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Abstract. In the present paper, we use some standard a priori estimates for
linear transport equations to prove the existence and uniqueness of solutions for
the Camassa-Holm equation with minimal regularity assumptions on the initial
data. We also derive some explosion criteria and a sharp estimate from below for
the existence time. We finally address the question of global existence for certain
initial data. This yields, among other things, a different proof for the existence and
uniqueness of Constantin and Molinet’s global weak solutions (see [9]).

Introduction. In the past few years, a large amount of literature has
been devoted to the following one-dimensional nonlinear dispersive equation:

∂tv − ∂3
txxv + 2κ∂xv + 3v∂xv = 2∂xv∂2

xxv + v∂3
xxxv. (0.1)

The model above, commonly called the Camassa-Holm equation, has been
derived independently by A. Fokas and B. Fuchssteiner in [12], and by R.
Camassa and D. Holm in [3] (see also [13] and [4]). Some generalizations
of (0.1) with higher-order terms are also relevant (see e.g. [14]). In the
above equation, the function u = u(t, x) stands for the fluid velocity at time
t ≥ 0 in the x direction and κ is a nonnegative parameter. In the present
work, x will be in R or in T where T denotes the circle R/Z, and most of
our results shall apply indistinctly to both cases. We shall merely use the
notation x ∈ A to mean that x belongs to R or to T.

Like the celebrated KdV equation,

∂tu + 6u∂xu + ∂3
xxxu = 0,

the Camassa-Holm equation describes the unidirectional propagation of
waves at the free surface of shallow water under the influence of gravity. It
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turns out that (0.1) is also relevant to describe the propagation of nonlinear
waves in cylindrical hyperelastic rods (see [11]).

The reason for the success encountered by this new model lies in the fact
that it has both solitary waves interacting like solitons (see e.g. [3], [4], [10]
and [7]) and, in contrast to KdV, solutions which blow up in finite time as
a result of the breaking of waves (see e.g. [7] and [8]).

Throughout the paper, we shall concentrate on the case κ = 0 (which
actually is not restrictive since the change of variables u(t, x) = v(t, x−κt)+κ
leads to (0.1) with κ = 0), and we shall address the question of the initial
value problem for positive times. As soon as uniqueness holds, it is clear
however that we have similar results for negative times. This is just a matter
of changing the initial condition u0 into −u0.

At this point, one can wonder which regularity assumptions are relevant
for initial data u0 so that the initial value problem be well-posed in the
sense of Hadamard (i.e., (CH) has a unique local solution in a suitable func-
tional setting, and continuity with respect to the initial data holds). In the
first mathematical works devoted to (CH), the initial data u0 were taken in
the nonhomogeneous Sobolev space H3, and well-posedness was shown in
C([0, T ];H3) ∩ C1([0, T ];H2). It was stated besides that the solutions may
blow up in finite time or be global (see e.g. [6], [7] and [8]).

The link of (0.1) with nonlinear transport equations was pointed out in
[6]. Indeed, (0.1) may be rewritten as follows:

∂tu + u∂xu = P (D)(u2 +
1

2
(∂xu)2), u|t=0 = u0, (CH)

with P (D) = −∂x(1 − ∂2
x)−1. Obviously, the H3 assumption on the initial

data can be weakened. This was noticed before in [18] and [16] where lo-
cal well-posedness is stated for initial data in the nonhomogeneous Sobolev
spaces Hs with s > 3/2.

Actually, taking initial data in Sobolev spaces does not matter. What does
matter is the choice of a Banach space E which is included in the space Lip
of continuous, bounded functions with bounded derivatives. Indeed, under
such an assumption on E, it is in general possible to get a priori estimates
in C([0, T ];E) for the solution of linear transport equations

∂tv + a∂xv = f, v(0) ∈ E, a, f ∈ C([0, T ];E).

Therefore, the existence of local solutions might be proved in a plethora of
Banach spaces such that in addition G : u 7→ P (D)

(
u2 + (∂xu)2/2

)
maps E

to E continuously.
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We concentrate on the case where E is a nonhomogeneous Besov space
Bs

p,r (see their definition in section 1). We deliberately use these very spaces

which are built on Lp to emphasize that using spaces built on L2 (such as
Sobolev spaces) is not so important. Note in passing that, since Bs

2,2 = Hs,
the results of [16] or [18] come up as a special case of our results.

In the Besov spaces framework, the condition E ⊂ Lip is equivalent to
s > 1 + 1/p (or s ≥ 1 + 1/p if r = 1), and it turns out that no further
restrictions are needed for the continuity of the map G (except that the
endpoint r = 1, s = 1, p = +∞ is not allowed). We shall see on the other
hand that the additional condition s > 3/2 is required for uniqueness. This
merely stems from the fact that we are led to estimate the difference between
two solutions in Bs−1

p,r and that the term (∂xu)2 is involved in the right-hand
side of (CH).

Due to the use of estimates for the transport equation, we shall get a blow-
up criterion (almost) for free: the solution ceases to have the smoothness of
the initial data at time T ⋆ if and only if

∫ T ⋆

0

‖u(t)‖Lip dt = +∞. (0.2)

Let us emphasize that this type of explosion criterion is quite universal
for nonlinear hyperbolic PDE’s (a similar result holds for nonlinear wave
equation: see [15]). Actually, getting local existence results and the above
blow-up criterion barely utilizes the structure of (CH). An analogous method
would yield similar results for more general (possibly d-dimensional) equa-
tions

∂tu + u · ∇u = f(u,∇u).

Of course, the exact range of Besov spaces for which local well-posedness
holds depends on the dimension and on the nonlinearity f(u,∇u).

Next, we shall turn to results which are more specific to (CH). We first
aim at getting an explosion criterion more precise than (0.2). For that
purpose, we shall suppose that in addition u0 ∈ H1. Indeed, this will enable
us to use the energy (i.e., the H1 norm) as a conservation law. In view of
Sobolev embeddings, this provides us with a uniform control on ‖u(t)‖L∞ .
Further considerations based on a result by A. Constantin and J. Escher in
[8] will show that only the part infx∈A ∂xu(t, x) of the whole norm ‖u(t)‖Lip

is responsible for the blowing-up of solutions. This fact was remarked before
in [7] and [6] for smooth solutions, though not explicitly stated. We are also
interested in getting a sharp estimate from below for the existence time.
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Let us now present our main result. The reader not familiar with Besov
spaces can simply take u0 in Hs (s > 3/2) in the statement below.

Theorem 0.1. Let 1 ≤ p ≤ +∞ and 1 ≤ r < +∞. Suppose that u0 ∈
Bs

p,r∩H1 with s > max(1+1/p, 3/2) (or s = 1+1/p, p < 2 and r = 1). Then

(CH) has a unique maximal solution in C([0, T ⋆
u0

);Bs
p,r)∩C1([0, T ⋆

u0
);Bs−1

p,r )

with constant H1 norm.
Let c = 1 if A = R and c = cosh(1/2)/sh(1/2) if A = T. Then the lifespan

T ⋆
u0

satisfies

T ⋆
u0

≥ Tu0

def
= − 2√

c‖u0‖H1

arctan
( √

c‖u0‖H1

infx∈A ∂xu0(x)

)
. (0.3)

Moreover,

T ⋆
u0

< +∞ =⇒
∫ T ⋆

u0

0

(
inf
x∈A

∂xu(t, x)
)
dt = −∞. (0.4)

If the potential y0
def
= u0 − ∂2

xxu0 has a sign then T ⋆
u0

= +∞ and sgn(u(t) −
∂2

xxu(t)) = sgny0.

Let us stress the fact that (0.3) is sharp: for any ǫ > 0, there exists a
smooth u0 for which the maximal existence time T ⋆

u0
for solutions to (CH)

satisfy T ⋆
u0

< (1 + ǫ)Tu0
.

Since for many initial conditions, blow-up occurs in finite time, consider-
ing the question of lower semicontinuity for the maximal existence time is of
great interest. This is the aim of Theorem 4.1 below. We should mention in
passing that our proof easily extends to more general equations.

One of the main interesting features of (CH) is the existence of stable
solitary traveling waves which are solitons (see [3] or [7]):

u(t, x) = ce−|x−x0−ct|, x0 ∈ R, c ∈ R.

These waves have a discontinuity in the first derivative at their peak (i.e., at
x = x0+ct). In particular, the corresponding initial datum u0 fails to satisfy
the regularity assumptions required in Theorem 0.1 (actually u0 belongs to

any Besov space B
1+ 1

p
p,∞ but not to B

1+ 1
p

p,1 ). Let us remark on the other hand

that in the special case of solitons, the potential y0
def
= u0 − ∂2

xxu0 is a Dirac
mass. This motivates the study of well-posedness for initial data such that
y0 is in the space M of regular Borel measures with bounded total variation.
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In [9], A. Constantin and L. Molinet concentrated on the case where, in
addition, y0 is positive. On the basis that, in this particular case, sgny(t)
and ‖y(t)‖L1 are conserved with time, they proved the existence of a “global
weak solution” for such initial data. Uniqueness also holds, which means
that solitons are indeed relevant solutions. This also means on the other
hand that these “weak solutions” are not that weak.

In the present work, we do not make any sign assumption. Our aim is
to get a statement similar to Theorem 0.1. We shall indeed prove the result
below.

Theorem 0.2. Suppose that y0 belongs to M. Then (CH) has a unique
maximal solution u belonging to C([0, T ⋆

u0
);Hs)∩C1([0, T ⋆

u0
);Hs−1) for any

s < 3/2, and such that y
def
= u − ∂2

xxu stays in M uniformly on every compact
subset of [0, T ⋆

u0
). In addition, the energy is conserved:

T ⋆
u0

≥ 2

‖y0‖M
and T ⋆

u0
< +∞ =⇒

∫ T ⋆
u0

0

(
inf
x∈A

∂xu(t, x)
)
dt = −∞.

If y0 has a sign then the solution is global, and sgny(t) and ‖y(t)‖M are
conserved.

Our paper is organized as follows. In the first section, we recall some basic
results on Besov spaces. In section 2, we investigate the well-posedness of
(CH) in Besov spaces, and state a blow-up criterion. The third section is
devoted to the proof of Theorem 0.1. In the fourth part, we prove that
the maximal existence time of the solutions has lower semicontinuity with
respect to suitably smooth initial data. In section 5, we prove Theorem 0.2.
We end the paper with an appendix devoted to the proof of estimates in
general Besov spaces for d-dimensional transport equations. We also give
there two approximation results used in part 5.

1. A few facts on Besov spaces and some notation. Before reaching
into the heart of the matter, we recall some basic results on Besov spaces.
They are not specific to the one-dimensional setting, and the positive integer
d will stand for the space dimension. A more complete presentation may be
found in [19]. We here use [5]’s notation.

The usual definition of Besov spaces relies upon a dyadic partition of
unity in Fourier variables: the Littlewood-Paley decomposition. We can use
for instance any couple (χ, ϕ) of C∞ functions such that χ is supported in
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{ξ ∈ R
d : |ξ| ≤ 4/3}, ϕ is supported in {ξ ∈ R

d : 3/4 ≤ |ξ| ≤ 8/3}, and

χ(ξ) +
∑

q∈N

ϕ(2−qξ) = 1 for ξ ∈ R
d.

