider the following robust Lp-norm analogs of the DFT.

As the classical DFT (3) X(f) can be obtained via the L2-norm approximation to the data
yt(f) = xt exp{−i2πf t∆t}, t = 1, . . . , n:

X(f) ∝ arg min
Z

n∑
t=1

∣∣∣yt(f)− Z
∣∣∣2 ,

the Lp-norm analog of X(f) (up to the scale factor) is defined as follows :

XLp(f) ∝ arg min
Z

{
n∑
t=1

∣∣∣yt(f)− Z
∣∣∣p}1/p

, 1 ≤ p <∞. (9)

The case of 1 ≤ p < 2, and especially the L1-norm or the median Fourier transform, are of
our particular interest (Pashkevich and Shevlyakov, 1995; Spangl and Dutter, 2005; Spangl,
2008):

XL1(f) ∝ arg min
Z

{
n∑
t=1

∣∣∣yt(f)− Z
∣∣∣} . (10)

The other possibilities such as the component-wise, spatial medians, and trimmed mean
analogs of the DFT are also considered in (Pashkevich and Shevlyakov, 1995; Spangl, 2008).

3.3. Robust nonparametric estimation

Now we apply the aforementioned robust analogs of the DFT as well as highly robust and
efficient estimates of scale and correlation to the classical nonparametric estimation of power
spectra.

Robust Nonparametric Estimation via Periodograms: Here we apply the robust Lp-norm
analogs of the DFT to the classical periodogram ŜP (f) (1):

ŜLp(f) ∝
∣∣∣XLp(f)

∣∣∣2 . (11)

In what follows, the L1- or the median periodogram is of our particular interest.

Robust Nonparametric Estimation via the Blackman-Tukey Formula: In order to construct
robust modifications of the Blackman-Tukey formula, we have to consider robust estimates of
autocovariances ĉxx(h) instead of the conventional ones used in (2). These robust estimates
are based on the highly robust MAD and FQ estimates of scale and correlation (6) - (8):

ĉMAD(h) = rMAD(xt, xt−h)MAD(xt)MAD(xt−h) = rMAD(h)MAD2(x) , (12)

ĉFQ(h) = rFQ(xt, xt−h)FQ(xt)FQ(xt−h) = rFQ(h)FQ2(x) .

To provide the required Teplitz property (symmetry, semipositive definiteness, equal elements
on sub-diagonals) of the autocovariance matrix Ĉxx built of the element-wise robust autoco-
variances (12), a new effective transform is used (Letac, 2011). Thus, the Teplitz transformed
estimates are substituted into formula (2), and the corresponding robust estimates of power
spectra are denoted as ŜMAD(f) and ŜFQ(f), respectively.

3.4. Robust parametric estimation of power spectra via the Yule-Walker
equations

A classical approach to estimation of autoregressive parameters φ1, . . . , φp in (4) is based on
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the solution of the linear system of the Yule-Walker equations (Bloomfield, 1976):
ĉ(1) = ĉ(0)φ̂1 + ĉ(1)φ̂2 + · · ·+ ĉ(p− 1)φ̂p
ĉ(2) = ĉ(1)φ̂1 + ĉ(2)φ̂2 + · · ·+ ĉ(p− 2)φ̂p
. . . . . . . . . . .

ĉ(p) = ĉ(p− 1)φ̂1 + ĉ(p− 2)φ̂2 + · · ·+ ĉ(0)φ̂p .

(13)

The estimate of the innovation noise variance is defined by the following equation

ĉ(0) = ĉ(1)φ̂1 + ĉ(2)φ̂2 + · · ·+ ĉ(p)φ̂p + σ̂2
ε . (14)

Substituting robust estimates of autocovariances (12) into (13) and (14), we get the robust
analogs of the Yule-Walker equations. Solving these equations, we arrive at the robust esti-
mate of power spectra in the form (5).

