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abstract: The extent to which evolutionary change occurs in a
predictable manner under field conditions and how evolutionary
changes feed back to influence ecological dynamics are fundamental,
yet unresolved, questions. To address these issues, we established eight
replicate populations of native common evening primrose (Oenothera
biennis). Each population was planted with 18 genotypes in identical
frequency. By tracking genotype frequencies with microsatellite DNA
markers over the subsequent three years (up to three generations,
≈5,000 genotyped plants), we show rapid and consistent evolution
of two heritable plant life-history traits (shorter life span and later
flowering time). This rapid evolution was only partially the result of
differential seed production; genotypic variation in seed germination
also contributed to the observed evolutionary response. Since evening
primrose genotypes exhibited heritable variation for resistance to
insect herbivores, which was related to flowering time, we predicted
that evolutionary changes in genotype frequencies would feed back
to influence populations of a seed predator moth that specializes on
O. biennis. By the conclusion of the experiment, variation in the
genotypic composition among our eight replicate field populations
was highly predictive of moth abundance. These results demonstrate
how rapid evolution in field populations of a native plant can in-
fluence ecological interactions.

Keywords: field experiment, flowering phenology, longevity, natural
selection, plant resistance, plant-herbivore interactions, rapid
evolution.

Introduction

Studies employing experimental evolution are a corner-
stone of modern evolutionary biology (Garland and Rose
2009). They can directly test evolutionary theory, shed light
on how different selective regimes shape evolutionary dy-
namics, and determine whether evolutionary trajectories
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occur in parallel across replicate populations (Reznick et
al. 1990; Meyer and Kassen 2007; Blount et al. 2008). With
field studies increasingly providing evidence of contem-
porary evolution (Kinnison and Hendry 2001; Maron et
al. 2004; Grant and Grant 2008), it is becoming clear that
there is strong potential for rapid evolutionary dynamics
to influence ecological interactions over short time spans
(Hairston et al. 2005).

Traditionally, evolutionary ecologists have used a “ret-
rospective approach” to determine how current ecological
dynamics may be influenced by the evolutionary history
(i.e., phylogenetic relatedness) of community members
(Losos 1994; Cavender-Bares et al. 2004; Mooney et al.
2010) or have asked how selective factors that differ be-
tween populations may have influenced trait differentia-
tion (Carroll and Boyd 1992; Brodie et al. 2002; Smith
and Benkman 2007). An alternative but powerful approach
involves quantifying how contemporary evolutionary
change in the field influences ecological dynamics. This
still rarely used approach can shed light on feedbacks be-
tween rapid evolution and ecology (Hersch-Green et al.
2011). However, most field experiments aimed at assessing
the effect of evolution on ecological dynamics typically
begin with genetically differentiated populations rather
than monitoring evolutionary change over time (Harmon
et al. 2009; Palkovacs and Post 2009; Bassar et al. 2010).
We know of no multigenerational field experiments that
have quantified the extended ecological consequences of
evolutionary change on other community members as
evolution has actually happened in the field (Schoener
2011). Accordingly, we examined evolution in replicated
populations with an initially identical genetic structure and
monitored the consequences for community dynamics.

In addition to shedding light on feedbacks between evo-
lutionary dynamics and ecological processes, field exper-
iments quantifying rapid evolution can be used to address
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several other important issues. First, to what extent do
replicate populations experiencing similar environmental
conditions show parallel evolutionary trajectories? When
populations repeatedly evolve in the same direction and
at the same rate (i.e., parallel evolution), this suggests that
selection outweighs contingency and stochastic factors
(e.g., genetic drift) and therefore that evolutionary dy-
namics are predictable. Second, to what extent does fe-
cundity predict which genotypes are favored over time?
Many of our best case studies of selection-in-action are
single-generation analyses of the fitness associated with
particular genes or genotypes, but the evolutionary re-
sponse to this selection is often unknown (Barrett et al.
2008; Morrissey et al. 2010). Multigenerational experi-
ments account for the sometimes hidden life-history tran-
sitions that can be critical for the response to natural
selection.