Let us first consider the whole-space case. Denote ϕq(ξ) = ϕ(2−qξ), hq =

F−1ϕq and ȟ = F−1χ. We then define the dyadic blocks as follows:

∆qu
def
= 0 if q ≤ −1, ∆−1u

def
= χ(D)u =

∫

Rd

ȟ(y)u(x − y) dy,

∆qu
def
= ϕ(2−qD)u =

∫

Rd

hq(y)u(x − y) dy if q ≥ 0.

In the periodical setting, we shall decompose the functions on the torus T
d

in Fourier series: u(x) =
∑

α∈Zd uαei2πα·x, denote

hq(x) =
∑

α∈Zd

ϕ(2−qα)ei2πα·x and ȟ(x) =
∑

α∈Zd

χ(α)ei2πα·x,

and define the dyadic blocks as follows:

∆qu
def
= 0 if q ≤ −1, ∆−1u

def
=

∑

α∈Zd

χ(α)uαei2πα·x =

∫

Td

ȟ(y)u(x−y) dy,

∆qu
def
=

∑

α∈Zd

ϕ(2−qα)uαei2πα·x =

∫

Td

hq(y)u(x − y) dy if q ≥ 0.

In both cases, we shall also use the notation Squ
def
=

∑
p≤q−1 ∆pu.

From now on, we will not make a distinction between the periodical and
the whole-space cases (except where otherwise stated) and the notation Ad

will stand for R
d or T

d.
The formal equality

u =
∑

q≥−1

∆qu

holds in S ′(Ad) and is called the Littlewood-Paley decomposition. It has
nice properties of quasi-orthogonality: with our choice of ϕ, we have

∆k∆qu ≡ 0 if |k − q| ≥ 2 and ∆k(Sq−1u∆qu) ≡ 0 if |k − q| ≥ 5. (1.1)
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We can now define the Besov spaces.

Definition 1.1. For s ∈ R, (p, r) ∈ [1,+∞]2 and u ∈ S ′(Ad), we set

‖u‖Bs
p,r

def
=

( ∑
q≥−1

(
2sq ‖∆qu‖Lp

)r
) 1

r

if 1 ≤ r < +∞ and ‖u‖Bs
p,∞

def
=

supq≥−1 2sq ‖∆qu‖Lp . We then define

Bs
p,r

def
= Bs

p,r(A
d)

def
= {u ∈ S ′(Ad) : ‖u‖Bs

p,r
< +∞}.

The above definition does not depend on the Littlewood-Paley decompo-
sition chosen. Let us indicate how Besov spaces are related to Sobolev and
Hölder spaces:

Proposition 1.2. For s ∈ R, we have Bs
2,2 = Hs. For s ∈ R

+\N, we have
Bs

∞,∞ = Cs.

Remark that we have the following strict embeddings (where →֒ means
continuous embedding): B0

∞,1 →֒ L∞ →֒ B0
∞,∞. If we denote by Lip the

space of bounded functions with bounded first derivatives, we have B1
∞,1 →֒

Lip →֒ B1
∞,∞. It will be sometimes useful to know the place of L1 and of

the space M of regular Borel measures with bounded total variation in the
range of Besov spaces:

Lemma 1.3. The following embeddings hold : B0
1,1 →֒ L1 →֒ M →֒ B0

1,∞.

Proof. Let us prove M →֒ B0
1,∞. The other embeddings are straightfor-

ward. If u ∈ M, then

∆qu(x) =

∫

Ad

hq(y) du(x − y)

so that, denoting by ‖u‖M the total variation of u, we have according to
Fubini’s theorem,

‖∆qu‖L1 ≤
∫

Ad

|hq(y)| dy

∫

Ad

d|u|(z) ≤ C‖u‖M.

We of course also have ‖∆−1u‖L1 ≤
∥∥ȟ

∥∥
L1 ‖u‖M, which completes the

proof. ¤

Straightforward computations show that the Dirac measure δ (which is in
some sense the less regular element of M) belongs to B0

1,∞ but not to B0
1,r

for r < +∞.
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Let us give some classical properties for the Besov spaces (see the proofs
in [19] for example).

Proposition 1.4. The following properties hold :
i) Density: if p, r < +∞ then S(Ad) is dense in Bs

p,r.

ii) Generalized derivatives: Let f ∈ C∞(Rd) be a homogeneous function
of degree m ∈ R away from a neighborhood of the origin. There exists a
constant C depending only on f and such that ‖f(D)u‖Bs−m

p,r
≤ C‖u‖Bs

p,r
.

iii) Sobolev embeddings: if p1≤p2 and r1≤r2, then Bs
p1,r1

→֒B
s−d( 1

p1
− 1

p2
)

p2,r2 .
If s1 < s2, 1≤ p ≤+∞ and 1 ≤ r1, r2 ≤ +∞, then the embedding Bs2

p,r2
→֒

Bs1
p,r1

is locally compact.
iv) Algebraic properties: for s > 0, Bs

p,r ∩ L∞ is an algebra. Moreover,
(Bs

p,r is an algebra) ⇐⇒ (Bs
p,r →֒ L∞) ⇐⇒ (s > p/d or (s ≥ p/d and

r = 1)).

v) Interpolation: (Bs1
p,q1

, Bs2
p,q2

)θ,q = B
θs1+(1−θ)s2
p,q for 0 < θ < 1.

vi) Fatou property: If the sequence (fk)k∈N is uniformly bounded in Bs
p,r

and converges weakly in S ′ to f , then f ∈Bs
p,r and ‖f‖Bs

p,r
≤ lim inf

k→∞
‖fk‖Bs

p,r
.

We have the following continuity properties for the product of two func-
tions:

Proposition 1.5. For any s > 0 and 1 ≤ p, r ≤ +∞, there exists C =
C(d, s) such that

‖uv‖Bs
p,r

≤ C
(
‖u‖L∞ ‖v‖Bs

p,r
+ ‖v‖L∞ ‖u‖Bs

p,r

)
. (1.2)

If 1 ≤ p, r ≤ ∞, s1, s2 < d/p if r > 1 (s1, s2 ≤ d/p if r = 1) and
s1 + s2 > 0, there exists C = C(s1, s2, p, r, d) such that

‖uv‖
B

s1+s2− d
p

p,r

≤ C‖u‖B
s1
p,r

‖v‖B
s2
p,r

. (1.3)

If 1 ≤ p, r ≤ +∞, s1 ≤ d/p, s2 > d/p (s2 ≥ d/p if r = 1) and s1 + s2 > 0,
there exists C = C(s1, s2, p, r, d) such that

‖uv‖B
s1
p,r

≤ C‖u‖B
s1
p,r

‖v‖B
s2
p,r

. (1.4)

Notation. Throughout, C will stand for a “harmless” constant. For any
Banach space X, 0 < T ≤ +∞ and 1 ≤ r ≤ +∞, we shall denote by
Lr(0, T ;X) the set of measurable functions on (0, T ) valued in X and such
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that the map t 7→ ‖u(t)‖X belongs to the Lebesgue space Lr(0, T ). The
space C([0, T ];X) will stand for the set of continuous functions on [0, T ]
with values in X, and we shall use the notation C1([0, T ];X) for functions f
in C([0, T ];X) differentiable with respect to t and such that ∂tf also belongs
to C([0, T ];X).

2. Local well-posedness. In this section, we address the question of
local well-posedness for (CH) with initial data u0 in Lip ∩ Bs

p,r. We shall
see that existence holds true as soon as s > 1, and uniqueness as soon as
s > 3/2. We also prove a first blow-up criterion. More precise criteria will
be derived in section 3.

Uniqueness and continuity with respect to the initial data are a corollary
of the following:

Proposition 2.1. Let 1 ≤ p, r ≤ +∞ and s > 3/2. Suppose that we are

given (u, v) ∈
(
L∞(0, T ;Bs

p,r ∩ Lip) ∩ C([0, T ];S ′)
)2

two solutions of (CH)
with initial data u0, v0 ∈ Bs

p,r ∩ Lip. Then we have for every t ∈ [0, T ] :

‖u(t) − v(t)‖Bs−1
p,r ∩L∞ (2.1)

≤ ‖u0 − v0‖Bs−1
p,r ∩L∞e

C
∫ t
0

(
‖u(τ)‖Bs

p,r∩Lip
+‖v(τ)‖Bs

p,r∩Lip

)
dτ

.

Proof. Let us assume for the sake of simplicity that Bs
p,r ⊂ Lip. Denote

w
def
= v − u. Obviously, w is in C([0, T ];Bs−1

p,r ) and solves the following
transport equation:

∂tw + u∂xw = −w∂xv + P (D)
(
w(u+v) +

1

2
∂xw ∂x(u+v)

)
.

According to estimate (A.1) and Proposition 1.4 ii), the following inequality
holds true:

‖w(t)‖Bs−1
p,r

≤ ‖w0‖Bs−1
p,r

e
C

∫ t
0
‖∂xu(τ ′)‖

B
s−1
p,r

dτ ′

+ C

∫ t

0

e
C

∫ t
τ
‖∂xu(τ ′)‖

B
s−1
p,r

dτ ′

(2.2)

×
(
‖(w∂xv)(τ)‖Bs−1

p,r
+ ‖

(
w(u+v)

)
(τ)‖

Bs−2
p,r

+ ‖
(
∂xw ∂x(u+v)

)
(τ)‖

Bs−2
p,r

)
dτ.

Since Bs−1
p,r ⊂ L∞, the space Bs−1

p,r is an algebra according to Proposition
1.4 ii). Therefore,

‖w∂xv‖Bs−1
p,r

≤C‖∂xv‖Bs−1
p,r

‖w‖Bs−1
p,r

, (2.3)

‖w(u+v)‖Bs−2
p,r

≤C‖w(u+v)‖Bs−1
p,r

≤C
(
‖u‖Bs−1

p,r
+ ‖v‖Bs−1

p,r

)
‖w‖Bs−1

p,r
.
(2.4)
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If s > 2+1/p or s ≥ 2+1/p and r = 1, then Bs−2
p,r is also an algebra so that

‖∂xw ∂x(u+v)‖Bs−2
p,r

≤ C‖∂xw‖Bs−2
p,r

(
‖∂xu‖Bs−2

p,r
+ ‖∂xv‖Bs−2

p,r

)
,

≤ C‖w‖Bs−1
p,r

(
‖u‖Bs−1

p,r
+ ‖v‖Bs−1

p,r

)
. (2.5)

Otherwise, we still have s > 3/2 and s > 1 + 1/p (or s ≥ 1 + 1/p if r = 1)
because Bs

p,r ⊂ Lip. Therefore, we can apply (1.4) and get

‖∂xw ∂x(u + v)‖Bs−2
p,r

≤ C‖∂xw‖Bs−2
p,r

(
‖∂xu‖Bs−1

p,r
+ ‖∂xv‖Bs−1

p,r

)
,

≤ C‖w‖Bs−1
p,r

(
‖u‖Bs

p,r
+ ‖v‖Bs

p,r

)
. (2.6)

Plugging (2.3), (2.4), and (2.5) or (2.6) in (2.2), and applying Gronwall’s
lemma, we end up with

‖u(t) − v(t)‖Bs−1
p,r

≤ ‖u0 − v0‖Bs−1
p,r

e
C

∫ t
0

(
‖u(τ)‖Bs

p,r
+‖v(τ)‖Bs

p,r

)
dτ

. (2.7)

If Bs
p,r 6⊂ Lip, the proof of (2.1) relies on inequality (A.2). Next, this is just a

matter of replacing everywhere ‖·‖Bs−1
p,r

(respectively ‖·‖Bs
p,r

) by ‖·‖Bs−1
p,r ∩L∞

(respectively ‖·‖Bs
p,r∩Lip) in the proof above. The important fact is that

‖P (D)z‖Lip ≤ C ‖z‖L∞ . (2.8)

This may be seen by considering the explicit expression of the kernel of P (D)
or by noticing that ∂xP (D)z = z − (1 − ∂2

xx)−1z. ¤

Before stating our local existence result, we define some functional spaces.

