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A FEYNMAN-KAC-TYPE FORMULA FOR THE
DETERMINISTIC AND STOCHASTIC WAVE EQUATIONS

AND OTHER P.D.E.’S

ROBERT C. DALANG, CARL MUELLER, AND ROGER TRIBE

Abstract. We establish a probabilistic representation for a wide class of lin-
ear deterministic p.d.e.’s with potential term, including the wave equation in
spatial dimensions 1 to 3. Our representation applies to the heat equation,
where it is related to the classical Feynman-Kac formula, as well as to the
telegraph and beam equations. If the potential is a (random) spatially ho-
mogeneous Gaussian noise, then this formula leads to an expression for the
moments of the solution.

1. Introduction

The purpose of this paper is to present a form of the Feynman-Kac formula
which applies to a wide class of linear partial differential equations with a potential
term, and, in particular, to the wave equation in dimensions d ≤ 3. In the case of
the heat equation, this gives an expression that differs from the classical Feynman-
Kac formula. As an application, we consider a random potential term which is a
spatially homogeneous Gaussian random field that is white in time. In this case,
our approach provides a probabilistic representation for all product moments of the
solution, which has already shown its usefulness for studying asymptotic behavior
of these moments in the case of the stochastic wave equation (see [10]).

We begin by giving an informal derivation of the representation in the special
case of the heat equation with potential, where we can contrast it with the classical
Feynman-Kac formula. Consider the heat equation on Rd with a deterministic
potential V (t, x):

∂u(t, x)
∂t

=
1
2
∆u(t, x) + V (t, x)u(t, x),(1.1)

u(0, x) = f(x).
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The classical Feynman-Kac formula for the solution (u(t, x), t ≥ 0, x ∈ Rd) (see
for instance [15]) states that, under appropriate conditions on V and f ,

u(t, x) = EB
x

[
f(Bt) exp

(∫ t

0

V (t − s, Bs)ds

)]

where (Bt, t ≥ 0) is a Brownian motion in Rd, and EB
x is the expectation for

Brownian motion started at B0 = x.
We now heuristically derive an alternative probabilistic representation to (1.1),

which will be rigorously established as a special case of the main result in Section 3.
We start by writing Duhamel’s formula for the solution u(t, x), using the Green’s
function, as follows:

(1.2) u(t, x) =
∫

Rd

pt(x − y)f(y)dy +
∫ t

0

∫
Rd

pt−s(x − y)V (s, y)u(s, y)dyds,

where

pt(x) =
1

(2πt)d/2
exp

(
−|x|2

2t

)
.

We use (1.2) as the start of an iteration scheme. Substituting this expression for
u(s, y) back into the right hand side of (1.2) suggests the following series expansion
for u(t, x):

(1.3) u(t, x) =
∞∑

m=0

Im(t, x),

where I0(t, x) =
∫

Rd pt(x − y)f(y)dy and

(1.4) Im+1(t, x) =
∫ t

0

∫
Rd

pt−s(x − y)V (s, y)Im(s, y)dyds.

We wish to write an explicit expression for Im(t, x). To begin with, let

w(t, x) = I0(t, x).

For convenience, let sm+1 = t and ym+1 = x. Then we have

(1.5) Im(t, x) =
∫

Tm(t)

∫
Rmd

(
m∏

k=1

psk+1−sk
(yk+1 − yk)V (sk, yk)

)
w(s1, y1) dȳ ds̄

where
Tm(t) = {(s1, . . . , sm) : 0 ≤ s1 ≤ · · · ≤ sm ≤ t},

dȳ = dy1 · · · dym and ds̄ = ds1 · · · dsm. An alternative derivation of the series expan-
sion (1.3) for u(t, x) starts by expanding the exponential in the classical Feynman-
Kac formula as a Taylor series and confirming that the terms correspond to the
expansion (1.3). However, we will make use of the iterative formula (1.4) later on.

A basic observation is that the domain of integration Tm(t) has volume tm/m!,
which, except for a missing exponential factor, is a Poisson probability. If N(t) is
a rate one Poisson process, then P [N(t) = m] = tme−t/m!. Let τ1 < τ2 < · · · be
the times of the successive jumps of the Poisson process, and let τ0 = 0. It is well
known that if we condition on Nt = m, then the vector (τ1, . . . , τm) is uniformly
distributed over the simplex Tm(t). The time reversed sequence t − τm, . . . , t − τ1

is also uniformly distributed on Tm(t). Therefore, setting sk = t − τm+1−k and
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replacing yk by ym+1−k, so that y0 = x, we may rewrite the expression (1.5) for
Im(t, x) as

et EN

[∫
Rmd

(
m∏

k=1

pτk−τk−1(yk − yk−1)V (t − τk, yk)

)
w(t − τm, ym)dȳ 1{N(t)=m}

]
,

where EN is the expectation with respect to the Poisson process. But we can
also exploit the fact that pt(x) is the probability density for the increments of a
d-dimensional Brownian motion. Thus∫

Rmd

(
m∏

k=1

pτk−τk−1(yk − yk−1)V (t − τk, yk)

)
w(t − τm, ym)dȳ

= EB
x

[(
m∏

k=1

V (t − τk, Bτk
)

)
w(t − τm, Bτm

)

]
,

where EB
x denotes the expectation with respect to Brownian motion started at x,

and therefore,

Im(t, x) = etEB
x EN

[(
m∏

k=1

V (t − τk, Bτk
)

)
w(t − τm, Bτm

) 1{N(t)=m}

]
.

Summing over m, we get

(1.6) u(t, x) = etEB
x EN

[(
Nt∏

k=1

V (t − τk, Bτk
)

)
w
(
t − τN(t), BτN(t)

)]
.

The representation (1.6), unlike the classical Feynman-Kac formula, does not use
the entire Brownian path but only the values at a finite (random) set of times. This
allows us to extend this type of representation to equations where the differential
operator is not the infinitesimal generator of a Markov process. All we will require
is a Poisson process and an independent stochastic process whose one dimensional
marginals give the Green’s function for the differential operator. In particular, we
will treat the case of the wave equation with potential in dimensions d ≤ 3.

The outline of this paper is as follows. In Section 2, we describe the class of
equations that we will consider and establish a series representation in the case
of a bounded potential. In Section 3, we establish our Feynman-Kac-type formula
analogous to (1.6), where the Brownian motion will be replaced by a suitable spatial
motion that depends on the particular equation being considered. In Section 4, we
give an application to the situation where the potential is a Gaussian random field
whose covariance is formally given by

E
[
Ḟ (t, x)Ḟ (s, y)

]
= δ0(t − s)f(x − y).