We conducted a field experiment where we quantified
the evolution of life-history traits of common evening
primrose (Oenothera biennis) in replicated populations
containing identical genotypes planted in a resource-rich
environment with low competition. Theory predicts the
evolution of shorter life spans (i.e., annuality) in such
high-quality environments (Hart 1977; Law et al. 1977;
Lacey et al. 1983), and our base population varied con-
siderably for this heritable life-history trait (Johnson et al.
2009a). We also determined whether differential lifetime
seed production accurately predicted evolutionary re-
sponses or whether other demographic attributes (i.e., ger-
mination rates) contributed to realized fitness. Finally, we
explored how evolutionary changes in our experimental
plant populations affected ecological dynamics of an abun-
dant insect herbivore. Specifically, we tested the ability to
predict the abundance of a specialist seed predator moth
on the basis of evolved changes in genotype frequencies,
and thus heritable plant traits, of our replicate populations.
Such a demonstration of how evolutionary change could
modulate an ecological interaction would be strong evi-
dence for an eco-evolutionary feedback (Schoener 2011).

Biology of Oenothera biennis Relevant to
Experimental Evolution

Common evening primrose O. biennis L. (Onagraceae) is
an herbaceous plant native to open habitats in eastern
North America (fig. 1). Plants typically germinate in
spring, form a rosette, bolt and flower at the end of the
first (annual) or second (biennial) growing season, and
immediately die after reproduction (i.e., they are semel-
parous or monocarpic). We have repeatedly observed high
heritability for both life span (annual vs. biennial) and
flowering phenology among our genotypes (table A1,
available online; Johnson and Agrawal 2005; Johnson et

al. 2009a). In previous single-generation experiments, we
found natural selection on plant life-history traits and evi-
dence that life-history traits were important predictors of
insect attack (Johnson and Agrawal 2005; Johnson 2007;
Johnson et al. 2009b).

Oenothera biennis is almost exclusively self-fertilizing,
and its genetic system prevents recombination or segre-
gation of alleles, resulting in seeds that are typically ge-
netically identical to each other and to their maternal par-
ent (Cleland 1972; Rauwolf et al. 2008; Johnson 2011).
Because plants self-fertilize and are semelparous, seed pro-
duction represents an important component of lifetime
male and female fitness. Seed dispersal occurs passively by
gravity, with no apparent traits that promote long-distance
movement. We took advantage of this dispersal behavior
and genetic system in O. biennis to construct eight replicate
populations, each composed of the same 18 distinct ge-
notypes distinguished by microsatellite markers (Larson et
al. 2008). An important aspect of this study is that O.
biennis’s reproductive system makes it possible to study
evolutionary change within populations according to
changes in genotype frequencies through time and to relate
this evolution to changes in life-history traits. Further-
more, by tracking the frequency of individual genotypes,
we were able to relate reproductive measures (i.e., lifetime
seed production) to realized fitness, filling a gap that is
well known but has been difficult to bridge over multiple
generations (Harper 1977; Ehrlén 2003; Waser et al. 2010).

In this study, we specifically focus on three life-history
traits: life span (annual vs. biennial), flowering phenology,
and seed emergence. We measured the first two traits,
which varied substantially among genotypes, directly in
the experimental populations (table A1; see also “Meth-
ods”). We measured seed emergence in a separate exper-
iment under natural field conditions: the genotypes
showed considerable variation in percent emergence (ger-
mination followed by establishment), which ranged 17-
fold across the 18 genotypes (table A1). These three traits
(annuality, phenology, and emergence) were not geneti-
cally correlated (Pearson correlations on clonal means:

, r values all positive but !0.15, and all ).n p 18 P 1 .50

Methods

Field Experiment

In May 2007, we established eight experimental popula-
tions in an abandoned agricultural field in Tompkins
County, Ithaca, New York. Plots had an area of 13.5 m2

and were spaced at least 10 m apart from each other. The
field encompassing the plots had homogeneous vegetation
and shared an identical land use history (abandoned ag-
riculture). They were plowed and sprayed twice with her-

This content downloaded from 132.236.111.149 on Fri, 19 Apr 2013 06:03:50 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Plant Life-History Evolution S37

Figure 1: Common evening primrose (Oenothera biennis) growing in our experimental evolution plots near Ithaca, New York. The image
on the right shows a cross section of a fruit, with two larvae (arrows) of Mompha brevivittella consuming immature (white) seeds; note
the frass next to the larvae.

bicide before the experiment and were protected from deer
herbivory by mesh fencing. At this highly productive site,
initially with little plant competition, genotypes were up
to twice as fecund as they were when planted at alternative
sites in Tompkins County (A. A. Agrawal, unpublished
data). In the center of each plot, we established a -1 # 1
m focal area that was planted with 60 individual Oenothera
biennis seedlings at the first true leaf stage. Plants were
equally spaced. There was no further manipulation of the
plots: they were not weeded, and recruitment in subse-
quent years occurred throughout the 13.5-m2 plot area.
The nearest natural populations of O. biennis were more
than 1 km from our plots, and therefore the potential for
outside contamination was low.