Definition 2.2. For T > 0, s ∈ R and 1 ≤ p ≤ +∞, we set

Es
p,r(T )

def
= C([0, T ];Bs

p,r) ∩ C1([0, T ];Bs−1
p,r ) ∩ Lip([0, T ] × A) if r < +∞,

Es
p,∞(T )

def
= L∞(0, T ;Bs

p,∞)∩Lip([0, T ];Bs−1
p,∞)∩Lip([0, T ] × A).

The notation Es
p,r stands for ∩T>0E

s
p,r(T ).

Let us state our well-posedness result:

Theorem 2.3. Suppose that s > 1, 1 ≤ p, r ≤ +∞ and u0 ∈ Bs
p,r ∩ Lip.

Then there exists a time T > 0 such that (CH) has a solution u ∈ Es
p,r(T ).

If in addition u0 ∈ H1, one can arrange that the solution satisfies

‖u(t)‖H1 ≤ ‖u0‖H1 . (2.9)
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If moreover s > 3/2, then uniqueness holds in Es
p,r(T ), equality holds in

(2.9) if u0 ∈ H1, and the map u0 7→ u is continuous from a neighborhood of

u0 in Bs
p,r into C([0, T ];Bs′

p,r)∩C1([0, T ];Bs′−1
p,r ) for every s′ < s if r = +∞,

and s′ = s if r < +∞.

Proof. Uniqueness when s > 3/2 is an immediate consequence of Proposi-
tion 2.1.

Now, let us assume for the sake of simplicity that Bs
p,r →֒ Lip. We use

a standard iterative process to build a solution. Introduce a nonnegative
mollifier ρ ∈ C∞

0 (Rd) such that
∫

ρ = 1, and denote ρn(x) = ndρ(nx). We
then choose u0 = 0 and define by induction a sequence of smooth functions
(un)n∈N solving the following linear transport equation:

(∂t + un∂x)un+1 = P (D)
(
(un)2 +

(∂xun)2

2

)
,

un+1
|t=0 = un+1

0
def
= ρn+1 ⋆ u0.

(2.10)

Denote Un(t) =
∫ t

0
‖un(τ)‖Bs

p,r
dτ . According to Propositions A.1 and 1.4

ii), we have

‖un+1(t)‖Bs
p,r

≤ eCUn(t)
(
‖un+1

0 ‖Bs
p,r

(2.11)

+ C

∫ t

0

e−CUn(τ)
(
‖(un(τ))2‖Bs−1

p,r
+ ‖(∂xun(τ))2‖Bs−1

p,r

)
dτ

)
.

As ρn+1 ⋆ ∆qu0 = ∆q(ρ
n+1 ⋆ u0) and

∥∥ρn+1
∥∥

L1 = 1, we have ‖un+1
0 ‖Bs

p,r
≤

‖u0‖Bs
p,r

. On the other hand, Bs−1
p,r is an algebra and Bs

p,r →֒ Bs−1
p,r so that

the last term of (2.11) may be easily bounded. We eventually conclude that

‖un+1(t)‖Bs
p,r

≤ eCUn(t)
(
‖u0‖Bs

p,r
+C

∫ t

0

e−CUn(τ)‖un(τ)‖2
Bs−1

p,r
dτ

)
. (2.12)

Let us fix a T > 0 such that 2C‖u0‖Bs
p,r

T < 1 and suppose that

∀t ∈ [0, T ], ‖un(t)‖Bs
p,r

≤
‖u0‖Bs

p,r

1 − 2C‖u0‖Bs
p,r

t
. (2.13)
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Plugging (2.13) in (2.12) eventually yields

‖un+1(t)‖Bs
p,r

≤ 1√
1 − 2C‖u0‖Bs

p,r
t

×
(
‖u0‖Bs

p,r
+ C‖u0‖2

Bs
p,r

∫ t

0

dτ

(1 − 2C‖u0‖Bs
p,r

τ)
3
2

)
≤

‖u0‖Bs
p,r

1 − 2C‖u0‖Bs
p,r

t
.

Therefore, (un)n∈N is uniformly bounded in C([0, T ];Bs
p,r). This clearly en-

tails that un∂xun is uniformly bounded in C([0, T ];Bs−1
p,r ), and the right-hand

side of (2.10) has been shown to be uniformly bounded in C([0, T ];Bs
p,r). We

conclude that the sequence (un)n∈N is uniformly bounded in C([0, T ];Bs
p,r)∩

C1([0, T ];Bs−1
p,r ).

As the embedding Bs
p,r →֒ Bs−1

p,r is locally compact, the Arzela-Ascoli
theorem and Cantor’s diagonal process enable us to conclude that, up to an
extraction, the sequence (un)n∈N tends to a limit u ∈ Lip([0, T ];Bs−1

p,r ) for

the topology of C([0, T ]; (Bs−1
p,r )loc); i.e., for any φ ∈ C∞

0 (A),

‖φun(t) − φu(t)‖Bs−1
p,r

−→
n→+∞

0 uniformly on [0, T ].

Since (un)n∈N is uniformly bounded in C([0, T ];Bs
p,r), we have, according

to Proposition 1.4 vi), u ∈ L∞(0, T ;Bs
p,r). By interpolation, convergence

of φun to φu holds in C([0, T ];Bs′

p,r) for any s′ < s and φ ∈ C∞
0 (A). As

s > 1, this enables us to prove that u indeed solves (CH) in the sense of
distributions.

Now, (∂t + u∂x)u is in L∞(0, T ;Bs
p,r). Hence, if in addition r < +∞, we

have u ∈ C([0, T ];Bs
p,r) according to Proposition A.1. From this, we readily

gather that ∂tu ∈ C([0, T ];Bs−1
p,r ).

If v0 is in a small neighborhood of u0 in Bs
p,r, the arguments above give the

existence of a solution v ∈ Es
p,r(T ) to (CH) with initial datum v0. If s > 3/2,

Proposition 2.1 combined with an obvious interpolation ensures continuity
with respect to the initial data in C([0, T ];Bs′

p,r) ∩ C1([0, T ];Bs′−1
p,r ) for any

s′ < s.
The fact that continuity also holds in C([0, T ];Bs

p,r) ∩ C1([0, T ];Bs−1
p,r )

when r < +∞ is not obvious but belongs to the mathematical folklore.
It may be proved through the use of a sequence of approximate solutions
(uǫ)ǫ>0 for (CH) which converges uniformly in C([0, T ];Bs

p,r) ∩ C1([0, T ];
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Bs−1
p,r ). A viscosity approximation gives the desired property of convergence.

Since this question of continuity up to the index s is of secondary importance,
we shall not give more details in the present paper.

The case where Bs
p,r 6 →֒ Lip may be treated in a similar way. We just have

to use the norms ‖·‖Bs
p,r∩Lip instead of ‖·‖Bs

p,r
. Indeed, inequalities (2.8) and

(A.2) provide a control on the Lip norms. The details are left to the reader.
Let us assume now that, in addition, the initial datum u0 is in H1. Using

the approximation scheme above to prove that ‖u(t)‖H1 ≤ ‖u0‖H1 is not
judicious since, in contrast to (CH), it does not conserve the H1 norm.

This is actually more convenient to mollify the initial datum u0 as above
and to define un as the maximal solution of (CH) corresponding to un

0 . Since,
for instance, un

0 ∈ H4 and ‖un
0‖Bs

p,r
≤ ‖u0‖Bs

p,r
, the proof above combined

with uniqueness ensures that for any T such that 2C‖u0‖Bs
p,r

T < 1, un ∈
C([0, T ];H4 ∩ Bs

p,r) ∩ C1([0, T ];H3 ∩ Bs−1
p,r ). In particular, the smoothness

of un allows us to derive directly from (0.1) that

∀t ∈ [0, T ], ‖un(t)‖H1 = ‖un
0‖H1 ≤ ‖u0‖H1 . (2.14)

On the other hand, applying Proposition A.1 to the equation (CH) satisfied
by un and following the steps of the proof above, we conclude again (2.13).
We can therefore prove the convergence of (un)n∈N to a solution u of (CH)
as before. Since (2.14) holds, we besides get ‖u(t)‖H1 ≤ ‖u0‖H1 .

Let us remark now that the construction above enables us to solve (CH)
backwards on the whole interval [0, T ′] from any time T ′ < T . Starting with
u(T ′), this yields a solution v ∈ Es

p,r(T
′) defined on [0, T ′]. Since u(T ′) ∈ H1,

we will have in particular ‖v(0)‖H1 ≤ ‖u(T ′)‖H1 . If moreover s > 3/2,
uniqueness ensures that v ≡ u on [0, T ′]; hence, ‖u(0)‖H1 ≤ ‖u(T ′)‖H1 .
Therefore, the H1 norm is preserved with time. ¤

Let us now tackle the problem of breakdown. The first explosion criterion
we shall obtain is a corollary of the following estimate, which is similar to
that deduced by S. Klainerman in [15] for Sobolev norms in the framework
of nonlinear wave equations:

Lemma 2.4. Let 1 ≤ p, r ≤ +∞ and s > 0. Let u ∈ L∞(0, T ;Bs
p,r ∩

Lip) solving (CH) with u0 ∈ Bs
p,r ∩ Lip as an initial datum. The following

inequalities hold on [0, T ) (with a constant C depending on s and p) :

‖u(t)‖Bs
p,r

≤ ‖u0‖Bs
p,r

eC
∫ t
0
‖u(τ)‖

Lip
dτ , (2.15)

‖u(t)‖Lip ≤ ‖u0‖Lipe3
∫ t
0
‖u(τ)‖

Lip
dτ . (2.16)
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Proof. Let us apply ∆q to (CH). This yields

(∂t + u∂x)∆qu = [u, ∆q]∂xu + P (D)∆q

(
u2 +

1

2
(∂xu)2

)
.

As s > 0, we have according to the estimate (A.9) of the appendix,

‖[u, ∆q]∂xu‖Lp ≤ Ccq2
−qs‖u‖Bs

p,r
‖∂xu‖L∞ .

On the other hand, according to Propositions 1.5 and 1.4 ii),

‖P (D)
(
u2 +

(∂xu)2

2

)
‖

Bs
p,r

≤ ‖u‖Lip‖u‖Bs
p,r

.

Going along the lines of the proof of Proposition A.1, this leads to

‖u(t)‖Bs
p,r

≤ ‖u0‖Bs
p,r

+ C

∫ t

0

‖u(τ)‖Lip‖u(τ)‖Bs
p,r

dτ.

Gronwall’s lemma yields (2.15). Making use of inequalities (3.4) and (3.5)
below, the proof of (2.16) is straightforward. ¤

Definition 2.5. Let u0 ∈ Bs
p,r ∩ Lip. We define the lifespan T ⋆

u0
of the

solutions of (CH) with initial data as

T ⋆
u0

def
= sup{T > 0 : (CH) has a solution u ∈ Es

p,r(T )}.