In this equation, δ(·) denotes the Dirac delta function, f : Rd → R is continuous on
Rd \ {0} and the right-hand side is such that f(x− y) is indeed a covariance. This
type of covariance is widely used in the literature, including for instance [5, 6, 8, 17].
In this case, unlike the classical Feynman-Kac formula, the noise is too rough for the
probabilistic representation of the solution to make sense. Instead, we establish in
this section a formula for the second moment of the solution. Section 5 contains the
extension to n-fold product moments. This formula makes use of a Poisson random
measure combined with a spatial motion. The first two named authors have made
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use of this formula [10] to establish intermittency properties of the solution to the
wave equation with potential.

We end by making a few comments on related literature. Probabilistic rep-
resentations of the solution to deterministic p.d.e.’s abound. The closest related
work seems to be results on random evolutions, surveyed for example in Hersch
[12] and Pinsky [19]. These references give probabilistic representations for some
hyperbolic equations, including the Poisson representation for the damped wave
equation in one spatial dimension (also known as the telegraph equation) as de-
veloped by Marc Kac [13, 14]. Also related is the use of random flight models for
the Boltzmann equation, as described, for example, in [19, 11]. We cannot quite
find our approach represented in this literature. The use of Poisson probabilities is
also implicit in other works: Albeverio and Hoegh-Krohn [1] and Albeverio, Blan-
chard, Combe, Hoegh-Krohn, and Sirugue [2] have used the idea that the multiple
integrals involved in the expansion of Feynman integrals are related to Poisson
probabilities (see also [23]). All these works display the usefulness of probabilistic
representations in studying problems of asymptotics, homogenization and pertur-
bation theory for the deterministic p.d.e. For parabolic equations with random
potentials, the classical Feynman-Kac formula has been a key tool, for example in
the parabolic Anderson problem (see Carmona and Molchanov [3]) and in random
waves (see Oksendal, Vage and Zhao [18]). We hope that our representation may
play a similar role for other equations with a random potential.

2. Series representation for bounded potentials

Our series and probabilistic representations will be for the integral equation

(2.1) u(t, x) = w(t, x) +
∫ t

0

ds

∫
Rd

S(s, dy)V (t − s, x − y)u(t − s, x − y),

where w is a bounded and measurable function and S(s, ·) is a signed measure. In
this section, the key assumption is the following:

Assumption A. For each t ≥ 0, S(t, dy) is a signed measure on Rd satisfying

sup
t∈[0,T ]

|S(t, Rd)| < ∞ for all T > 0,

where |S(t, Rd)| denotes the total variation.
It is well known that a large class of linear partial differential equations of the

form

Lu(t, x) = V (t, x)u(t, x)

can be recast, using their Green’s functions, into this integral form. We briefly
recall some illustrative examples that we consider later.

Example 2.1. (a) The heat equation on Rd. Take L = ∂
∂t −

1
2∆ and S(t, dy) =

pt(y)dy. Then for a suitable initial condition u(0, x) = f0(x), the Green’s
function representation of the heat equation leads to the integral equation
(2.1) with

w(t, x) =
∫

Rd

f0(x − y)pt(y)dy.
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(b) The wave equation on Rd for d ≤ 3. Take L = ∂2

∂t2 − ∆ and

S(t, dy) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
21{|y|<t}dy if d = 1,

1

2π
√

t2−|y|2
1{|y|<t}dy if d = 2,

σ
(2)
t (dy)
4πt if d = 3,

where σ
(2)
t denotes the surface area on ∂B(0, t) (the boundary of the ball

centered at 0 with radius t). For all three values of d, S(t, Rd) = t. The
initial conditions are of the form u(0, x) = f0(x) and ∂u

∂t (0, x) = f1(x) for
given f0, f1 : Rd → R. In this case, letting ∗ denote convolution,

w(t, x) =
∂

∂t
(S(t) ∗ f0)(x) + (S(t) ∗ f1)(x).

For d ≥ 4, the fundamental solution of the wave equation is not a signed
measure and so Assumption A will not hold.

(c) The wave equation with damping. Take L = ∂2

∂t2 + 2a ∂
∂t − ∆ on Rd. This

also falls into the considered class when d ≤ 3. Then

S(t, dy) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−at

2 I0(|a|
√

t2 − y2)1{|y|<t}dy if d = 1,

e−at

2π

cosh(|a|
√

t2−|y|2)√
t2−|y|2

1{|y|<t}dy if d = 2,

e−at

4π

(
σ

(2)
t (dy)

t + |a|I1(|a|
√

t2−|y|2)√
t2−|y|2

1{|y|<t}dy

)
if d = 3.

In these formulas, given for instance in [16] and [9], I0 and I1 are modified
Bessel functions of the first kind and of orders 0 and 1, respectively. In
these three dimensions, S(t, dy) is a non-negative measure.

(d) The beam equation. In dimension d = 1, this is given by L = ∂
∂t + ∂4

∂x4 on
R. Then S(t, dy) = qt(y)dy, where qt(y) has Fourier transform exp(−|ξ|4t)
for t > 0. The smoothness and integrability of qt, and hence Assumption
A, can be deduced from the Fourier transform (for example |x2qt(x)| ≤
C‖∂2q̂/∂ξ2‖1).

We now give a series representation for the solution u(t, x) of (2.1).

Proposition 2.2. Let S(t, dy) be a signed measure satisfying Assumption A. Sup-
pose that V (t, y) and w(t, x) are bounded measurable functions on [0, T ]×Rd. Define
H0(t, x) = w(t, x), and, for m ≥ 0,

(2.2) Hm+1(t, x) =
∫ t

0

ds

∫
Rd

S(s, dy)V (t − s, x − y)Hm(t − s, x − y).

Then the integral equation (2.1) has a unique solution satisfying

sup
t≤T, x∈Rd

E[|u(t, x)|2] < ∞

given by

(2.3) u(t, x) =
∞∑

m=0

Hm(t, x)

(the series converges uniformly on [0, T ] × Rd).
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Proof. We first check the convergence of the series (2.3). Set

Mm(s) = sup
z∈Rd

|Hm(s, z)|.

Then

Mm+1(t) ≤ sup
z∈Rd

∫ t

0

ds

∫
Rd

|S(s, dy)| sup
r,z

|V (r, z)| sup
z

|Hm(t − s, x − z)|

≤ C(S, V )
∫ t

0

ds Mm(s).

A simple induction argument shows that Mm(s) < ∞ for all m, s. Gronwall’s lemma
(see e.g. [6, Remark (6)]) now implies that

∑∞
m=0 Hm(t, x) converges uniformly on

[0, T ] × Rd.
Another Gronwall argument shows the uniqueness of solutions to (2.1). So it

suffices to check that
∑∞

m=0 Hm(t, x) satisfies (2.1). This is the case, since

w(t, x) +
∫ t

0

ds

∫
Rd

S(s, dy)V (t − s, x − y)
∞∑

m=0

Hm(t − s, x − y)

= I0(t, x) +
∞∑

m=0

∫ t

0

ds

∫
Rd

S(s, dy)V (t − s, x − y)Hm(t − s, x − y)

=
∞∑

m=0

Hm(t, x).