We transplanted three individuals from each of 16 ge-
notypes and six individuals from each of two additional
genotypes ( total individuals per3 # 16 � 6 # 2 p 60
plot) into each plot, with the location of each genotype
randomly assigned. The latter two genotypes were origi-
nally thought to be four distinct genotypes, but extensive
additional analyses indicate that these were in fact indis-
tinguishable (see details below in “Genotyping”). The 18
genotypes were selected to span the range of phenotypic
characteristics from a total of 40 genotypes, which were
all grown in a common garden in 2006 (Johnson et al.

2009a). The 40 original collections were all from early-
successional habitats (one per site, separated by at least
0.5 km; average distance between sites, 12 km, with a
maximum of 30 km; all from Tompkins County, NY) typ-
ical of the species (Johnson et al. 2009a). Although our
field experiment was also located in Tompkins County, the
closest collection site was ≈2 km away. To reduce the in-
fluence of maternal environment effects, we grew all ge-
notypes for a generation in a common garden at the same
site and used their offspring in our experiment.

In each year, we assessed seed production and recruit-
ment. Populations of plants increased rapidly, with a mean
(�SE) of , , and3,476 � 694 4,167 � 625 1,656 � 224
plants per plot in 2008, 2009, and 2010, respectively. We
counted fruits for all original 60 plants in each focal area
(2007 and 2008). However, because of the large episode
of recruitment beginning in 2008, we subsampled popu-
lations in each year between 2008 and 2010 by genotyping
at least 190 individuals from each plot. We randomly sam-
pled rosettes according to their proportion (relative to
flowering plants) of the total population of recruits in each
year. In total, we genotyped 4,931 plants between 2008
and 2010. In addition to all focal-area plants, at the end
of each growing season we counted all fruits on at least
50 genotyped individuals per plot. We estimated seed pro-
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duction on the basis of genotypically variable mean fruit
size ( , ) and the regression slope ofF p 3.61 P ! .00117, 44

fruit size (volume) and seed number (Y p 2.33x �
, , , ).2102.47 r p 0.60 F p 38.47 P ! .0011, 26

Seed Predators and Ecological Feedbacks of
Evolutionary Change

A specialist seed predator moth, Mompha brevivittella, was
abundant in our plots. This native moth is univoltine and
lays eggs on developing evening primrose fruits; larvae feed
entirely inside the fruits on seeds, with one larva typically
destroying 20% of the seeds per fruit. Each year, we es-
timated abundance of M. brevivittella on the basis of the
number of emergence holes from 50 fruits from the same
individual plants used to measure seed production. We
estimated seed loss to herbivory on the basis of the cor-
relation between seeds/fruit and the number of M. bre-
vivittella per fruit. Genotypic differences in moth abun-
dance from the beginning of the experiment were used to
predict plot-level moth abundances across our eight rep-
licate populations according to their respective genotype
frequencies. In other words, we attempted to predict the
ecological feedback of evolutionary change in the plant
populations by tracking frequencies of genotypes and their
known (genotypic) resistance to seed predators.

Genotyping

From each plant, we collected a leaf piece (≈1 cm2) directly
into a 96-well plate on dry ice. Tissue was stored at �80�C
and then freeze-dried before DNA extraction. Freeze-dried
tissue was ground to a fine powder in the collection plate
with 3-mm stainless steel beads (in a mixer mill; Retsch,
Haan, Germany), and for the majority of samples, genomic
DNA was obtained by incubating samples at 60�C in a
cetyltrimethylammonium bromide (CTAB) buffer con-
taining betamercaptoethanol for 20 min and extracting the
lysate with chloroform. DNA was precipitated from the
aqueous phase with isopropanol, washed with ethanol,
dried, and resuspended in Tris-EDTA buffer. For a portion
of samples from 2008 (≈550), DNA was extracted directly
from freeze-dried tissue with the Extract-N-Amp Plant
PCR Kit (Sigma-Aldrich, St. Louis, MO), according to the
manufacturer’s protocol. For each plate of extracted DNA,
a subset of samples was analyzed for nucleic acid quantity
and quality with a NanoDrop Spectrophotometer (Thermo
Fisher Scientific, Waltham, MA). Entire plates were then
diluted with water to yield approximate DNA concentra-
tions of 5–20 ng/mL.