We then have the following result:

Proposition 2.6. Suppose that u0 ∈ Bs
p,r ∩ Lip with 1 ≤ p, r ≤ +∞ and

s > 3/2. If T ⋆
u0

is finite, then we have

∫ T ⋆
u0

0

‖u(τ)‖Lip dτ = +∞. (2.17)

If in addition u0 ∈ H1, then ‖u(t)‖H1 = ‖u0‖H1 on [0, T ⋆
u0

) and

T ⋆
u0

< +∞ =⇒
∫ T ⋆

u0

0

‖∂xu(τ)‖L∞ dτ = ∞. (2.18)
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Proof. Let u ∈ ∩T<T ⋆Es
p,r(T ) be such that

∫ T ⋆

0
‖u(τ)‖Lip dτ is finite. Ac-

cording to Lemma 2.4,

∀t ∈ [0, T ⋆), ‖u(t)‖Bs
p,r

≤ MT ⋆
def
= ‖u0‖Bs

p,r∩LipeC
∫ T ⋆

0
‖u(τ)‖

Lip
dτ . (2.19)

Let ǫ > 0 be such that 2CǫMT ⋆ < 1 where C is the constant used in the
proof of Theorem 2.3. We then have a solution ũ ∈ Es

p,r(ǫ) to (CH) with
initial datum u(T ⋆− ǫ/2). For the sake of uniqueness, ũ(t) = u(t+T ⋆− ǫ/2)
on [0, ǫ/2[ so that ũ extends the solution u beyond T ⋆. We conclude that
T ⋆ < T ⋆

u0
and (2.17) is proved.

If in addition u0 ∈ H1, we saw in Theorem 2.3 that ‖u(t)‖H1 is constant
on a small time interval. Making use of Proposition 2.1 and Lemma 2.4, we
can easily check that ‖u(t)‖H1 is a constant on the whole interval [0, T ⋆

u0
).

Indeed, if it were not the case, there would exist a maximal T̃ < T ⋆
u0

such

that ‖u(t)‖H1 is a constant on [0, T̃ ). Defining MT̃ as in (2.19) and using
Theorem 2.3, we would get an ǫ > 0 such that (CH) has a solution in Es

p,r(ǫ)

with constant H1 norm and initial data u(T̃ − ǫ/2). Therefore, uniqueness

implies that ‖u(t)‖H1 is constant up to time T̃ + ǫ/2, which contradicts the

definition of T̃ . Now, thanks to the following Sobolev inequality,

‖v‖L∞ ≤ ‖v‖H1√
2

, (2.20)

we have a uniform control on ‖u(t)‖L∞ for t < T ⋆
u0

so that (2.17) reduces to
(2.18). ¤

Remark 2.7. In the supercritical case s > max(1+1/p, 3/2) and if u0 ∈ H1,
we have a more general explosion criterion:

T ⋆
u0

< +∞ =⇒
∫ T ⋆

u0

0

‖∂xu(τ)‖B0
∞,∞

dτ = +∞. (2.21)

The fact that ‖∂xu(t)‖L∞ may be replaced with the weaker norm
‖∂xu(t)‖B0

∞,∞
is not surprising. A similar property has been stated for Euler

equations (see for example [1] or [5]). This merely stems from the following
standard interpolation inequality for s > 1 + 1/p :

‖∂xu‖L∞ ≤ ‖∂xu‖B0
∞,∞

log
(
e +

‖∂xu‖Bs
p,r

‖∂xu‖B0
∞,∞

)
.
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3. Lower bounds for the maximal existence time. This part is
mainly devoted to the proof of Theorem 0.1. Our first result however states
that even for more general initial data with possibly infinite energy, one can
get a lower bound depending only on ‖u0‖Lip for the lifespan of the solutions.

Proposition 3.1. If u0 ∈ Bs
p,r ∩ Lip with s > 3/2, then we have

T ⋆
u0

≥ T̃u0

def
=

1

(1 +
√

2/2) ‖∂xu0‖L∞ + (
√

2 + 1) ‖u0‖L∞

.

Proof. From (CH), we derive the following equality:

∂t∂xu + u∂x∂xu = u2 − 1

2
(∂xu)2 − (1 − ∂2

xx)−1
(
u2 +

1

2
(∂xu)2

)
.

This clearly implies that

‖∂xu(t)‖L∞ ≤ ‖∂xu0‖L∞ +

∫ t

0

(
‖u(τ)‖2

L∞ +
1

2
‖∂xu(τ)‖2

L∞

(3.1)

+

∥∥∥∥(1 − ∂2
xx)−1

(
u(τ)

2
+

1

2
(∂xu(τ))2

)∥∥∥∥
L∞

)
dτ.

On the other hand, the operator (1−∂2
xx)−1 is the convolution operator with

kernel

p(x) =
1

2
e−|x| if A = R and p(x) =

ch(x − [x] − 1/2)

2sh1/2
if A = T, (3.2)

so that the following estimates hold true:

∥∥(1 − ∂2
xx)−1v

∥∥
L∞ ≤ ‖v‖L∞ and

∥∥∂x(1 − ∂2
xx)−1v

∥∥
L∞ ≤ ‖v‖L∞ . (3.3)

Coming back to (3.1), we thus gather that

‖∂xu(t)‖L∞ ≤ ‖∂xu0‖L∞ +

∫ t

0

(‖∂xu(τ)‖2
L∞ + 2 ‖u(τ)‖2

L∞) dτ. (3.4)

Similarly, we directly get from (CH) and (3.3) that

‖u(t)‖L∞ ≤ ‖u0‖L∞ +
1

2

∫ t

0

(‖∂xu(τ)‖2
L∞ + 2 ‖u(τ)‖2

L∞) dτ. (3.5)
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From (3.4) and (3.5), we conclude that

z(t) ≤ z(0) + (1 +
√

2/2)

∫ t

0

(z(τ))2 dτ

with z(t)
def
= ‖∂xu(t)‖L∞ +

√
2 ‖u(t)‖L∞ so that

z(t) ≤ z0

1 − (1 +
√

2/2)z0t
for t < min

(
T̃u0

, T ⋆
u0

)
. (3.6)

In view of Proposition 2.6, this implies that T ⋆
u0

≥ T̃u0
. ¤

Remark. We shall see below that the coefficient (1 +
√

2/2) is not optimal
in the case of finite-energy solutions. Let us notice that plugging (3.6) in
(2.15) yields the following bound:

‖u(t)‖Bs
p,r

≤ ‖u0‖Bs
p,r

(
1 − t

T̃u0

)−β

for a positive β depending only on s, p and r.
In the case where the initial data u0 are in H1, one can improve the ex-

plosion criterion (2.18) and get a sharp estimate from below for the existence
time T ⋆

u0
:

Theorem 3.2. Suppose that u0 ∈ Bs
p,r ∩ H1 with s > 3/2 and Bs

p,r ⊂
Lip. Then (CH) has a unique maximal solution u ∈ C([0, T ⋆

u0
);Bs

p,r) ∩
C1([0, T ⋆

u0
);Bs−1

p,r ) with constant H1 norm. If we denote

M(t)
def
= sup

x∈A
∂xu(t, x) and m(t)

def
= inf

x∈A
∂xu(t, x),

we have for every t < T ⋆
u0

M(t) ≤ ‖u0‖H1√
2

max
(
1,

√
2M(0) + ‖u0‖H1 tanh(

‖u0‖H1 t

2
√

2
)

‖u0‖H1 +
√

2M(0) tanh(
‖u0‖H1 t

2
√

2
)

)

≤ max
(
M(0),

‖u0‖H1√
2

)
, (3.7)

and the lifespan T ⋆
u0

satisfies

T ⋆
u0

≥ Tu0

def
= − 2√

c‖u0‖H1

arctan
(√

c‖u0‖H1

m(0)

)
(3.8)
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with c = 1 if A = R and c = cosh(1/2)/sh(1/2) if A = T. The lower
bound above is sharp: for any ǫ > 0, there exists a u0 ∈ H3 such that
T ⋆

u0
< (1 + ǫ)Tu0

. In addition, we have the following blow-up criterion:

T ⋆
u0

< +∞ =⇒
∫ T ⋆

u0

0

m(t) dt = −∞. (3.9)

Proof. Throughout the proof, we shall assume that u0 6≡ 0.
Step 1: The case of smooth data: u0 ∈ H3. The proof of Proposition 3.2
relies on an “abstract key result” by A. Constantin and J. Escher (see [8])
which holds true for functions belonging to C1([0, T ];H2). Since we shall
apply this result to u, we shall suppose as a first step that u0 ∈ H3. The
“abstract key result” is the following:

Lemma 3.3. Let T > 0 and v ∈ C1([0, T ];H2(A)). Then for every
t ∈ [0, T ), there exists at least one point ξ(t) (respectively ζ(t)) in A such that

m(t)
def
= infx∈A ∂xv(t, x) = ∂xv(t, ξ(t))

(
resp. M(t)

def
= supx∈A ∂xv(t, x) =

∂xv(t, ζ(t))
)

and the function m (respectively M) is almost everywhere dif-
ferentiable on (0, T ) with

m′(t) = ∂x∂tv(t, ξ(t))
(
respectively M ′(t) = ∂x∂tv(t, ζ(t))

)
.

This lemma was first proved in [8] for m only and in the case A = R.
However, since the proof relies on local arguments and on the existence of
ξ(t), it works for A = T as well. Besides, changing v into −v, we obtain the
desired result for M .

Let us tackle the proof of Theorem 3.2 in the case u0 ∈ H3. According to
Theorem 2.3 and Proposition 2.6, (CH) has a unique maximal solution u ∈
C([0, T ⋆

u0
);H3) ∩ C1([0, T ⋆

u0
);H2) with constant H1 norm, and T ⋆

u0
satisfies

(2.18). In view of Lemma 3.3 applied to v = u, we have for almost every
t ∈ (0, T ⋆

u0
),

dm

dt
+

m2

2
= u2(t, ξ(t)) −

(
p ⋆

(
u2 +

(∂xu)2

2

))
(t, ξ(t)), (3.10)

dM

dt
+

M2

2
= u2(t, ζ(t)) −

(
p ⋆

(
u2 +

(∂xu)2

2

))
(t, ζ(t)). (3.11)

In the case A = R, it was proved in [8] that

p ⋆
(
u2 +

(∂xu)2

2

)
≥ u2

2
. (3.12)
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Since in the case A = T the kernel of (1 − ∂2
xx)−1 satisfies

p(x) =
ch(x − [x] − 1/2)

2sh(1/2)
=

∑

k∈Z

e−|x−k|

2
,

it is easy to prove that (3.12) still holds.
From (3.11) and (3.12), we now gather that for almost every t ∈ (0, T ⋆

u0
),

dM

dt
+

M2

2
≤ u2

2
(t, ζ(t)).

In view of inequality (2.20) and as ‖u(t)‖H1 = ‖u0‖H1 , we get

dM

dt
+

M2

2
≤ ‖u0‖2

H1

4
. (3.13)

The continuity of ∂xu on A × [0, T ⋆
u0

) obviously entails the continuity of
M . Therefore, according to (3.13), we easily gather (by contradiction) that

M(t) ≤ ‖u0‖H1/
√

2 if M(0) ≤ ‖u0‖H1/
√

2.