Fubini’s theorem, used for the first equality, applies by uniform convergence of the
series and Assumption A. �

3. Probabilistic representation

For the probabilistic representation, we use the following additional assumption
on the kernel S(t, dy) used in the integral equation (2.1).

Assumption B. There exists a jointly measurable process (X̃t, t > 0) such that
for each t > 0

P
{
−X̃t ∈ dx

}
=

|S(t, dx)|
|S(t, Rd)| .

(In the case where S(t, A) = S(t,−A), the minus sign in front of X̃t is not needed.)

Example 3.1. (a) The heat equation. In this case, one can take X̃t =
√

t X0,
where X0 is a standard N(0, Id) random vector in Rd. An alternative
possibility is to let (X̃t) be a standard Brownian motion in Rd.

(b) The wave equation. In the three dimensional case, one can take X̃t =
t Θ0, where Θ0 is chosen according to the uniform probability measure on
∂B(0, 1). The one and two dimensional cases can be handled in a similar
way.

(c) The damped wave equation. Kac [13, 14] pointed out a neat representation
for solutions to the damped wave equation in dimension 1. Let (Na(t)) be
a rate a Poisson process and define τt =

∫ t

0
(−1)Na(s)ds. If w(t, x) solves

the undamped wave equation ∂2w
∂t2 − ∆w = 0 for t ∈ R, x ∈ Rd, then

u(t, x) = E[w(τt, x)] solves the damped wave equation ∂2u
∂t2 + 2a∂u

∂t −∆u =
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0, and with the same initial conditions. Using this, one finds that the
kernel Sa(t, dy) for the damped equation can be written as Sa(t, dy) =
E[S(τt, dy)1{τt>0} + S(−τt, dy)1{τt<0}], where S(t, dy) is the kernel for the
wave equation. Now we satisfy Assumption B by setting X̃t = |τt|Θ0,
where Θ0 is a uniform random variable on [−1, 1], independent of Na(t).

(d) The beam equation. As in example (a), we can use scaling to set X̃t =
t1/4X0, where X0 is chosen to have distribution |S(1, dy)|.

Let X̃(i) = (X̃(i)
t , t ≥ 0), i ≥ 1, be i.i.d. copies of (X̃t, t ≥ 0), and let (N(t), t ≥

0) be a rate one Poisson process independent of the (X̃(i)). Let 0 < τ1 < τ2 < · · ·
be the jump times of (N(t)) and set τ0 ≡ 0. Define a process X = (Xt, t ≥ 0) as
follows:

Xt = X0 + X̃
(1)
t for 0 ≤ t ≤ τ1,

and for i ≥ 1,

Xt = Xτi
+ X̃

(i+1)
t−τi

, for τi < t ≤ τi+1.

We use Px to denote a probability under which, in addition, X0 = x with prob-
ability one. Informally, the process X follows X̃(1) during the interval [0, τ1], then
follows X̃(2) started at Xτ1 during [τ1, τ2], then X̃(3) started at Xτ2 during [τ2, τ3],
etc. See Figure 1 for an illustration.

τ0 = 0 τ1 τ2 τ3 t

x ∈ Rd

X̃(1)

X̃(2)

X̃(3)

X̃(4)

1

2

3 N(t)

Figure 1. A sample path of the process X and of the Poisson
process (N(t)).

Theorem 3.2. Suppose that the kernel S(t, dy) is a non-negative measure satisfying
Assumptions A and B. Suppose that V (t, x) and w(t, x) are bounded and measurable
functions on [0, T ] × Rd. Then (u(t, x), t ≤ T, x ∈ Rd) defined by

(3.1) u(t, x) = etEx

⎡
⎣w

(
t − τN(t), XτN(t)

)N(t)∏
i=1

[
S(τi − τi−1, R

d)V (t − τi, Xτi
)
]⎤⎦

(where, on {N(t) = 0}, the product is defined to take the value 1) is the solution of
(2.1).
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Proof. For t ≥ 0 and m ≥ 0, let

Y (m, t) = et1{N(t)=m}w(t − τm, Xτm
)

m∏
i=1

[
S(τi − τi−1, R

d)V (t − τi, Xτi
)
]
.

Then u(t, x) =
∑∞

m=0 Ex[Y (m, t)]. In order to show that u(t, x) is the solution
of (2.1), it suffices by Proposition 2.2 to show that Hm(t, x) = Ex[Y (m, t)] for all
m, t, x. We prove this by induction on m. For m = 0,

Ex[Y (m, t)] = Ex

[
et1{N(t)=0}w(t, X0)

]
= etw(t, x)Px{N(t) = 0} = w(t, x) = H0(t, x).

Now fix m ≥ 1 and suppose by induction that Hm−1(t, x) = Ex[Y (m− 1, t)], for
all (t, x). Set F1 = σ{Xτ1 , τ1}. Then

Ex[Y (m, t)]

= Ex

[
S(τ1, R

d)V (t − τ1, Xτ1)1{τ1≤t}e
τ1

×Ex

[
et−τ11{N(t)−N(τ1)=m−1}w((t − τ1) − (τm − τ1), Xτm

)

×
m∏

i=2

{
S((τi − τ1) − (τi−1 − τ1), Rd)

×V ((t − τ1) − (τi − τ1), Xτi
)
}∣∣∣∣F1

]]
.

Note that, for i ≥ 1,

Xτi
= Xτ1 +

i−1∑
j=1

X̃
(j+1)
τj+1−τj

,

and the conditional expectation can be expressed using only the increments τi −
τ1 for i ≥ 1. Using the strong Markov property of (N(t)) at time τ1 and the
independence of the families X

(i)
t , we deduce that

Ex[Y (m, t)] = Ex

[
S(τ1, R

d)V (t − τ1, Xτ1)e
τ11{τ1≤t}Ym−1(t − τ1, Xτ1)

]

=
∫ t

0

ds e−sS(s, Rd)es

∫
Rd

S(s, dy)
S(s, Rd)

V (t − s, x − y)Ym−1(t − s, x − y)

=
∫ t

0

ds

∫
Rd

S(s, dy)V (t − s, x − y)Hm−1(t − s, x − y)

= Hm(t, x),

by the induction hypothesis and (2.2). This completes the proof. �

We have presented the simplest setting of the probabilistic representation, suffi-
cient to treat our interest in the wave equation in dimensions d ≤ 3 and the random
potentials in the subsequent sections. However various extensions and variations
of this representation are possible. We give a brief description here, leaving the
details to the interested reader.

1. For a signed kernel S(t, dy), we need to modify somewhat the representa-
tion. Write S(t, dy) = S+(t, dy)−S−(t, dy) for the Hahn-Jordan decomposi-
tion into a difference of non-negative measures. Choose, if possible, subsets

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A FEYNMAN-KAC-TYPE FORMULA FOR P.D.E.’S AND S.P.D.E.’S 4689

A(t) ⊆ Rd so that S+(t, A(t)) = S−(t, Ac(t)) = 0 and (x, t) → 1A(t)(x) is
measurable. (Note that this is certainly possible when S(t, dy) = qt(y)dy
for continuous (qt(y), t > 0, y ∈ Rd).) Let Ct be a counter defined by

Ct =
∞∑

i=1

1{τi≤t} 1{Xτi−1−Xτi
∈A(τi−τi−1)}.