For each sample, four microsatellite loci were amplified
in a single multiplex PCR reaction (Type-It Microsatellite
PCR kit; Qiagen, Valencia, CA). PCR reactions contained

1 mL of diluted genomic DNA and were set up according
to the manufacturer’s protocol (with Q-solution), but they
were scaled to a 10-mL total volume. Four pairs of primers
were included in each reaction, with the forward primer
for each locus being labeled with a distinct fluorescent tag
(6-FAM, PET, NED, or VIC; Applied Biosystems, Life
Technologies, Carlsbad, CA). Touchdown PCRs were per-
formed with an initial activation at 95�C for 5 min, fol-
lowed by 34 cycles of 95�C for 30 s, 59�–50�C for 90 s
(the annealing temperature was decreased by 1�C in each
of the first 10 cycles), and 72�C for 30 s, and a final ex-
tension at 60�C for 30 min. Multiplex PCR products were
visualized for a subset of samples in each plate by means
of agarose gel electrophoresis. Products were then diluted
1 : 3 with water and mixed with Hi-Di formamide and
Genescan LIZ-500 size standard (Applied Biosystems).
Four previously developed microsatellite loci (Larson et
al. 2008) were used to differentiate genotypes, with the
addition of one new marker that we developed to distin-
guish two particular genotypes (Oenbi102; forward
primer: VIC-GAGAGGGCCAGATACGGAACAAT, reverse
primer: GCAGAGCAGATAAAGGAGGGAGAG; Genbank
accession no. JF825549). Approximately 380 samples from
2008 were genotyped for loci Oenbi2tri2, Oenbi2tri3,
Oenbi2tri6, and Oenbi2tri7 (Larson et al. 2008), while
Oenbi102 replaced Oenbi2tri7 in all subsequent
multiplexing.

Samples were analyzed on a 3730xl DNA Analyzer (Ap-
plied Biosystems, Foster City, CA) at the Cornell University
Life Sciences Core Laboratories Center. Allele sizes were
determined with Genemapper software (ver. 3.5; Applied
Biosystems), with all calls checked by eye. Plants were
assigned to a particular genotype only if their alleles at all
four loci were representative of that genotype. A subset of
samples did not fall into known genotype categories and
were presumed to be offspring of rare outcrossing events
or, less likely, mutants or results of PCR error. These sam-
ples were excluded from analyses.

As mentioned above, what we initially thought to be
four distinct genotypes (of 20) were actually two geno-
types. This was confirmed by screening 27 additional mi-
crosatellite loci, which never distinguished the genotypes.
We additionally used 454 Roche sequencing on all four
genotypes and compared 163,000 sequence reads totaling
58 million bp of data between genotypes. Although
insertion-deletion differences and single nucleotide poly-
morphisms were detected by 454 sequencing, subsequent
attempts to validate these differences via Sanger sequenc-
ing showed that differences between genotypes were false
positives.
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Plant Traits

We established an index of annuality by recording the
proportion of the 24 individuals of each genotype that
bolted in 2007. Although annuality in O. biennis can be
somewhat plastic (Johnson 2007), our genotypic measure
of annuality was robust to environmental conditions at
the experimental site; in a separate common-garden study
conducted with the same genotypes but under divergent
growing conditions in 2006 (table A1; Johnson et al.
2009a), genotypic variation in annuality was consistent
with our 2007 estimates ( , , ). Inn p 18 r p 0.60 P p .009
particular, the growing environment in 2006 was highly
competitive, with O. biennis being transplanted directly
into meadow vegetation, compared to the 2007 planting
on bare soil.

In July 2007, when more than 25% of bolting plants
had open flowers, we counted the number of open or
senesced flowers (and ripening fruits) per plant (on the
384 plants that had bolted) as an index of phenology.
Higher values indicate advanced phenology. Although this
metric of phenology is not the typical measure (i.e., days
until the first open flower), we believe that it is a robust
measure for three reasons. First, because O. biennis pro-
duces relatively few flowers at a time and flowers last only
for one night before senescing, the number of open and
past flowers is a good indicator of phenological advance-
ment. Second, this estimate is genetically correlated (neg-
atively) with the onset of plant senescence (i.e., the ter-
mination of flowering; , , ),n p 18 r p �0.645 P p .004
thus indicating that the window/duration of flowering is
shifted among the genotypes. Finally, our measure of phe-
nology from 2007 was genetically correlated with an in-
dependent measure of phenology from our experimental
populations in 2010 ( , because two genotypes weren p 16
absent in 2010, , ). Thus, although ther p 0.515 P p .041
environmental conditions were dramatically different
across these years of measurement, our estimate of phe-
nology was internally consistent across genotypes.