If M(0) > ‖u0‖H1/
√

2, there exists a maximal T ⋆ ≤ T ⋆
u0

such that M >

‖u0‖H1/
√

2 on [0, T ⋆). According to (3.13), M is nonincreasing on this

interval. More precisely, denoting N(t) =
√

2M(t)/‖u0‖H1 , we have for
almost every t < T ⋆,

2N ′(t)

1 − N2(t)
≥ ‖u0‖H1√

2
,

so that routine computations yield

M(t) ≤ ‖u0‖H1√
2

(√
2M(0) + ‖u0‖H1 tanh(

‖u0‖H1 t

2
√

2
)

‖u0‖H1 +
√

2M(0) tanh(
‖u0‖H1 t

2
√

2
)

)
.

Now, if T ⋆ < T ⋆
u0

, we then have M(t) ≤ ‖u0‖H1/
√

2 on [T ⋆, T ⋆
u0

). This

achieves the proof of (3.7) in the case u0 ∈ H3. Combining (2.18) and (3.7),
we readily gather the explosion criterion (3.9).

Let us now turn to the proof of the bound from below for T ⋆
u0

. Since
‖p‖L∞ ≤ c/2 with c given in the statement of Theorem 3.2, we obviously
have

dm

dt
+

m2

2
≥ − c

2
‖u(t)‖2

H1 = − c

2
‖u0‖2

H1 .
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After a time integration, we deduce that, for all t < min(T ⋆
u0

, Tu0
),

arctan
m(t)√

c‖u0‖H1

≥ arctan
m(0)√
c‖u0‖H1

−
√

c‖u0‖H1

2
t,

or in other words,

−m(t) ≤
√

c‖u0‖H1 tan
(√

c‖u0‖H1

2 t
)
− m(0)

1 + m(0)√
c‖u0‖H1

tan
(√

c‖u0‖H1

2 t
) . (3.14)

Therefore,
∫ t

0
(minx∈A ∂xu(τ)) dτ remains bounded as long as t < min(T ⋆

u0
,

Tu0
). In view of (3.9), this implies that T ⋆

u0
≥ Tu0

.

Step 2: The case of rough data. Let us consider a u0 ∈ Bs
p,r ∩ H1 with

s > 3/2 and Bs
p,r ⊂ Lip. Existence and uniqueness in Es

p,r(T ) for a small
positive T is given by Theorem 2.3. We also know according to Proposition
2.6 that the H1 norm is constant on the whole interval [0, T ⋆

u0
). We now

want to prove that T ⋆
u0

is bounded from below according to (3.8).

Let un be the solution corresponding to the approximate initial data un
0

def
=

Snu0. Since in particular, u0 ∈ B
1+ 1

p

p,1 ∩ H1, we gather from the definition

of Besov spaces that (un
0 )n∈N tends to u0 in Lip ∩ H1 so that T ⋆

un
0

tends to

T ⋆
u0

. Note also that (un
0 )n∈N is uniformly bounded in Bs

p,r.
Let us fix an ǫ ∈ (0, 1). For a N large enough, we have

n ≥ N =⇒ Tun
0

> Tǫ
def
= − 2

‖u0‖H1

arctan
( (1 − ǫ)‖u0‖H1

m(0)

)
.

According to step 1, we thus have T ⋆
un

0
> Tǫ and for t ∈ [0, Tǫ],

sup
x∈A

∂xun(t) ≤ ‖un
0‖H1√

2
max

(
1,

√
2 supx∈A ∂xun

0 (x) + ‖un
0‖H1 tanh(

‖un
0 ‖H1 t

2
√

2
)

‖un
0‖H1 +

√
2 supx∈A ∂xun

0 (x) tanh(
‖un

0 ‖H1 t

2
√

2
)

)
,

≤ C max
(‖u0‖H1√

2
,M(0)

)
. (3.15)

On the other hand, taking N larger if needed, we have according to (3.14)
and for n ≥ N

− inf
x∈A

∂xun(t) ≤ ‖un
0‖H1 tan

(‖un
0 ‖H1

2 t
)
− (infx∈A ∂xun

0 (x))

1 +
(infx∈A ∂xun

0 (x))
‖un

0 ‖H1
tan

(‖un
0 ‖H1

2 t
) ,

≤ 2

ǫ

(‖u0‖2
H1 + m(0)2

−m(0)

)
. (3.16)
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From (3.16), (3.15) and Lemma 2.4, we get uniform bounds for (un)n∈N

in C([0, Tǫ];B
s
p,r) ∩ C1([0, Tǫ];B

s−1
p,r ). We can therefore conclude exactly as

in the proof of Theorem 2.3 that, up to an extraction, (un)n∈N converges
weakly to a solution u ∈ Es

p,r(Tǫ) of (CH) which satisfies (3.7) on [0, Tǫ].
Since s > 3/2, uniqueness holds true so that we conclude, having ǫ tend to
zero, that T ⋆

u0
≥ Tu0

and that (3.7) is satisfied on [0, Tu0
).

Let us prove that (3.7) holds on [0, T ⋆
u0

). Let [0, T ⋆] be the largest interval
on which (3.7) holds,

m̃ = inf
(t,x)∈[0,T ⋆]×A

∂xu(t, x) and T̃ = − 2√
c‖u0‖H1

arctan
(√

c‖u0‖H1

m̃

)
.

Assuming that T ⋆ < T ⋆
u0

, we know that ‖∂xu(t)‖L∞ is uniformly bounded on

[0, T ⋆] so that m̃ > −∞. On the other hand, if we define v0
def
= u(T ⋆ − T̃ /2),

we have just proved that the corresponding solution v of (CH) satisfies (3.7)

on [0, T ⋆
v0

), thus, on [0, T̃ ). In view of uniqueness, this means that u satisfies

(3.7) on [0, T ⋆ + T̃ /2), which contradicts the definition of T̃ . Therefore,
T ⋆ = T ⋆

u0
. Now, we can conclude thanks to (2.18) that the explosion criterion

reduces to (3.9).

Last step: The estimate (3.8) is sharp. Let us notice that, as u0 is in B
1+ 1

p

p,1 ,
u0 and ∂xu0 are continuous and tend to zero at infinity. Since we assumed
that u0 6≡ 0, the term m(0) is negative so that Tu0

∈ (0,+∞].

The fact that the lower bound above is sharp may be deduced from The-
orem 4.1 in [7]. Indeed, it is proved there in the case A = R (but it is easy to
extend the results to A = T) that for any odd u0 ∈ H3 such that ∂xu0(0) < 0,
we have T ⋆

u0
≤ −2(∂xu0(0))−1 (actually there is a missprint in the statement

of the theorem; the right inequality is at the last line of page 319). Let us
choose a u0 ∈ H3 such that ∂xu0(0) = infx∈A ∂xu0(x) < 0 (for example

u0(x) = −xe−x2

in the case A = R) and define un
0 (x)

def
= n−1/2u0(nx) for

n ≥ 1. We clearly have

∂xun
0 (0) = −n1/2∂xu0(0) and ‖un

0‖H1 −→n→+∞ ‖∂xu0‖L2

so that

lim inf
n→+∞

Tun
0

T ⋆
un

0

≥ lim
n→+∞

(−∂xun
0 (0)

2

)
Tun

0
= 1. ¤
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Remark. If u0 ∈ Bs
p,r ∩ H1 with Bs

p,r ⊂ Lip and s > 1, the proof above

shows that for any T < Tu0
, (CH) has a solution in Es

p,r(T ) ∩ L∞(0, T ;H1)
satisfying (3.7). If s ≤ 3/2, the question of uniqueness remains open, though.

We end this section by showing that under a sign assumption for the

potential y0
def
= u0 − ∂2

xxu0, (CH) has a unique global solution. This result
finds its origin in [6] where the regularity assumption u0 ∈ H3 was needed.

Theorem 3.4. Suppose that Bs
p,r ⊂ Lip and that u0 ∈ Bs

p,r ∩ H1. If

y0
def
= u0 − ∂2

xxu0 has a sign, then (CH) has a global solution u ∈ Es
p,r ∩

L∞(R+;H1). If s > 3/2, then uniqueness holds in Es
p,r. Moreover, ‖u(t)‖H1

is a constant and y(t) has the sign of y0.

Proof. Approximate the initial datum u0 with a nonnegative, smooth,

compactly supported mollifier ρ such that
∫

ρ = 1, and set un
0

def
= ρn ⋆ u0

with ρn(x) = ndρ(nx). Since u0 is in H1 ∩ Bs
p,r, we have (for instance)

un
0 ∈ H4 ∩ Bs

p,r. According to Theorem 2.3, (CH) has a unique classical

solution un ∈ ∩T<T n

(
E4

2,2(T ) ∩ Es
p,r(T )

)
with constant H1 norm.

On the other hand, ρ is nonnegative so that yn
0

def
= un

0 − ∂2
xxun

0 = ρn ⋆ y0

has the sign of y0. Moreover, if we denote by ψn the flow of un (i.e. the

solution to ψn(t, x) = x +
∫ t

0
un(τ, ψn(τ, x)) dτ), we have according to [6],

∀t ∈ [0, Tn),∀x ∈ A, yn
0 (x) = yn(t, ψn(t, x))(∂xψn(t, x))2 (3.17)

so that sgnyn(t) = sgnyn
0 = sgny0 for all t ∈ [0, Tn). Therefore, using the

explicit expression of un = p ⋆ yn and ∂xun = ∂xp ⋆ yn with p given in (3.2),
we readily get

‖∂xun‖L∞ ≤ ‖un‖L∞ ,

whence

‖∂xun(t)‖L∞ ≤ ‖un(t)‖L∞ ≤ ‖un(t)‖H1 = ‖un
0‖H1 ≤ ‖u0‖H1 . (3.18)

Therefore Tn = +∞. Moreover, according to Lemma 2.4 and (3.18), we
have

∀t ∈ R
+, ‖un(t)‖Bs

p,r
≤ ‖un

0‖Bs
p,r

eC
∫ t
0
‖u(τ)‖

Lip
dτ ≤ ‖u0‖Bs

p,r
eCt‖u0‖H1 ,

and we can conclude that (un)n∈N is uniformly bounded in Es
p,r.
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Following the end of the proof of Theorem 2.3, the above result suffices
to get that, up to an extraction, (un)n∈N tends weakly to a global solution
u ∈ Es

p,r ∩ L∞(R+;H1) of (CH) such that sgny(t) = sgny0. If s > 3/2,
uniqueness stems from Proposition 2.1, and it was proved in Proposition 2.6
that ‖u(t)‖H1 is a constant. ¤

4. Lower semicontinuity of existence time. In this section, we
address the question of lower semicontinuity of existence time with respect
to sufficiently smooth initial data. We shall prove the following:

Theorem 4.1. Assume that v0 ∈ Bs
p,r where (s, p, r) are such that Bs

p,r ⊂
Lip and s > 3/2. Let u0 ∈ B

2+ 1
p

p,1 and T < T ⋆
u0

. Then there exists a constant

C = C(p) such that if

‖v0 − u0‖
B

1
p

+1

p,1

<
1

C
∫ T

0
exp

(
C

∫ τ

0
‖u(τ ′)‖

B
1
p

+2

p,1

dτ ′
)
dτ

(4.1)

then (CH) has a (unique) solution v ∈ Es
p,r(T ) with initial datum v0.

Proof. Let us remark first that the right-hand side of (4.1) is positive.

Indeed, it may be bounded from below by (CT exp{C
∫ T

0
‖u(t)‖

B
1
p

+2

p,1

dt})−1.