Then the argument above leads to the representation

u(t, x) = etEx

⎡
⎣w

(
t − τN(t), XτN(t)

)
(−1)Ct

N(t)∏
i=1

[
|S(τi − τi−1, ·)|V (t − τi, Xτi

)
]⎤⎦ ,

where |S(t, ·)| denotes the total variation of the measure S(t, dy). This
representation then covers the case of the beam equation in all dimensions
d ≥ 1.

2. If, instead of being real-valued, u(t, x) = (u1(t, x), . . . , un(t, x)) ∈ Rn, and
V (t, x) is an n× n matrix, so that (2.1) is in fact a system of p.d.e.’s, then
the formula in Theorem 3.2 still holds, provided the matrix product in (3.1)
is ordered according to increasing values of i.

3. We have treated for simplicity the case of spatially homogeneous equations
on Rd. However, in principle, suitable changes should allow representa-
tions for inhomogeneous equations, or equations in domains with suitable
boundary conditions.

4. For any λ > 0, one can replace the potential V by λ−1V and use a Poisson
process of rate λ to obtain an alternative representation. For example,
rewriting the heat equation (1.1) as

∂u

∂t
=

1
2
∆u + λ

[
V

λ

]
u,

we would get the representation

u(t, x) = eλtEx

⎡
⎣w

(
t − τN(t), XτN(t)

)
N(t)∏
i=1

[
S(τi − τi−1, ·)λ−1V (t − τi, Xτi

)
]⎤⎦

(3.2)

where Xt starts over at the times of a rate λ Poisson process. For large
λ, these representations, when using a Markovian X, become close to the
classical Feynman-Kac formula. For example, we can further rewrite (1.1)
as

(3.3)
∂u

∂t
=

1
2
∆u + λ

[
1 +

V

λ

]
u − λu.

Due to the term −λu in (3.3), the Green’s function e−λtpt(y) of Lu =
∂
∂t −

1
2∆u + λu gives rise to a factor e−λt inside the expectation in (3.2),

which cancels the factor eλt which is outside of the expectation. Regarding
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[1 + (V/λ)] as our potential term, we find

u(t, x) = EB
x

⎡
⎣w(t − τNλ(t), BτNλ(t)) exp

⎛
⎝Nλ(t)∑

m=1

log
(
1 + λ−1V (t − τm, Bτm

)
)⎞⎠

⎤
⎦ .

Now letting λ → ∞ and using log(1 + x) ≈ x, the integrand involves a
Riemann sum approximation to the integral in the classical Feynman-Kac
formula.

4. Second moments for random potentials

4.1. The random potentials. We are now going to consider a class of linear
equations driven by spatially homogeneous Gaussian noise Ḟ (t, x), whose covariance
is formally given by

E
[
Ḟ (t, x)Ḟ (s, y)

]
= δ0(t − s)f(x − y).

In this equation, δ(·) denotes the Dirac delta function, and f : Rd → R is continu-
ous on Rd\{0}. More precisely, let D(Rd+1) be the space of Schwartz test functions
(see [20]). On a given probability space, we define a Gaussian process F =
(F (ϕ), ϕ ∈ D(Rd+1)) with mean zero and covariance functional

E
[
F (ϕ)F (ψ)

]
=
∫

R+

dt

∫
Rd

dx

∫
Rd

dy ϕ(t, x)f(x − y)ψ(t, y).

Since this is a covariance, it is well-known [20, Schwartz, Chap. VII, Théorème
XVII] that f must be symmetric and be the Fourier transform of a non-negative
tempered measure µ on Rd, termed the spectral measure: f = Fµ. In this case, F
extends to a worthy martingale measure M = (Mt(B), t ≥ 0, B ∈ Bb(Rd)) in the
sense of [21], with covariation measure Q defined by

Q([0, t] × A × B) = 〈M(A), M(B)〉t = t

∫
Rd

dx

∫
Rd

dy 1A(x)f(x − y)1B(y),

and dominating measure K = Q (see [8, 6]). By construction, t �→ Mt(B) is a
continuous martingale and

F (ϕ) =
∫

R+×Rd

ϕ(t, x)M(dt, dx),

where the stochastic integral is as defined in [21].

Assumption C. For each t > 0, S(t, dy) is a non-negative measure and takes values
in the space of distributions with rapid decrease [20, Chap.VIII, §5]. Moreover, it
satisfies

(4.1)
∫ T

0

ds

∫
Rd

µ(dξ) |FS(s, ·)(ξ)|2 < ∞

and

lim
h↓0

∫ T

0

dt

∫
Rd

µ(dξ) sup
t<r<t+h

|FS(r)(ξ) −FS(t)(ξ)|2 = 0,

where µ is the spectral measure of the Gaussian process F .
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Consider the stochastic integral equation

(4.2) u(t, x) = w(t, x) +
∫ t

0

∫
Rd

S(t − s, x − y)u(s, y)F (ds, dy),

where w(t, x) is a random field satisfying appropriate conditions (see below).
Our motivation is the case where S(t, dy) is the Green’s function for a partial

differential operator L, and the study of the stochastic p.d.e. Lu = u Ḟ , with
stationary initial conditions independent of Ḟ . This s.p.d.e. can be recast into
this integral form with w(t, x) being the solution of Lw = 0 with the same initial
conditions as u(t, x). In this context, (w(t, ·), Mt(·)) is stationary in x, or, more
precisely, has property (S) of Dalang [6, Definition 5.1].

The stochastic integral in (4.2) needs defining. If S(s, y) is a smooth function, as
in the heat equation, then we can use the stochastic integral with respect to a worthy
martingale measure introduced in [21]. In this case, (4.2) has a unique solution
provided w(t, x) is a predictable process such that supt≤T, x∈Rd E[w2(t, x)] < ∞.

If S(s, ·) is a singular measure, as in the case of the 3-dimensional wave equation
that we are particularly interested in, then we use the integral introduced in Dalang
[6]. We briefly describe his construction that uses an approximation to the identity.
Choose ψ ∈ C∞

0 (Rd) with ψ ≥ 0; the support of ψ is contained in the unit ball of
Rd and

∫
Rd ψ(x)dx = 1. For 
 ≥ 1, set ψ�(x) = 
dψ(
x) so that ψ� → δ0 as 
 → ∞.

The stochastic integral in (4.2) is the L2-limit of the usual stochastic integrals∫ t

0

∫
Rd

S�(t − s, x − y)u(s, y)F (ds, dy),

where S�(t, x) is the convolution
∫

S(t, dy)ψ�(x−y). While studying the s.p.d.e. Lu

= uḞ as above, this convergence was established in [6]. Assumption C (in partic-
ular, the fact that S(t, dy) is non-negative) is also used in the definition of the
stochastic integral.