We estimated genotypic variation in emergence (poten-
tially encompassing both dormancy and viability) in a sep-
arate experiment where we added 100 seeds of each ge-
notype to replicated field plots (n p 5 plots # 18
genotypes). The 90 plots (10 cm # 10 cm) were estab-
lished on bare soil at the site of the main experiment in
early December 2008, and percent emergence was assessed
in April 2009. There was essentially no recruitment of
foreign O. biennis outside of the seeds we sowed, as evi-
denced by a lack of emerging O. biennis on bare soil be-
tween or outside of the 90 experimental plots.

Statistical Analyses

We used repeated-measures canonical correspondence
analysis to assess changes in genotypic structure (relative
genotype frequencies) in the plots over time (Canoco for
Windows, ver. 4.55). We assessed the statistical significance
of consistent changes in genotypic structure using a Monte
Carlo permutation test (Braak and Šmilauer 2002); the
trace value, which is related to variation explained by the
ordination axes, was tested across sampling dates with ran-
domization (Braak and Šmilauer 2002). All other analyses
involved genetic correlations (typically, , conductedn p 18
on genotypic means accounting for variation among the
eight replicate plots) or ANOVAs (conducted in JMP, ver.
8, SAS Institute, Cary, NC). Unless transformations are
indicated, data met the assumptions of the analyses.

The rate of predicted phenotypic evolution was esti-
mated in terms of Haldanes, which were calculated as the
absolute value of (estimated population mean at time 1 �
estimated population mean at time 0)/pooled standard
deviation/generations (Kinnison and Hendry 2001). Stan-
dard deviations were pooled across the eight replicate pop-
ulations, and each year was calculated as 0.72 generations,
on the basis of the weighted average of annual and biennial
life histories exhibited by plant genotypes in 2007.

To assess the feedback of evolutionary change on seed
predator populations, we conducted a regression analysis
based on the replicate populations ( ). Here, we re-n p 8
gressed the observed moth emergence data from 2010 (50
plants per plot) on the predicted moth populations (es-
timated by the product of the 2007 genotype-specific attack
rates and the frequency of each genotype).

Results

We observed rapid evolution within all experimental pop-
ulations. Genotype frequencies changed in a consistent
manner across our eight replicate populations during three
generations of population growth (repeated-measures ca-
nonical correspondence analysis: trace p 0.039, F p

, ), with two genotypes consistently becom-3.085 P p .018
ing extinct by 2010 and four genotypes increasing in fre-
quency by two- to fourfold (fig. 2). Although there was
variation among plots, as indicated by the error bars in
figure 2, the statistically consistent decline in some ge-
notypes and increase in others indicate that the observed
evolutionary response was not overwhelmed by genetic
drift (table A2, available online). This evolutionary change
was also not the result of differential mortality in the first
year (which was !1%) but was caused by differential re-
cruitment over the subsequent three years. Populations
evolved to have increased annuality and later flowering
times (fig. 3). These evolutionary changes occurred rela-
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Figure 2: Changes in the frequencies of 18 genotypes of common
evening primrose (Oenothera biennis) over three years after the start
of the field experiment. Standard errors of the means are based on
the eight replicate experimental populations and are shown for three
arbitrary genotypes (dashed lines). Mean SE across all genotypes in
2010 was 0.01.
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Figure 3: Estimates of the evolutionary change in two life-history
traits of common evening primrose (Oenothera biennis) based on
changes in genotype frequencies. Data are shown for each of the
eight replicate experimental populations, with the mean represented
by a dashed line. Genotype-specific values of life-history traits hold
constant under different environmental conditions (see “Methods”).

tively rapidly, at rates of 0.34 and 0.21 Haldanes (change
in units of standard deviations) in the first generation for
annuality and phenology, respectively. Over the four years,
the corresponding changes averaged 0.10 and 0.09 Hal-
danes per year for the two traits, indicating a substantially
slower rate of evolutionary change after the first generation
(fig. 3).

We took two approaches to identify which traits were
favored by evolution. First, we calculated the genotypic
covariance between the two life-history traits (annuality
and flowering phenology) and two alternative measures of
plant fitness (lifetime seed production and the product of
emergence rate and lifetime seed production). Although
there was substantial yearly variation in the strength of
genotypic covariance between life-history traits and these
two measures of fitness, both annuality and flowering phe-
nology were significant predictors of actual changes in
genotype frequencies over time, and this association was
consistent across years (table 1; fig. 4). In other words,
life-history traits did not always predict seed production,
but they did predict the overall response to selection.