Let v be the maximal solution of (CH) with initial datum v0 (whose

existence is ensured by Theorem 2.3). Denoting w
def
= v − u, we gather from

(CH) that
∂tw + (u + w)∂xw = −w∂xu + F (u,w) (4.2)

with F (u,w) = P (D)(w2 + 2uw + (∂xw)2/2 + ∂xu∂xw).

Denote T ⋆ def
= min(T ⋆

u0
, T ⋆

v0
) (where T ⋆

u0
and T ⋆

v0
are the lifespans of u and

v), and let us turn to the proof of estimates for w in C([0, T ⋆);B
1
p +1

p,1 ). Apply

inequality (A.10) in the appendix. We get for 0 ≤ t < T ⋆,

‖w(t)‖
B

1
p

+1

p,1

≤‖w0‖
B

1
p

+1

p,1

+

∫ t

0

‖w∂xu(τ)‖
B

1
p

+1

p,1

dτ+

∫ t

0

‖F (u(τ), w(τ))‖
B

1
p

+1

p,1

dτ

+C

∫ t

0

(‖∂xu(τ)‖
B

1
p
p,1

+ ‖∂xw(τ)‖
B

1
p
p,1

)‖w(τ)‖
B

1
p

+1

p,1

dτ ;

hence, thanks to Proposition 1.5,

‖w(t)‖
B

1
p

+1

p,1

≤ ‖w0‖
B

1
p

+1

p,1

+C

∫ t

0

(
‖w(τ)‖

B
1
p

+1

p,1

+‖u(τ)‖
B

1
p

+2

p,1

)
‖w(τ)‖

B
1
p

+1

p,1

dτ.
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According to Gronwall’s lemma, we infer that

‖w(t)‖
B

1
p

+1

p,1

≤ e

C
∫ t
0
(‖u(τ ′)‖

B

1
p

+2

p,1

+‖w(τ ′)‖
B

1
p

+1

p,1

) dτ ′

‖w0‖
B

1
p

+1

p,1

. (4.3)

Denoting W (t) = exp
(
−C

∫ t

0
‖w(τ)‖

B
1
p

+1

p,1

dτ
)

and

G(t) = C‖w0‖
B

1+ 1
p

p,1

exp
(
C

∫ t

0

‖u(τ)‖
B

1
p

+2

p,1

)
dτ,

inequality (4.3) reads

W ′ ≥ −G. (4.4)

Let

T ⋆⋆ def
= min

{
0 ≤ t ≤ T ⋆

u0
: C‖w0‖Bs

p,r

∫ t

0

exp
(
C

∫ τ

0

‖u(τ ′)‖
B

1
p

+2

p,1

dτ ′)dτ ≥ 1
}
.

Integrating (4.4) between 0 and t and plugging the resulting inequality in
(4.3), we infer that ∀t < min(T ⋆, T ⋆⋆),

‖w(t)‖
B

1
p

+1

p,1

≤
‖w0‖

B
1
p

+1

p,1

exp
(
C

∫ t

0
‖u(τ)‖

B
1
p

+2

p,1

dτ
)

1 − C‖w0‖
B

1
p

+1

p,1

∫ t

0
exp

(
C

∫ τ

0
‖u(τ ′)‖

B
1
p

+2

p,1

dτ ′
)
dτ

. (4.5)

Assumption (4.1) clearly entails that T < T ⋆⋆. Let us argue by contradiction
and assume that T ⋆

v0
≤ T . Then, according to (4.5), we have, for t < T ⋆

v0
,

‖w(t)‖
B

1
p

+1

p,1

≤
‖w0‖

B
1
p

+1

p,1

exp
(
C

∫ T

0
‖u(τ)‖

B
1
p

+2

p,1

dτ
)

1 − C‖w0‖
B

1
p

+1

p,1

∫ T

0
exp

(
C

∫ τ

0
‖u(τ ′)‖

B
1
p

+2

p,1

dτ ′
)
dτ

< +∞

so that ‖w(t)‖
B

1
p

+1

p,1

is uniformly bounded on [0, T ⋆
v0

). Since B
1+ 1

p

p,1 →֒ Lip,

Proposition 2.6 shows that v may be extended beyond T ⋆
v0

. ¤
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Remark. Though the solution associated with u0 = 0 is global, one can find
arbitrary small initial data for which the corresponding maximal solution is
not global (see [6], [7], [8] and [16]).

5. Weak solutions. The results of the previous parts are not completely
satisfactory since they do not yield global existence of solitons for instance.
Indeed, as explained in the introduction, for these latter, y0 is a Dirac mea-

sure so that u0 = (1 − ∂2
xx)−1y0 is in every B

1+ 1
p

p,∞ (1 ≤ p ≤ +∞) but not in

B
1+ 1

p

p,1 . This motivates the study of the initial value problem with data u0

such that y0 is in M. Clearly, Lemma 1.3 ensures us that u0 is in the space
B2

1,∞ and, in addition, u0 ∈ Lip ∩ H1. Therefore, Theorem 2.3 yields local

existence and uniqueness of a solution u in E2
1,∞(T ) with constant energy.

It would be interesting to prove a more precise result, namely that y(t) stays
in M, and to study whether the same explosion criterion as in Theorem 3.2
holds. Under the sign assumption for y0, we shall obtain as in Theorem 3.4
that the solution is global. This latter result has been proved before by A.
Constantin and L. Molinet in [9]. Our main result is the following:

Theorem 5.1. Suppose that y0 belongs to M. Then (CH) has a unique
maximal solution u ∈ L∞

loc(0, T ⋆
u0

;B2
1,∞∩Lip)∩Liploc([0, T ⋆

u0
);B1

1,∞∩L∞). In

addition, the energy is conserved, y(t)
def
= (u − ∂2

xxu)(t) stays in M uniformly
on every compact interval of [0, T ⋆

u0
) and

sup
(t,x)∈[0,T ⋆

u0
)×A

∂xu(t, x) ≤ max
(‖u0‖H1√

2
, sup
x∈A

∂xu0(x)
)
. (5.1)

We also have

T ⋆
u0

≥ 2

‖y0‖M
and T ⋆

u0
< +∞ =⇒

∫ T ⋆
u0

0

(
inf
x∈A

∂xu(t, x)
)
dt = −∞.

If y0 has a definite sign, then the solution is global and ‖y(t)‖M = ‖y0‖M
for all t ≥ 0.

Proof. Uniqueness is given by Proposition 2.1.
Step 1: Existence on a small time interval. Let us fix a T < 2‖y0‖−1

M . We
aim at building a solution on [0, T ] with constant energy, which satisfies (5.1)
and y(t) ∈ M uniformly on [0, T ]. To achieve it, approximate the initial data

as in the proof of Theorem 3.4. Obviously un
0 belongs to H∞ def

= ∩s∈RHs,
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tends to u0 in the sense of the distributions and yn
0

def
= un

0 − ∂2
xxun

0 = ρn ⋆ y0

so that
‖yn

0 ‖L1 ≤ ‖y0‖M. (5.2)

Note also that ‖un
0‖H1 ≤ ‖yn

0 ‖L1 ≤ ‖y0‖M. According to Proposition 2.3,
(CH) has a unique maximal solution un ∈ C([0, Tn);H∞) with initial datum

un
0 and constant energy. On the other hand, yn def

= un − ∂2
xxun solves

∂ty
n + ∂x(unyn) = −yn∂xun

so that
∂t|yn| + ∂x(un|yn|) = −|yn|∂xun. (5.3)

Integrating in space and time, we get

‖yn(t)‖L1 ≤ ‖yn
0 ‖L1 −

∫ t

0

‖yn(τ)‖L1

(
inf
x∈A

∂xun(τ)
)
dτ, (5.4)

whence
‖yn(t)‖L1 ≤ ‖yn

0 ‖L1 e−
∫ t
0
(infx∈A ∂xun(τ)) dτ . (5.5)

Now, let us notice that, as ∂xun = ∂xp ∗ yn with p given in (3.2), we have

‖∂xun‖L∞ ≤ 1

2
‖yn‖L1 . (5.6)

Plugging (5.2) and (5.6) in (5.5), and performing an explicit integration, we
get

∀t < min(Tn, 2‖y0‖−1
M ), ‖yn(t)‖L1 ≤ 2‖y0‖M

2 − t‖y0‖M
. (5.7)

Coming back to (5.6), this gives us a uniform control on ‖∂xun‖L∞ for

t < min(Tn, 2‖y0‖−1
M ). This means, according to Proposition 2.6, that Tn ≥

2‖y0‖−1
M > T . We therefore have uniform estimates for ∂xun in L∞([0, T ] ×

A). Moreover, according to Theorem 3.2,

sup
(t,x)∈[0,T n)×A

∂xun(t, x) ≤ max
(‖un

0‖H1√
2

, sup
x∈A

∂xun
0 (x)

)

≤ max
(‖u0‖H1√

2
, sup
x∈A

∂xu0(x)
)
.
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We conclude that the sequence (yn)n∈N is uniformly bounded on L∞(0, T ;
L1). According to Lemma 1.3, we thus get that (un)n∈N is uniformly
bounded in C([0, T ];B2

1,∞). Coming back to equation (CH), we infer that

(∂tu
n)n∈N is uniformly bounded in C([0, T ];B1

1,∞) so that, finally, (un)n∈N

is also uniformly bounded in Lip([0, T ];B1
1,∞).

Since the injection B2
1,∞ →֒ B1

1,∞ is locally compact, Ascoli’s theorem
followed by a diagonalization process shows us that, up to an extraction,
(un)n∈N tends weakly to a limit u ∈ Lip([0, T ];B1

1,∞). Coming back to

the uniform bounds for the sequence, we gather that u ∈ L∞(0, T ;B2
1,∞)

has constant energy, that y(t) is in M uniformly on [0, T ] and that (5.1) is
fulfilled on [0, T ].

Interpolation arguments enable us to prove that convergence holds locally
in any space L∞(0, T ;Bs

1,∞) such that s < 2, which suffices to check that u is

indeed a solution to (CH). Having T tend to 2‖y0‖−1
M and using uniqueness,

we can conclude that T ⋆
u0

≥ 2‖y0‖−1
M .

Step 2: The potential y(t) stays in M locally uniformly on [0, T ⋆
u0

). Step 2
stems from Proposition 2.6 and from the following lemma:

Lemma 5.2. Assume that y0 ∈ M, u ∈ E2
1,∞(T ) solves (CH) on [0, T ] and

that y ∈ L∞(0, T ;M). Then there exists a universal constant C such that
on [0, T ], we have

‖y(t)‖M ≤ ‖y0‖Me
∫ t
0
‖∂xu(τ)‖L∞ dτ . (5.8)

Proof. Let ρ be the compactly supported mollifier used in Theorem 3.4.
Let us apply the operator (1 − ∂2

xx)ρn⋆ to (CH). Denoting yn = ρn ⋆ y and
un = ρn ⋆ u, we gather

∂ty
n + (1 − ∂2

xx)
(
ρn ⋆ u∂xu

)
+ (1 − ∂2

xx)
(
ρn ⋆ ∂x

(
u2 +

(∂xu)2

2

))
= 0.