The following proposition gives a straightforward extension of [6, Theorem 13]
that we need to handle the integral equation (4.2).

Proposition 4.1. Fix T > 0. Suppose (w(t, x), (t, x) ∈ [0, T ]×Rd) is a predictable
process such that supt≤T, x∈Rd E[w2(t, x)] < ∞ and that (w(t, x)) has property (S)
of [6, Definition 5.1]. If Assumption C holds, then (4.2) has a unique square-
integrable solution (u(t, x), (t, x) ∈ [0, T ] × Rd). Moreover, this solution is L2-
continuous and if supt≤T, x∈Rd E[|w(t, x)|p] < ∞ for some p ≥ 2, then

sup
0≤t≤T

sup
x∈Rd

E[|u(t, x)|p] < ∞.

Proof. The proof is identical to that of [6, Theorem 13], except that u0(t, x) there
is set to w(t, x) rather than to 0, and un+1 in the Picard iteration is defined by

un+1(t, x) = w(t, x) +
∫ t

0

∫
Rd

S(t − s, x − y)u(s, y)F (ds, dy)

rather than by equation (52) of [6]. All the arguments in that proof apply, essentially
without change, to this situation. �
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In the terminology of [9], the solution u(t, x) given by Proposition 4.1 is a random
field solution of (4.2), that is, a solution that is defined for every t and x (as opposed
to a function-valued solution, defined only for all t and almost all x, that would not
be adequate for our purposes).

In fact, it is shown in [6] that (4.1) is even a necessary condition for (4.2) to have
a solution satisfying supt≤T, x∈Rd E[u2(t, x)] < ∞.

In the cases of the heat and wave equations, [6] gives equivalent conditions to
(4.1) involving only µ or the function f in the covariance structure.

4.2. The series representation. In this subsection, we work under Assumptions
A and C. We assume that w(t, x) satisfies the properties indicated in Proposition
4.1.

We shall show that there is a series representation for the solution u(t, x) of (4.2),
analogous to (2.3), but with the deterministic integral replaced by the stochastic
integral as in (4.2). Define I0(t, x) = w(t, x), and, for m ≥ 0,

(4.3) Im+1(t, x) =
∫ t

0

∫
Rd

S(t − s, x − y)Im(s, y)F (ds, dy).

Proposition 4.2. Suppose that w(t, x) satisfies the properties indicated in Propo-
sition 4.1. Then the series

(4.4) u(t, x) =
∞∑

m=0

Im(t, x)

converges in L2 uniformly over (t, x) ∈ [0, T ] × Rd and is the unique solution to
(4.2).

Proof. We first check the L2-convergence of the series in (4.4). Set

Mm(t) = sup
x∈Rd

E[Im(t, x)2].

By [6, Theorem 2],

Mm(t) ≤
∫ t

0

ds Mm−1(s)
∫

Rd

µ(dξ) |FS(t − s, ·)(ξ)|2.

By (4.1) and [6, 7, Lemma 15], we conclude that

∞∑
m=0

Mm(s)1/2 < ∞,

which establishes the L2-convergence of the series. Set un(t, x) =
∑n

m=0 Im(t, x).
Then un(t, x) → u(t, x) in L2, and by [6, Theorem 2], as n → ∞,

∫ t

0

∫
Rd

S(t − s, x − y)un(s, y)F (ds, dy) L2

→
∫ t

0

∫
Rd

S(t − s, x − y)u(x, y)F (ds, dy).
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Therefore,

w(t, x) +
∫ t

0

∫
Rd

S(t − s, x − y)u(s, y)F (ds, dy)

= lim
n→∞

(
w(t, x) +

∫ t

0

∫
Rd

S(t − s, x − y)un(s, y)F (ds, dy)
)

= lim
n→∞

(
I0(t, x) +

n∑
m=0

∫ t

0

∫
Rd

S(t − s, x − y)Im(s, y)F (ds, dy)

)

= lim
n→∞

n+1∑
m=0

Im(t, x)

= u(t, x),

showing that u(t, x) solves (4.2). �

The successive terms in (4.4) are orthogonal in L2, that is, E[Im(t, x)Im′(s, y)] =
0 whenever m �= m′. The series is therefore a chaos expansion for the noise F . The
orthogonality can be checked by induction on m and m′, using the fact that the
covariance between Im and Im′ reduces, as in (4.5) below, to an expression involving
the covariance between Im−1 and Im′−1.

4.3. The probabilistic representation of second moments. In this subsec-
tion, we work under Assumptions A, B, and C. We make the same assumptions on
w(t, x) as in Subsection 4.2.

Let (N(t), t ≥ 0) be a rate one Poisson process. Using two independent i.i.d. fam-
ilies (X̃(i,1)

· , i ≥ 1) and (X̃(i,2)
· , i ≥ 1), construct, as in Section 3, two processes

X1 = (X1
t , t ≥ 0) and X2 = (X2

t , t ≥ 0) which renew themselves at the same set
of jump times τi of the process N , and which start, under Px1,x2 , at x1 and x2,
respectively. See Figure 2 for an illustration.

τ0 = 0 τ1 τ2 τ3 τ4 t

x ∈ Rd

y ∈ Rd

X1
t

X2
t

Figure 2. A sample path of the processes X1 and X2.
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Theorem 4.3. Let u(t, x) be the solution of (4.2) given in Proposition 4.2. Then

E[u(t, x)u(t, y)] = etEx,y

[
w
(
t − τN(t), X

1
τN(t)

)
w
(
t − τN(t), X

2
τN(t)

)

×
N(t)∏
i=1

(
S(τi − τi−1, R

d)2f
(
X1

τi
− X2

τi

)) ]
.

Proof. Observe that by Proposition 4.2,

E[u(t, x)u(t, y)] =
∞∑

m=0

∞∑
m′=0

E[Im(t, x)Im′(t, y)] =
∞∑

m=0

E[Im(t, x)Im(t, y)],

using the orthogonality of the terms in the series. For m ≥ 1, using the smoothed
kernels S�(t, x) defined earlier, we have

E[Im(t, x)Im(t, y)]

= E

[∫ t

0

∫
Rd

S(t − s, x − z)Im−1(s, z)F (ds, dz)

×
∫ t

0

∫
Rd

S(t − s, y − z)Im−1(s, z)F (ds, dz)
]

= lim
�→∞

E

[∫ t

0

∫
Rd

S�(t − s, x − z)Im−1(s, z)F (ds, dz)(4.5)

×
∫ t

0

∫
Rd

S�(t − s, y − z)Im−1(s, z)F (ds, dz)
]

= lim
�→∞

∫ t

0

ds

∫
Rd

dz1

∫
Rd

dz2 S�(t − s, x − z1)S�(t − s, y − z2)

× f(z1 − z2)E[Im−1(s, z1)Im−1(s, z2)]

=
∫ t

0

ds

∫
Rd

S(t − s, x − dz1)
∫

Rd

S(t − s, y − dz2)

× f(z1 − z2)E[Im−1(s, z1)Im−1(s, z2)],

where we have used the Lebesgue Differentiation Theorem [22, Chapter 7, Exercise
2] in the final step. We shall now show by induction that

(4.6) E[Im(t, x)Im(t, y)] = J(m, t, x, y), m ≥ 0,

where

J(m, t, x, y) = etEx,y

[
1{N(t)=m}w

(
t − τm, X1

τm

)
w
(
t − τm, X2

τm

)

×
m∏

i=1

{
S(τi − τi−1, R

d)2f(X1
τi
− X2

τi
)
}]

.