Second, we addressed the role of these alternative mea-
sures of plant fitness in predicting the changes in genotype
frequencies. Genotypic differences in lifetime seed pro-
duction, on their own, were not a significant predictor of
subsequent genotype frequencies in 2008 or 2009 but were
a significant predictor in 2010 (fig. A1, available online).
Including emergence rate significantly improved our abil-
ity to predict evolutionary change only in 2008, when

evolution was most rapid, and not in subsequent years
(fig. A1). Thus, across the three years of our experiment,
the primary contributors to fitness ranged from lifetime
seed set to the product of this measure and emergence
rate to neither of these proxies of fitness (fig. A1). In no
case was cumulative seed production alone (summing
across years) a strong predictor of subsequent genotype
frequencies (all ).P 1 .1

Eco-evolutionary feedbacks. Oenothera exhibited heri-
table variation for resistance to the specialist seed predator
moth Mompha brevivittella, with broad-sense (clonal) her-
itabilities (H2) estimated as 0.14, 0.55, 0.33, and 0.01 (all
significantly different from 0) successively for the four
years of the study. Based on changes in genotype fre-
quencies (fig. 2) and this heritable resistance, the experi-
mental populations increased in resistance across years
(fig. A2, available online). Despite consistent overall evo-
lutionary change in our experiment, our replicate popu-
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Table 1: Estimates of how two life-history traits (annuality and flowering phenology) predict seed pro-
duction, germinable seeds (seed production # emergence rate), and observed evolution (genotype fre-
quencies) in field plots of common evening primrose

df Seed production Germinable seeds
Realized genotype

frequency

Annuality 1, 15 2.221 2.347 8.636∗

Flowering phenology 1, 15 3.753† 1.337 4.321∗

Year 2, 14 10.235∗∗ 5.429∗ .076
Annuality # year 2, 14 16.593∗∗∗ 9.338∗∗ .178
Flowering phenology # year 2, 14 .177 2.986† .741

Note: F values are shown for three separate two-factor repeated-measures MANOVAs, with the plant traits as predictors

over three years; full-model r2 values for the three analyses are 0.527, 0.437, and 0.426, respectively. Data are genotypic means

( ) averaged across the eight replicate populations. Values in boldface are statistically significant.n p 18
†

.P ! .1
∗ .P ! .05
∗∗ .P ! .01
∗∗∗ .P ! .001

lations showed some variation in genotypic structure and
thus evolutionary trajectory. We took advantage of that
variation among our eight experimental populations to
examine whether there was an ecological feedback on pop-
ulations of M. brevivittella. In other words, do replicate
populations with greater representation of resistant ge-
notypes produce fewer seed predator moths than popu-
lations that have lower frequencies of these same
genotypes?

By the conclusion of the experiment in 2010, we found
that differential changes in genotypic frequencies among
our replicate populations predicted the actual abundance
of M. brevivittella (fig. 5; , , ).n p 8 r p 0.908 P p .002
This effect was not apparent in 2008 and 2009, the years
in which heritability in resistance to M. brevivitella was
greatest. This implies that the ecological consequences of
evolution may be apparent only after several generations
and only following the combined effects of selection and
high heritability in the trait that has extended effects on
the community. Genotype-specific attack rates were con-
sistent between 2007 and 2010 (table A1; ,n p 16 r p

, ). More specifically, in 2010 flowering phe-0.668 P p .005
nology predicted attack by M. brevivittella on the basis of
phenotypic ( , , ) and geneticn p 235 r p 0.356 P ! .001
( , , ) correlations, while annu-n p 16 r p 0.483 P p .003
ality did not. Because moths oviposit early in the flowering
season and because at this stage our resistant genotypes
have not yet begun flowering (table A1), these genotypes
effectively escape seed predation. In particular, we typically
observe oviposition by the three flower and seed predators
(M. brevivittella, Mompha stellela, and Schinia florida) dur-
ing the period when our experimental and natural pop-
ulations are just beginning to flower (early July). Thus,
the evolution of later-flowering phenology appears to be
responsible for the ecological feedback to M. brevivittella.