Using the fact that u(t) ∈ Lip and that y(t) ∈ M, we can write ∂x(u∂xu) ≡
u∂2

xxu + (∂xu)2 in the sense of the distributions. After some computations,
this implies that

∂ty
n + un∂xun + ∂x(unyn) − ∂x

( (∂xun)2

2

)
= Sn

1 + Sn
2 + Sn

3 (5.9)

with

Sn
1 = un∂xun − ρn ⋆ (u∂xu), Sn

2 = ∂x(unyn) − ∂x

(
ρn ⋆ (uy)

)
,

Sn
3 = ∂x

(
ρn ⋆

(∂xu)2

2

)
− ∂x

( (∂xun)2

2

)
.
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According to Lemma A.4 and to Lemma A.5 in the appendix, we have

‖Sn
1 ‖L1 ≤ C ‖∂xu‖L∞ ‖u‖L1 , ‖Sn

2 ‖L1 ≤ C ‖∂xu‖L∞ ‖y‖M,

‖Sn
3 ‖L1 ≤ C ‖∂xu‖L∞ ‖∂2

xxu‖M.

Since obviously ‖u‖L1 ≤ ‖y‖M and ‖∂2
xxu‖M ≤ 2‖y‖M, we have

‖Sn
1 + Sn

2 + Sn
3 ‖L1 ≤ C ‖∂xu‖L∞ ‖y‖M.

On the other hand, from (5.9), we get

∂t|yn| + ∂x(un|yn|) = −|yn|∂xun + (Sn
1 + Sn

2 + Sn
3 )sgn(yn)

so that standard computations based on Gronwall’s lemma lead to the de-
sired estimate. ¤

Given a solution u ∈ L∞
loc(0, T ⋆

u0
;B2

1,∞ ∩ Lip) ∩ Liploc(0, T ⋆
u0

;B1
1,∞ ∩ L∞)

with initial data u0 such that y0 ∈ M, we are now going to show that (5.8)
is satisfied on [0, T ⋆

u0
).

Combining step 1, uniqueness and Lemma 5.2, we gather that

(5.8) holds on [0, 2‖y0‖−1
M ). (5.10)

Assume that it holds on [0, T ⋆) for a T ⋆ < T ⋆
u0

. Lemma 5.2 tells us that

‖y(t)‖M is uniformly bounded by a constant MT ⋆ on [0, T ⋆). Let ǫ
def
= M−1

T ⋆ .
According to (5.10), the solution ũ corresponding to the initial datum u(T ⋆−
ǫ/2) satisfies (5.8) on [0, ǫ]. Uniqueness ensures that u(t) = ũ(t − T ⋆ + ǫ/2)
so that (5.8) holds on [0, T ⋆ + ǫ/2]. Therefore we can conclude that (5.8) is
satisfied on [0, T ⋆

u0
).

Step 3: End of the proof of the local result. The conservation of the energy
up to time T ⋆

u0
has been proved in Proposition 2.6. On the other hand, it

is known that (5.1) holds on a small nontrivial interval [0, T ]. Arguing as
in step 2 for the proof of (5.8) on [0, T ⋆

u0
[, we conclude that (5.1) holds on

[0, T ⋆
u0

).
Now, Proposition 2.6 gives us the wanted explosion criterion.

Last step: Global solutions. Let us assume that y0 has a definite sign.
Building a sequence (un)n∈N of approximate solutions according to step 1, we
get from Theorem 3.4 that sgnyn(t) = sgnyn

0 = sgny0. Therefore, integrating
(5.3), we infer that

‖yn(t)‖L1 = ‖yn(t)‖L1 ≤ ‖y0‖M. (5.11)
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According to (5.6), and to Proposition 2.6, we conclude that the solu-
tion un is global. Moreover, thanks to (5.11), we get uniform bounds in
L∞

loc(R
+;B2

2,∞) for (un)n∈N, and we can conclude exactly as in step one,

to the existence of a global solution u ∈ E2
1,∞. Thanks to (5.11), we have

in addition ‖y(t)‖M ≤ ‖y0‖M. Obviously, we would have obtained similar
global results by solving (CH) backwards. Indeed, this amounts to changing
u0 into −u0. Therefore, in view of uniqueness, ‖y(t)‖M is conserved. ¤

Remark 5.3. By Sobolev embeddings and interpolation, we have u ∈
C([0, T ⋆

u0
);Hs) ∩ C1([0, T ⋆

u0
);Hs−1) for any s < 3/2, which completes the

proof of Theorem 0.2.

Remark 5.4. The estimate from below T ⋆
u0

≥ 2‖u0‖−1
M is probably not

sharp: indeed, it stems from inequality (5.4), which is quite rough. On
the other hand, the “best” estimate from below that we can hope is T ⋆

u0
≥

4‖u0‖−1
M . Indeed, if A = R, the sequence of initial data

un
0 (x) = −nsgn(x)

n2 − 1

(
e−|x| − e−n|x|)

gives a sequence of solutions which satisfy ‖yn
0 ‖L1 = 2 and, according to

Theorem 4.1 in [7], blows up before the time 2 + 2n−1.

Appendix.

A.1. Linear transport equations. This section is devoted to the statement of
estimates in general Besov spaces for d-dimensional linear transport equations:

∂tf + v · ∇f = F, ft=0 = f0, (T )

where the vector field v has bounded space derivatives. Such estimates are standard in
the framework of Sobolev or Hölder spaces with positive regularity indices. The case of
negative regularity indices for Hölder spaces has been tackled in [5], chapter 4.

Here is the statement in general Besov spaces:

Proposition A.1. Suppose that (p, r) ∈ [1, +∞]2 and s > −d/p. Let v be a vector field

such that ∇v belongs to L1(0, T ; Bs−1
p,r ) if s > d/p+1 or to L1(0, T ; B

d/p
p,r ∩L∞) otherwise.

Suppose also that f0 ∈ Bs
p,r, F ∈ L1(0, T ; Bs

p,r) and that f ∈ L∞(0, T ; Bs
p,r)∩C([0, T ];S′)

solves (T ). Then there exists a constant C depending only on s, p and d, and such that
the following inequalities hold:

1) If r = 1 or s 6= d/p + 1,

‖f(t)‖Bs
p,r

≤ eCV (t)

(
‖f0‖Bs

p,r
+

∫ t

0
e−CV (τ)‖F (τ)‖Bs

p,r
dτ

)
(A.1)

with V (t) =
∫ t
0 ‖∇v(τ)‖

B
d/p
p,r ∩L∞

dτ if s < d/p + 1 and V (t) =
∫ t
0 ‖∇v(τ)‖

Bs−1
p,r

dτ else.
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2) If s ≤ d/p + 1 and, in addition, ∇f0 ∈ L∞, ∇f ∈ L∞(0, T × Ad) and ∇F ∈
L1(0, T ; L∞) then

‖f(t)‖Bs
p,r

+ ‖∇f(t)‖L∞ ≤ eCV (t)
(
‖f0‖Bs

p,r
+ ‖∇f0‖L∞

+

∫ t

0
e−CV (τ)

(
‖F (τ)‖Bs

p,r
+ ‖∇F (τ)‖L∞

)
dτ

)
(A.2)

with V (t) =
∫ t
0 ‖∇v(τ)‖

B
d/p
p,r ∩L∞

dτ .

If r < +∞, then f ∈ C([0, T ]; Bs
p,r). If r = +∞ then f ∈ C([0, T ]; Bs′

p,1) for all s′ < s.

If divv = 0 and v · ∇f stands for div(vf), then all the above results hold true for
s > −1 − d/p.

Proof. Slight modifications of Chemin’s proof (devoted to the case of Hölder spaces) give
estimates (A.1) and (A.2) so that we will not write out all the details.

The basic idea is to split (T ) in dyadic blocks according to Littlewood-Paley decom-
position:

(∂t + v · ∇)∆qf = ∆qF + Rq , ∆qf|t=0 = ∆qf0, (A.3)

where we denoted by Rq the remainder [v, ∆q ] · ∇f . Using standard energy arguments
and a convenient integration by parts, we end up with

‖∆qf(t)‖Lp ≤‖∆qf0‖Lp +

∫ t

0

(
‖∆qF (τ)‖Lp +‖Rq(τ)‖Lp +

‖divv(τ)‖L∞ ‖∆qf(τ)‖Lp

p

)
dτ.

(A.4)
Multiply both sides of (A.4) by 2qs, take the ℓr norm and apply Minkowski’s inequality.
It follows that

‖f(t)‖Bs
p,r

≤ ‖f0‖Bs
p,r

+

∫ t

0
‖F (τ)‖Bs

p,r
dτ (A.5)

+

∫ t

0

(( ∑

q≥−1

(2qs ‖Rq(τ)‖Lp )r

) 1
r

+
1

p
‖divv(τ)‖L∞ ‖f(τ)‖Bs

p,r

)
dτ.

Now, the main problem lies in estimating the remainder. We have the following:

Lemma A.2. If 1 ≤ p, r ≤ +∞ and s > −d/p (or s > −d/p − 1 if divv = 0), the
following estimates hold for a constant C = C(s, d, p, r):

‖Rq‖Lp ≤ Ccq2−qs‖∇v‖
B

d/p
p,r ∩L∞

‖f‖Bs
p,r

if s < d/p + 1, (A.6)

‖Rq‖Lp ≤ Ccq2−qs‖∇v‖
B

d/p
p,r ∩L∞

‖f‖Bs
p,r∩Lip if s = d/p + 1, (A.7)

‖Rq‖Lp ≤ Ccq2−qs‖∇v‖
Bs−1

p,r
‖f‖Bs

p,r
if s > d/p + 1. (A.8)

Moreover, if s > 0, we also have

∥∥[vj , ∆q ] · ∂jvi
∥∥

Lp ≤ Ccq2−qs ‖∇v‖L∞ ‖v‖Bs
p,r

, (A.9)
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where the Einstein convention on the summation over repeated indices has been used.

Assume that Lemma A.2 holds true and consider first the case s 6= d/p+1, or s = d/p+1
and r = 1. Plugging inequalities (A.6), (A.7) or (A.8) in (A.5) yields

‖f(t)‖Bs
p,r

≤ ‖f0‖Bs
p,r

+

∫ t

0
‖F (τ)‖Bs

p,r
dτ + C

∫ t

0
V ′(τ)‖f(τ)‖Bs

p,r
dτ (A.10)

and Gronwall’s lemma enables us to conclude to inequality (A.1).

Let us now consider the case s = d/p + 1 and r > 1. Since B
d/p
p,r →֒ L∞ does not hold

true, we further need an estimate for ‖∇f‖L∞ . Let us notice that

(∂t + v · ∇)∂jf = −∂jv · ∇f + ∂jF

so that

‖∇f(t)‖L∞ ≤ ‖∇f0‖L∞ +

∫ t

0
‖∇F (τ)‖L∞ dτ +

∫ t

0
‖∇v(τ)‖L∞ ‖∇f(τ)‖L∞ dτ. (A.11)

Now, summing (A.5) and (A.11), plugging inequality (A.7) in the right-hand side and
using Gronwall’s lemma completes the proof of (A.2).

Let us tackle the question of continuity in time. Since f ∈ C([0, T ];S′), this is not
hard to check that ∆qf ∈ C([0, T ]; Lp) for every q ≥ −1 and p ∈ [1, +∞]. This implies
that Sqf ∈ C([0, T ]; Bs

p,r) for all q ∈ N.