For m = 0,

J(0, t, x, y) = etw(t, x)w(t, y)Px,y{N(t) = 0} = E[I0(t, x)I0(t, y)].
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We suppose now that (4.6) holds for m−1. By the Markov property at τ1, arguing
as in Theorem 3.2, we have, choosing F1 = σ{τ1, X

1
τ1

, X2
τ1
},

J(m, t, x, y) = Ex,y

[
1{τ1≤t}e

τ1f(X1
τ1

− X2
τ1

)S(τ1, R
d)2

× e(t−τ1)Ex,y[1{N(t)−N(τ1)=m−1}w(t − τm, X1
τm

)w(t − τm, X2
τm

)

×
m∏

i=2

[S(τi − τi−1, R
d)2f(X1

τi
− X2

τi
)|F1]

]
= Ex,y

[
1{τ1≤t}e

τ1f(Xτ1 − X2
τ1

)S(τ1, R
d)2J(m − 1, t − τ1, X

1
τ1

, X2
τ2

)
]

=
∫ t

0

ds

∫
Rd

S(s, x − dz1)
∫

Rd

S(s, y − dz2)

× f(z1 − z2)J(m − 1, t − s, z1, z2).

The conclusion now follows from (4.5) and the induction hypothesis. �

Remark 4.4. By multiplying the integral formulas (4.2) for u(t, x) and u(t, y) and
taking expectations, one formally expects the integral equation

E[u(t, x)u(t, y)]

= w(t, x)w(t, y) +
∫ t

0

∫
Rd

∫
Rd

S(t − s, x − dz1)S(t − s, y − dz2)

× f(z1 − z2)E[u(s, z1)u(s, z2)].

This new integral equation on R2d is of the same form as (2.1). This leads to
an alternative derivation, by applying Theorem 3.2, of the representation for sec-
ond moments given above. However, we have used the argument above, as it will
generalize to higher moments.

5. Moments of order n

In this section, we work again under Assumptions A, B, and C. In addition to the
assumptions on w(t, x) made in Subsection 4.2, we assume that supt≤T E[|w(t, x)|p]
< ∞, for all T, p > 0, which ensures that the solutions have finite p-th moments.

In the case where u(t, x) solves a first order equation driven by the Gaussian
noise Ḟ , written in the form ∂u

∂t = L̃u + uḞ , where L̃ is a differential operator
in the space variables, then a formal calculation suggests that the n-th moment
m(t, x1, . . . , xn) = E[u(t, x1) . . . u(t, xn)] should satisfy

∂m

∂t
= L̃x1,...,xn

m +
1
2
m

n∑
i �=j

f(xi − xj)

(this formula is proved for discrete space in [3, Section II.3]). Here, L̃x1,...,xn
stands

for the sum of the operator L̃ applied to each variable xi. The equation for m
is again of the same potential type considered in Section 2, and can be recast as
an integral equation using a multiple product kernel constructed out of the kernel
S(t, dy) for ∂

∂t − L̃. Theorem 3.2 then leads to a probabilistic representation for
m. This argument does not seem to apply for second order equations (in time) or
directly for integral equations. However, as we shall now explain, it is possible to
find a representation, analogous to the one for second moments, that holds for the
higher moments of the general integral equation (4.2).
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We start with an informal discussion of the representation for higher moments.
The second moments were given in terms of a pair of processes, both of which were
renewed at the times τi of a single Poisson process N . The situation for the n-th
moment is somewhat analogous. Instead of two processes, we will use n processes
X1, . . . , Xn. For each pair of indices ρ = {ρ1, ρ2}, we create a Poisson process
Nt(ρ). The renewal times of the the process Xi will be the union of the Poisson
times arising from the processes Nt(ρ), such that the index i is contained in the
pair of indices ρ.

More precisely we let Pn denote the set of unordered pairs from Ln = {1, . . . , n}
and for ρ ∈ Pn, we write ρ = {ρ1, ρ2}, with ρ1 < ρ2. Note that card (Pn) =
n(n − 1)/2. Let (N·(ρ), ρ ∈ Pn) be independent rate one Poisson processes. For
A ⊆ Pn let Nt(A) =

∑
ρ∈A Nt(ρ). This defines a Poisson random measure such

that for fixed A, (Nt(A), t ≥ 0) is a Poisson process with intensity card(A). Let
σ1 < σ2 < · · · be the jump times of (Nt(Pn), t ≥ 0), and Ri = {Ri

1, R
i
2} be the

pair corresponding to time σi. Two possible representations of this Poisson random
measure are shown in Figure 3.

σ1 σ2 σ3 σ4 σ5 t

σ1 σ2 σ3 σ4 σ5 t

1
2
3
4

{1, 2}
{1, 3}
{1, 4}
{2, 3}
{2, 4}
{3, 4}

Figure 3. Two equivalent representations of the Poisson random
measure (Nt(·)): the top representation is simply the superposition
of the Poisson processes (Nt(ρ)), ρ ∈ Pn; in the bottom represen-
tation, two elements of Ln are joined at time σi if they constitute
the pair Ri.

For 
 ∈ Ln, let P(�) ⊆ Pn be the set of pairs that contain 
, so that card(P(�)) =
n − 1. Let τ �

1 < τ �
2 < · · · be the jump times of (Nt(P(�)), t ≥ 0). We write Nt(
)

instead of Nt(P(�)). Note that

∑
ρ∈Pn

Nt(ρ) = Nt(Pn) =
1
2

∑
�∈Ln

Nt(
).
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We now define the motion process needed. For 
 ∈ Ln and i ≥ 0, let (X̃�,(i)
t , t ≥

0) be i.i.d. copies of the process (X̃t) defined before Example 3.1. Set

X�
t =

⎧⎪⎨
⎪⎩

X�
0 + X̃

�,(1)
t , 0 ≤ t ≤ τ �

1 ,

X�
τ�

i
+ X̃

�,(i+1)

t−τ�
i

, τ �
i < t < τ �

i+1.

This motion process is illustrated in Figure 4.

0 τ1
1 τ1

2 τ2
2 τ1

3 τ3
3

τ2
1 τ3

1 τ3
2 τ4

1 τ4
2

t

x1

x2

x3

x4

R�d

X1

X2

X3

X4

Figure 4. Illustration of the motion processes X� in the case
where n = 4 and X�

0 = x�, 
 = 1, . . . , 4.