Discussion

Across eight replicate populations, our field experiment
demonstrated rapid and consistent genotypic changes over
multiple generations, despite the potential for environ-
mental variation or genetic drift to erode this pattern. Our
results support the view that such evolutionary change in
novel environments can be a potent driver of ecological
dynamics. Specifically, consistent with life-history theory,
Oenothera biennis populations rapidly evolved toward
short, annual life cycles. In addition, the extent of this
evolutionary change among our replicate populations sig-
nificantly predicted changes in the abundance of a spe-
cialist seed predator moth. We discuss our results in light
of these findings.

Rapid Evolution of Plant Populations

The observed rapid evolution of plant life-history traits
was concordant with long-standing life-history theory
(Charnov and Schaffer 1973) and our own previous single-
generation analyses of natural selection on O. biennis
(Johnson 2007). In particular, under high resources and
low competition, selection is predicted to favor shorter life
spans because of the positive multiplicative effects of low
mortality and high fecundity for individuals that can de-
velop and reproduce quickly, compared to individuals that
delay development and reproduce at a later time (Hart
1977). However, we caution that this interpretation re-
mains tentative because we have not directly compared
life-history evolution in low- and high-resource environ-
ments. Law et al. (1977) reported that populations of Poa
annua from low-competition environments had geneti-
cally based shorter life spans than populations from high-
competition environments. In contrast to our results, how-
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Figure 4: Relationship between genotype-specific values of two life-history traits and measures of genotypic fitness in 2007, 2008, and 2009
and of realized evolution in 2010. Data are genotypic means ( ) averaged across the eight replicate populations. The strength ofn p 18
natural selection varied across years (table 1). Raw data are shown, although statistical analyses and partial r2 values are derived from
multiple regression. A dagger (†) indicates , a single asterisk indicates , and a double asterisk indicates .P ! .1 P ! .05 P ! .01

ever, Law et al. found that earlier flowering was also
favored in low-competition environments. For O. biennis,
selection consistently favored genotypes that flowered later
(table 1), presumably because this allows for greater re-
source acquisition before the onset of reproduction and
the avoidance of the specialist seed predator moth. Con-
sistent with this conclusion, the earliest-flowering annuals
had very low seed set.

The fact that annual genotypes quickly rose to promi-
nence in year 2 (2008) is not surprising, because, by def-
inition, annuals contributed all of the seed in the first year

of the experiment. However, this purely demographic
driver of genotypic change was not solely responsible for
the ensuing evolutionary dynamics. For example, despite
a huge pulse of seed input by biennial genotypes in the
second year of the experiment, these genotypes remained
underrepresented within plots in years 3 and 4 (2009 and
2010; table A1). In other words, seed production and re-
alized genotype fitness were somewhat decoupled. We
found a consistent advantage for annual life histories even
though after year 2, annual genotypes did not contribute
the majority of seeds to plots. This result is consistent with
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Figure 5: Feedback of evolution in common evening primrose (Oe-
nothera biennis) populations to ecological dynamics of a specialist
moth seed predator (Mompha brevivittella). Shown are data for the
eight replicate plots; predicted seed predator abundances for 2010
were based on changes in genotype frequencies and genotype-specific
attack rates measured in 2007.

previous measures of natural selection on this trait in the
field, coupled with demographic models (Johnson 2007).
Put another way, annuality consistently predicted genotype
frequency in each year (i.e., no annuality # year inter-
action; table 1). This resulted from a complex mix of de-
mographic effects (initial advantage of annuals), concur-
rent natural selection (on annuality and phenology), and
likely altered environmental conditions (i.e., increasing
competition and its effect on how annuality is expressed).
In addition, flowering phenology showed continued evo-
lutionary change over all years of the experiment (table 1;
fig. 3), and this was not a by-product of changes in an-
nuality, as the two traits were genetically uncorrelated.

As John Harper pointed out more than 30 years ago,
lifetime seed production may not always predict plant fit-
ness (Harper 1977), and recent demographic work on
plant populations supports the notion that fecundity is
only one component of fitness (Ehrlén 2003; Waser et al.
2010). In our analysis, including an additional demo-
graphic attribute (seedling emergence, which was likely
driven by differences in dormancy) resulted in a substan-
tial improvement of fitness estimates in the first year
(2007). The maintenance of heritable variation in dor-
mancy has been widely observed and was suggested as an
adaptation to environmental heterogeneity (Jain 1982;
Brown and Venable 1986). Nonetheless, genotype-specific
seed emergence rates and seed production alone explained
less than 6% of variation in genotype frequencies in the
next year, while their product explained more than 30%
of variation (fig. A1). In contrast, neither of our estimates
of fitness predicted genotype frequencies in the third year
of the experiment (2009; fig. A1), likely because of the
role of unmeasured ecological factors. For example, the

very high seedling recruitment in 2008 (including many
biennials) created a highly competitive environment, likely
one that severely hampered recruitment of new seedlings
in 2009. Finally, seed production alone during 2009 pre-
dicted genotype frequencies in the final year (2010). Our
results echo Harper’s argument that accurate predictions
of evolutionary change due to natural selection require
measuring multiple components of fitness, which should
include fecundity and other demographic parameters.