Suppose first that r < +∞. Then the sequence of functions (Sqf)q∈N defined on the
interval [0, T ] and valued in Bs

p,r converges uniformly on [0, T ]. Indeed, according to (1.1),

∆q′ (f − Sqf) =
∑

|q′′−q′|≥1

q′′≥q

∆q′∆q′′f

whence

‖f − Sqf‖Bs
p,r

≤ C
( ∑

q′≥q−1

(
2q′s

∥∥∆q′f
∥∥

Lp

)r
) 1

r
. (A.12)

Using inequality (A.4) to bound the right-hand side of (A.12), we gather

‖f − Sqf‖L∞
T

(Bs
p,r) ≤ C

(( ∑

q′≥q−1

(
2q′s

∥∥∆q′f0

∥∥
Lp

)r) 1
r

+

∫ T

0

( ∑

q′≥q−1

(
2qs

∥∥∆q′F (τ)
∥∥

Lp

)r
) 1

r
dτ + ‖f‖L∞

T
(Bs

p,r)

∫ T

0

( ∑

q′≥q−1

cq′ (τ)r
) 1

r
V ′(τ) dτ

)
.

The first term clearly tends to zero when q tends to infinity. The terms in the integral also
tend to zero for almost every τ . Lebesgue’s dominated convergence theorem enables us
to conclude that ‖f − Sqf‖L∞

T
(Bs

p,r) tends to zero when q tends to infinity. This proves

that u ∈ C([0, T ]; Bs
p,r) in the case r < +∞.
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When r = +∞, we just utilize that for any s′ < s we have the embedding Bs
p,∞ →֒

Bs′

p,1 so that the above argument may be repeated in the space Bs′

p,1. This yields f ∈

C([0, T ]; Bs′

p,1). ¤

Proof of Lemma A.2. We shall use some basic results in paradifferential calculus. Let
us recall that paradifferential calculus is a convenient way to define a generalized product
between distributions which is continuous in functional spaces where the usual product
does not make sense (see the pioneering work by J.-M. Bony in [2]). The paraproduct

between u and v is defined by Tuv
def
=

∑
q∈N

Sq−1u∆qv. We have the following formal

decomposition:

uv = Tuv+Tvu+R(u, v) with R(u, v)
def
=

∑

q≥−1

∆qu∆̃qv and ∆̃q = ∆q−1 +∆q +∆q+1.

The estimates below are standard (see [19] for example).

Proposition A.3. For all s ∈ R, p ∈ [1, +∞] and r ∈ [1, +∞], we have

‖Tuv‖Bs
p,r

≤ C ‖u‖L∞ ‖v‖Bs
p,r

.

Suppose that t < 0; then we also have

‖Tuv‖
Bs+t

p,r
≤ C‖u‖Bt

∞,∞
‖v‖Bs

p,r
.

Let (s1, s2) ∈ R
2, (p, p1, p2, r, r1, r2) ∈ [1, +∞]6 be such that s1 + s2 > 0, 1

p
≤ 1

p1
+ 1

p2

and 1
r
≤ 1

r1
+ 1

r2
. Then the following estimate holds:

‖R(u, v)‖

B
s1+s2−d

(
1

p1
+ 1

p2
− 1

p

)

p,r

≤ C‖u‖B
s1
p1,r1

‖v‖B
s2
p2,r2

.

In the above estimates, C depends only on d and on the parameters defining the Besov
norms.

Following [ 5, pp. 67–70], we decompose Rq into Rq =
∑5

i=1 Ri
q with R1

q =[Tvj , ∆q ]∂jf,

R2
q = T∂j∆qf vj , R3

q = −∆qT∂jf vj , R4
q = ∂jR(vj , ∆qf) − ∆q∂jR(vj , f), and R5

q =

∆qR(divv, f) − R(divv, ∆qf). The original proof by Chemin was devoted to the case of
Hölder spaces. It easily extends to the general Besov spaces: this is just a matter of
replacing L∞ with Lp norms, and ℓ∞ bounds over N ∪−1 by ℓr summations. Under the
assumptions of Lemma A.2 on s, p, r, we get

∥∥R1
q

∥∥
Lp ≤ Ccq2−qs ‖∇v‖L∞ ‖f‖Bs

p,r
, (A.13)

∥∥R2
q

∥∥
Lp ≤ Ccq2−qs‖∇v‖B0

∞,∞
‖f‖Bs

p,r
, (A.14)

∥∥R3
q

∥∥
Lp ≤ Ccq2−qs‖∇v‖

B
d/p
p,r

‖∇f‖
Bs−1

p,r
(A.15)

if s < d/p + 1 or (s = d/p + 1 and r = 1) ,
∥∥R3

q

∥∥
Lp ≤ Ccq2−qs‖∇v‖

Bs−1
p,r

‖∇f‖L∞ , (A.16)
∥∥R4

q

∥∥
Lp ≤ Ccq2−qs‖∇v‖

B
d/p
p,r

‖f‖Bs
p,r

, (A.17)

∥∥R5
q

∥∥
Lp ≤ Ccq2−qs‖divv‖

B
d/p
p,r

‖f‖Bs
p,r

, (A.18)
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with
∑

q≥−1 cr
q = 1. This yields (A.6), (A.7) and (A.8). Let us observe that the first five

estimates hold true for s > −d/p − 1. The stronger condition s > −d/p is required only
for the last term R5

q , which does not appear in the case of a solenoidal vector field v.

To prove (A.9), we write Rq =
∑3

i=1 Ri
q + R̃4

q with R1
q , R2

q , R3
q as above (with f = v)

and

R̃4
q = R(vj , ∆q∂jvi) − ∆qR(vj , ∂jvi).

We bound R1
q , R2

q and R3
q according to (A.13), (A.14) and (A.16). Using Proposition A.3,

we easily get, for s > 0,

∥∥∥R̃4
q

∥∥∥
Lp

≤ Ccq2−qs ‖∇v‖L∞ ‖v‖Bs
p,r

,

and the proof of (A.9) is achieved. ¤

Remark. The estimate (A.1) also holds for homogeneous Besov spaces when s < d/p+1,
or s ≤ d/p + 1 and r = 1. This is just a matter of replacing N ∪ {−1} with Z in the
summations.

A.2. Approximation lemma. This last section is devoted to the proof of the two
approximation lemmas used in section 5. Results in the same spirit may be found in [9]
or in [17], page 43.

Throughout this part, we are given a smooth function ρ with support in the ball
B(0, R). For any tempered distribution h, the notation hn will stand for h ⋆ ρn where

ρn(x)
def
= ndρ(nx).

Lemma A.4. There exists a constant C depending only on ρ and such that

‖ρn ⋆ ∂x(vg) − ∂x(vngn)‖L1 ≤ C ‖∂xv‖L∞ ‖g‖M

for any function v with first derivative in L∞, and g ∈ M.

Proof. Arguing by density, one can assume with no loss of generality that g is a smooth
integrable function. Next, we use the decomposition

ρn ⋆∂x(vg)−∂x(vngn) = ρn ⋆ ∂x(vg) − ∂x(vgn)
︸ ︷︷ ︸

Rn
1

+(v − vn)∂xgn

︸ ︷︷ ︸
Rn

2

+ gn∂x(v − vn)
︸ ︷︷ ︸

Rn
3

. (A.19)

For almost every x, the term Rn
1 (x) is written

Rn
1 (x) = n2

∫
∂xρ(n(x−y))(v(y)−v(x))g(y) dy−n∂xv(x)

∫
g(y)ρ(n(x−y)) dy. (A.20)

Whence, for almost every x,

|Rn
1 (x)| ≤ ‖∂xv‖L∞

( ∫
n2|∂xρ(n(x − y))||x − y||g(y)| dy +

∫
n|ρ(n(x − y))||g(y)| dy

)
.

Therefore, a convolution inequality yields

‖Rn
1 ‖L1 ≤ C ‖∂xv‖L∞ ‖g‖L1 . (A.21)
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Let us notice that

(v − vn)(x) =

∫
(v(x) − v(y))nρ(n(x − y)) dy

so that

‖v − vn‖L∞ ≤ n ‖∂xv‖L∞

∫
|z||ρ(nz)| dz ≤ Cn−1 ‖∂xv‖L∞ .

Therefore, since obviously ‖∂xgn‖L1 ≤ Cn ‖g‖L1 , we conclude that

‖Rn
2 ‖L1 ≤ C ‖∂xv‖L∞ ‖g‖L1 . (A.22)

To bound
∥∥Rn

3

∥∥
L1 , we use that ‖∂xvn‖L∞ ≤ C ‖∂xv‖L∞ and ‖gn‖L1 ≤ C ‖g‖L1 . Com-

ing back to (A.21) and (A.22), this completes the proof of Lemma A.4. ¤

Lemma A.5. There exists a constant C depending only on ρ and such that

‖ρn ⋆ ∂x(vg) − ∂x(vngn)‖L1 ≤ C‖∂xv‖M ‖g‖L∞

for any functions v ∈ BV and g ∈ L∞.

Proof. Arguing by density, one can assume that v is smooth and that v and ∂xv belong to
L1. Again, making use of the decomposition (A.19), it suffices to prove that, for i = 1, 2, 3,
we have

‖Rn
i ‖L1 ≤ C ‖∂xv‖L1 ‖g‖L∞ .

Let us notice first that for any function φ ∈ C∞
0 (R) supported in B(0, R) and x ∈ R, we

have

n
∣∣∣
∫

(v(x) − v(y))φ(n(x − y)) dy
∣∣∣ ≤ ‖φ‖L1

(
|∂xv| ⋆ 1[−R/n,R/n]

)
(x) (A.23)

where 1[a,b] denotes the characteristic function of [a, b]. Indeed, we have

n

∫
(v(x) − v(y))φ(n(x − y)) dy =

∫
φ(z)(v(x) − v(x − n−1z)) dz,

=

∫
φ(z)

( ∫ z/n

0
∂xv(x − λ) dλ

)
dz

so that

|n

∫
(v(x) − v(y))φ(n(x − y)) dy| ≤

∫ R

−R
|φ(z)| dz

∫ R/n

−R/n
|∂xv(x − y)| dy,

≤ ‖φ‖L1

∫
|∂xv(x − y)|1[−R/n,R/n](y) dy.

Now, let us decompose Rn
1 according to (A.20). The last term of the right-hand side

obviously satisfies the required estimate. For the first term, we use (A.23) with φ = ∂xρ
and apply a convolution inequality. As

∥∥1[−R/n,R/n]

∥∥
L1 = 2R/n, this yields the desired

estimate.



a few remarks on the camassa-holm equation 987

Using again (A.23), we see that ‖v − vn‖L1 ≤ Cn−1 ‖∂xv‖L1 . Since ‖∂xgn‖L∞ ≤
Cn ‖g‖L∞ , we gather that Rn

2 satisfies the wanted estimate. The case of Rn
3 is straight-

forward. ¤
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[6] A. Constantin, Existence of permanent and breaking waves for a shallow water
equation: a geometrical approach, Annales de l’Institut Fourier, 50 (2000), 321–
362.

[7] A. Constantin and J. Escher, Global existence and blow-up for a shallow water
equation, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 26
(1998), 303–328.

[8] A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water
equations, Acta Mathematica, 181 (1998), 229–243.

[9] A. Constantin and L. Molinet, Global weak solutions for a shallow water equation,
Communications in Mathematical Physics, 211 (2000), 45–61.

[10] A. Constantin and W. Strauss, Stability of peakons, Communications on Pure and
Applied Mathematics, 53 (2000), 603–610.

[11] H.-H. Dai, Model equations for nonlinear dispersive waves in a compressible
Mooney-Rivlin rod, Acta Mechanica, 127 (1998), 193–207.

[12] A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation
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