It will be useful to define X�
t for certain t < 0. For given (t1, x1), . . . , (tn, xn),

under the measure P(t1,x1),...,(tn,xn) we set

X�
t = X̃

�,(0)
t+t�

for −t� ≤ t ≤ 0.

Finally we set τ �
0 = −t�. The following theorem gives a formula for the n-th

moments, and it is the main result of this section.

Theorem 5.1. The n-th moments are given by

E[u(t, x1) · · ·u(t, xn)](5.1)

= etn(n−1)/2E(0,x1),...,(0,xn)

⎡
⎣Nt(Pn)∏

i=1

f(XRi
1

σi − X
Ri

2
σi )

×
∏

�∈Ln

Nt(�)∏
i=1

S(τ �
i − τ �

i−1, R
d) ·

∏
�∈Ln

w(t − τ �
Nt(�)

, X�
τNt(�)

)

⎤
⎦ .

The proof of this theorem requires some preliminaries. Let Im(t, x), m ≥ 0, be
as defined in (4.3). For 0 ≤ s ≤ t, set

Im+1(s, t, x) =
∫ s

0

∫
Rd

S(t − r, x − y)Im(r, y)F (dr, dy),
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so that Im(t, t, x) = Im(t, x) for m ≥ 1. For m = 0 and 0 ≤ s < t, we set
I0(s, t, x) = I0(t, t, x) = w(t, x). Let

I(s; (mi, ti, xi), i = 1, . . . , n) = E

[
n∏

i=1

Imi
(s, ti, xi)

]
,

for mi ≥ 0, s ≤ min(t1, . . . , tn), xi ∈ Rd, i = 1, . . . , n. We begin by giving an
inductive expression for this expectation.

Lemma 5.2. Suppose m1 + · · · + mn = m.

(a) If m = 0, then

I(s; (0, ti, xi), i = 1, . . . , n) =
n∏

i=1

w(ti, xi).

(b) If m ≥ 1, then

I(s; (mi, ti, xi), i = 1, . . . , n)

=
∑

ρ∈Pn: mρ1 ·mρ2>0

∫ s

0

dr

∫
Rd

S(tρ1 − r, dy1)

×
∫

Rd

S(tρ2 − r, dy2)f(xρ1 − y1 − xρ2 + y2)(5.2)

× E

⎡
⎣ 2∏

i=1

Imρi
−1(r, r, xρi

− yi) ·
∏

k∈Ln\ρ

Imk
(r, tk, xk)

⎤
⎦ .

Proof. Part (a) follows immediately from the definitions. For part (b), if m = 1,
then n−1 of the mi are equal to 0 and so n−1 of the Imi

(s, ti, xi) are deterministic.
The one Imi

(s, ti, xi) with mi = 1 is a martingale with mean zero, implying that
I(s; (mi, ti, xi), i = 1, . . . , n) = 0. The expression in formula (5.2) is also equal to 0
since there is no ρ ∈ Pn such that mρ1 · mρ2 > 0.

If m ≥ 2, we distinguish two cases. The first case is where all but one of the mi

are zero. In this case, I(s; (mi, ti, xi), i = 1, . . . , n) and expression (5.2) vanish, for
the same reasons as in the case m = 1. We now consider the second case, in which
there is at least one ρ ∈ Pn with mρ1 · mρ2 > 0.

Using the smoothed kernels S� = ψ� ∗ S, as in Section 4.1, we define

I�
m+1(s, t, x) =

∫ s

0

∫
Rd

S�(t − r, x − y)Im(r, y)F (dr, dy).

For fixed (ti, xi), s �→ I�
mi

(s, ti, xi) is a martingale, and according to [21, Thm.
2.5], if mi > 0 and mj > 0, then the mutual variation process of I�

mi
(·, ti, xi) and

I�
mj

(·, tj , xj) is

s �→
∫ s

0

dr

∫
Rd

dy1 S�(ti − r, xi − y1)
∫

Rd

dy2 S�(tj − r, xj − y2)

× f(y1 − y2)Imi−1(r, r, y1)Imj−1(r, r, y2).
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We now apply Itô’s formula [4, Theorem 5.10] to the function f(a1, . . . , an) =
a1 · · · an and the n martingales I�

mi
(·, ti, xi), i = 1, . . . , n. Note that

∂2f

∂a2
i

= 0 and
∂2f

∂ai∂aj
=

∏
k∈{1,...,n}\{i,j}

ak if i �= j.

The stochastic integrals terms given by Itô’s formula have mean zero, because the
Imi

(·, ·, ·) have bounded moments of all orders, so taking expectations we reach

E

[
n∏

i=1

I�
mi

(s, ti, xi)

]

=
∑

ρ∈Pn: mρ1 ·mρ2>0

∫ s

0

dr

∫
Rd

dy1 S�(tρ1 − r, xρ1 − y1)
∫

Rd

dy2 S�(tρ2 − r, xρ2 − y2)

× f(y1 − y2)E

⎡
⎣Imρ1−1(r, r, y1)Imρ2−1(r, r, y2)

∏
k∈Ln\ρ

I�
mk

(r, tk, xk)

⎤
⎦ .

(5.3)

The variables Imk
(r, tk, xk) and I�

mk
(r, tk, xk) are both bounded in Lp for all p and

continuous in L2 in (r, xk), so that they are continuous in Lp in the variables (r, xk).
This implies that the expectation in (5.3) is continuous in (r, x1, . . . , xn). Using the
change of variables z1 = xρ1 − y1 and z2 = xρ2 − y2, we let 
 → ∞ in (5.3). The
left-hand side converges to I(s; (mi, ti, xi), i = 1, . . . , n) and the right-hand side
converges to formula (5.2), completing the proof. �

Define

J(t; (mi, ti, xi), i = 1, . . . , n)

= etn(n−1)/2E(t1,x1),...,(tn,xn)

⎡
⎣1{Nt(�)=m�, �∈Ln}

1
2 (m1+···+mn)∏

i=1

f(XRi
1

σi − X
Ri

2
σi )

×
∏

�∈Ln

mi∏
i=1

S(τ �
i − τ �

i−1, R
d) ·

∏
�∈Ln

w(t − τ �
m�

, X�
τ�

m�

)

]
.

The next aim is to show that these expectations satisfy a similar inductive formula.

Lemma 5.3. Suppose m1 + · · · + mn = m.

(a) If m = 0, then

J(t; (0, t�, x�), 
 = 1, . . . , n) =
n∏

�=1

w(t + t�, x�).