3.5. Robust parametric estimation via filtering

A wide collection of robust methods of power spectra estimation is given by various robust
filters (Kalman, Masreliez, ACM-type, robust least squares, filter-cleaners, etc.) providing
preliminary cleaning the data with the subsequent power spectra estimation. An extended
comparative experimental study of robust filters is made in (Spangl and Dutter, 2005; Spangl,
2008); below we compare some of those results with ours.

4. Performance evaluation

4.1. Robustness of the median Fourier transform power spectra

The median Fourier transform power spectra estimate ŜL1(f) ∝
∣∣∣XL1(f)

∣∣∣2 inherits the max-
imum value of the sample median breakdown point ε∗ = 1/2.

Theorem The breakdown point of ŜL1(f) is equal to 1/2. Here, the breakdown point ε∗ is
understood as the maximal ratio of the number of unbounded observations in the data sample
under which the estimate still remains bounded (Hampel, Ronchetti, Rousseeuw, and Stahel,
1986).
Fig. 1 illustrates this phenomenon: the observed realisation is the mixture of sin(πt/4) and
sin(πt/8) on the 40% and on the 60% of the interval of observation, respectively. In this
case, the classical periodogram indicates the presence of both peaks whereas the median
periodogram indicates only one spectrum peak, which corresponds to the dominating signal
sin(πt/8).

4.2. Additive outlier contamination model

In Monte Carlo experiment, an autoregressive model is used because of, first, it is a direct
stochastic counterpart of an ordinary differential equation, second, an autoregressive model is
the maximum entropy parametric approximation to an arbitrary strictly stationary random
process (Cover and Thomas, 1991).
In this paper, we use the autoregressive models AR(2): xt = xt−1 − 0.9xt−2 + εt and AR(4):
xt = xt−1 − 0.9xt−2 + 0.5xt−3 − 0.1xt−4 + εt together with Gaussian additive outliers (AO)
with pdf N(x; 0, 10). The comparative study is performed on different sample sizes n and
numbers of trials M (see, Figs. 2-4).

4.3. Disorder contamination model

In this paper, we propose a contamination model dubbed as a disorder contamination describ-
ing the violations of the thin structure of a random process, when an AR-process is shortly
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Figure 1: Median Fourier transform breakdown point ε∗ = 0.5 property

Figure 2: Power spectra estimation in AR(2) model with 10% AO contamination by robust
filter-cleaners: n=100, M=400

changed for another and then it returns to the previous state.

Below, the following disorder model is used: xt = −0.6xt−1−0.6xt−2 +εt as the main process
observed at t = 0, 1, . . . , 400 and at t = 512, . . . , 1024; xt = xt−1−0.9xt−2 + εt as the disorder
process at t = 401, . . . , 511. The results of signal processing are exhibited in Figs. 5-6: the
classical periodogram indicates two spectrum peaks of the main and contamination processes,
whereas the median periodogram indicates only one peak of the main process.
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Figure 3: Robust Yule-Walker power spectra estimation in AR(2) model with 10% AO con-
tamination: n=128, M=2000

Figure 4: Robust Yule-Walker power spectra estimation in AR(4) model with 10% AO con-
tamination: n=128, M=2000

Figure 5: Smoothed classical power spectra estimation in disorder model with 10% contami-
nation

5. Concluding remarks

1) From Figs. 2-3 it follows that the classical periodogram is catastrophically bad under
contamination, and that the robust FQ Yule-Walker estimate considerably outperforms robust
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Figure 6: Smoothed robust power spectra estimation in disorder model with 10% contamina-
tion

filter methods.

2) From Fig. 4 it follows that the bias of estimation by the FQ Yule-Walker method increases
with growing dimension and contamination. It can be also shown that under heavy contami-
nation, the median periodogram and the robust Blackman-Tukey method outperform the FQ
Yule-Walker method in estimating the peak location, although they have a considerable bias
in amplitude.

3) The median periodogram exhibits high robustness both with respect to amplitude outliers
and to disorder contamination.

4) The obtained results indicate many open problems: analysis of the asymptotic properties
of the proposed estimates, reducing their bias and variance on finite samples, and study of
the properties of the direct and inverse Lp-norm analogs of the Fourier transform.
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