In animal systems, there is reasonably good documen-
tation of how natural selection in the field ultimately results
in phenotypic evolution (Morrissey et al. 2010). Assuming
that traits are heritable, cases where selection acts on survival
(as opposed to siring or fecundity) and where there is no
dormancy of progeny (i.e., no seed bank), such as Darwin’s
finches, are especially likely to show the expected response
to selection (Grant and Grant 2008). In plants, most evo-
lutionary studies measure natural selection via fecundity,
and very few have directly compared measures of natural
selection with realized evolutionary change. Of the five other
studies that followed genetic change in plant populations,
two are restricted to clonal vegetative reproduction (avoid-
ing the seed-to-adult transitions; Whitlock et al. 2007; Stue-
fer et al. 2009), and three followed frequency changes of
specific alleles in evolving crop populations (Luckett and
Edwards 1986; Rhoné et al. 2008; Snow et al. 2010). In one
case, where Franks et al. (2007) compared natural selection
and the evolutionary response in Brassica populations, there
was some concordance between natural selection and evo-
lutionary change, but other demographic filters clearly con-
tributed to fitness. Our experimental results on O. biennis
underscore this finding and suggest temporal changes in the
importance of fitness components.

Eco-Evolutionary Feedbacks

Feedbacks between ecology and evolution are being widely
discussed, in part because of the realization that evolution
can be rapid enough to influence contemporary ecological
dynamics (Hairston et al. 2005; Fussmann et al. 2007; Schoe-
ner 2011). Our study supports the notion that evolution in
plant populations affects concurrent ecological dynamics of
interacting herbivore species (Hersch-Green et al. 2011).
Indeed, successional species such as ours may be an excellent
place to examine eco-evolutionary feedbacks, because the
dynamics are nonequilibrial, evolution is likely to be rapid,
and the ecology of species interactions may therefore be
rapidly reshaped by evolution (Neuhauser et al. 2003).
Nonetheless, these same factors, including rapidly changing
population densities and community composition, likely
also alter eco-evolutionary feedbacks (Neuhauser et al.
2003). In addition, genotype # environment interactions,
which are common, may obscure the detection of an eco-
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evolutionary feedback. In our study of O. biennis, genotype-
specific moth attack was correlated between 2007 and 2010
( , , ), which in large measuren p 16 r p 0.661 P p .005
drove the observed eco-evolutionary feedback (fig. 5). How-
ever, we found no such genetic correlation between 2007
and 2009 (or between 2007 and 2008), which likely obscured
the eco-evolutionary feedback. Such annual variation in ef-
fects is likely to be a challenge in detecting clear signals
between evolutionary change and feedbacks to ecology, and
it argues for the importance of longer-term studies that link
evolution and ecology.

We predict that the benefits of short annual life spans
and later flowering will change over time, especially with
increased competition. As was previously reported from
our single-generation experiments of O. biennis, longer
biennial life spans are favored in moderately productive,
highly competitive environments (Johnson 2007). Thus,
long-term monitoring of our experimental populations
may reveal reversals of the current evolutionary trajecto-
ries. Given the viability of O. biennis seeds over many
decades (Darlington 1951) and their requirement for light
to germinate (Gross 1985), complex evolutionary dynam-
ics are likely to follow during succession and disturbance.
This is especially likely because insect populations, which
are affected by life-history evolution and reciprocally affect
plant fitness, themselves have temporal dynamics associ-
ated with climate and plant density. Thus, not only is O.
biennis an early-successional species whose life history
likely evolves during succession, but we speculate that seed
predation may contribute to the maintenance of life-
history variation because of eco-evolutionary feedbacks.

More generally, rapid evolutionary change has been pre-
dicted to alter intraspecific population dynamics (Hairston
et al. 2005; Carlson et al. 2011), community composition
(Bailey et al. 2009; Johnson et al. 2009b; Palkovacs and
Post 2009), and ecosystem processes (Harmon et al. 2009;
Bassar et al. 2010). It is the multigenerational feedback of
these ecological changes on subsequent evolutionary dy-
namics that currently awaits testing.
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