(b) If m ≥ 1, then J(t; (m�, t�, x�), 
 ∈ Ln) is equal to∑
ρ∈Pn: mρ1 ·mρ2>0

∫ t

0

ds

∫
Rd

S(tρ1 + s, dy1)
∫

Rd

S(tρ2 + s, dy2)f(xρ1 − y1 − xρ2 + y2)

× J(t − s; (mρi
− 1, 0, xρi

− yi), i = 1, 2; (m�, s + t�, x�), 
 ∈ Ln \ ρ).
(5.4)
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Proof. Part (a) follows immediately from the definitions. For part (b), in the case
that only one of the mi are non-zero then J(t; (m�, t�, x�), 
 ∈ Ln) = 0 since
P(t1,x1),...,(tn,xn){Nt(
) = m�, 
 ∈ Ln} = 0, and formula (5.4) is also equal to 0
since there is no ρ ∈ Pn with mρ1 · mρ2 > 0.

We now suppose that m ≥ 2 and that there is at least one ρ ∈ Pn with
mρ1 · mρ2 > 0. In this case {Nt(
) = m�, 
 ∈ Ln} ⊂ {σ1 ≤ t}, and we
are going to use the Markov property of Nt(Pn) at time σ1. Indeed, choosing
F1 = σ{σ1, R

1, X
R1

1
σ1 , X

R1
2

σ1 }, we may rewrite J(t; (mρ, t�, x�), 
 ∈ Ln) as

∑
ρ∈Pn: mρ1 ·mρ2>0

E(t1,x1),...,(tn,xn)

⎡
⎣1{σ1≤t,R1=ρ}f(Xρ1

σ1
− Xρ2

σ1
)etn(n−1)/2

×
∏
�∈ρ

S(τ �
1 − τ �

0 , Rd)

× E(t1,x1),...,(tn,xn)[1{Nt(�)−Nσ1(�)=m�, �∈Ln\ρ}∩{Nt(�)−Nσ1(�)=m�−1, �∈ρ}

×
m∏

�=2

f(XRi
1

σi − X
Ri

2
σi )

∏
�∈Ln\ρ

mi∏
i=1

S(τ �
i − τ �

i−1, R
d)

×
∏
�∈ρ

mi∏
i=2

S(τ �
i − τ �

i−1, R
d) ·

∏
�∈Ln

w(t − τ �
m�

, X�
τ�

m�

)|F1]

⎤
⎦ .

Note that at time σ1, on {R1 = ρ}, the processes Xρi start afresh from Xρi
σ1

, i = 1, 2,
while for 
 ∈ Ln \ρ, X� has seen no jump from −t� to σ1, that is, for σ1 + t� units of
time. Using the strong Markov property at σ1, the conditional expectation above
multiplied by e(t−σ1)n(n−1)/2 is equal to

J(t − σ1; (mρi
− 1, 0, Xρi

σ1
), i = 1, 2; (m�, σ1 + t�, x�), 
 ∈ Ln \ ρ).

Therefore, J(t; (m�, t�, x�), 
 ∈ Ln) is equal to

∑
ρ∈Pn: mρ1 ·mρ2>0

E(t1,x1),...,(tn,xn)[1{σ1≤t,R1=ρ}e
σ1n(n−1)/2

× f(Xρ1
σ1

− Xρ2
σ1

)
∏
�∈ρ

S(τ �
1 − τ1

0 , Rd)

× J(t − σ1; (mρi
− 1, 0, Xρi

σ1
), i

= 1, 2; (m�, σ1 + t�, x�), 
 ∈ Ln \ ρ)].

The variable σ1 is exponential with mean 2/(n(n−1)) and the variable R is indepen-
dent and uniformly distributed over Pn. Taking the expectation over σ1, R

1, X
R1

i
σ1

we reach (5.4). �

Proof of Theorem 5.1. We note that it suffices to prove, when ti ≥ t, that

I(t; (m1, t1, x1), . . . , (mn, tn, xn))

= J(t; (m1, t1 − t, x1), . . . , (mn, tn − t, xn)).
(5.5)
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Indeed, in this case, by Proposition 4.2,

E[u(t, x1) · · ·u(t, xn)] =
∞∑

m1=0

· · ·
∞∑

mn=0

E(Im1(t, t, x1) · · · Imn
(t, t, xn))

=
∞∑

m1=0

· · ·
∞∑

mn=0

I(t; (m1, t, x1), . . . , (mn, t, xn))

=
∞∑

m1=0

· · ·
∞∑

mn=0

J(t; (m1, 0, x1), . . . , (mn, 0, xn)),

and this is equal to the expression in (5.1).
Let m = m1 + · · · + mn. We are going to prove (5.5) by induction on m. If

m = 0, then (5.5) follows from Lemma 5.2(a) and Lemma 5.3(a), since both sides
of (5.5) are equal to w(t1, x1) · · ·w(tn, xn). Now assume inductively that (5.5) holds
for m − 1 ≥ 0. By Lemma 5.3(b),

J(t; (m�, t� − t, x�), 
 ∈ Ln)

=
∑

ρ∈Pn: mρ1 ·mρ2>0

∫ t

0

ds

∫
Rd

S(tρ1 − t + s, dy1)
∫

Rd

S(tρ2 − t + s, dy2)

× f(xρ1 − y1 − xρ2 + y2)
(5.6)

× J(t − s; (mρi
− 1, 0, xρi

− yi), i = 1, 2; (m�, s + t� − t, x�), 
 ∈ Ln − ρ).

By the induction hypothesis, the last factor J(t − s; . . .) is equal to

I(t − s; (mρi
− 1, t − s, xρi

− yi), i = 1, 2; (m�, t�, x�), 
 ∈ Ln \ ρ).

Now use the change of variables r = t − s and Lemma 5.2(b) to see that the
right-hand side of (5.6) is equal to I(t; (m�, t�, x�), 
 ∈ Ln). This completes the
proof. �
Remark 5.4. The intuition behind equality (5.5) is the following. Suppose n = 4
and consider space-time positions (t1, x1), . . . , (t4, x4), as in Figure 5. The quantity

t1 t2t3 t4 t 0

t − t1
t − t3

t − t4 t − t2 s = 0 s = t

x4

x3

x2

x1

Rd

time for Poisson
random measure

time in s.p.d.e.

Figure 5. Illustration for equality (5.5), with the direction of time
for the s.p.d.e. and for the Poisson random measure.
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I(t; (m�, t�, x�), 
 = 1, . . . , 4) is the expected product of iterated integrals, where
the left-most integral is up to time t ≤ min(t1, . . . , t4) and the order of the iterated
integrals are m1, . . . , m4.

On the other hand, time s for the Poisson random measure runs in the opposite
direction as in the s.p.d.e. (see Figure 5). In the quantity J(t, (m�, t� − t, x�), 
 =
1, . . . , 4), the process X� starts at negative time t − t�, and there are no Poisson
pairs during negative time. During the time interval s = 0 to s = t, the number of
Poisson pairs containing x� is set to m�. With these constraints, I(t; (m�, t�, x�), 
 =
1, . . . , 4) = J(t, (m�, t� − t, x�), 
 = 1, . . . , 4) as stated in (5.5).
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