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ABSTRACT 

A field experiment was conducted on a real continuous steel Gerber-truss bridge with artificial 

damage applied. This paper summarizes the results of the experiment for bridge damage detection 

utilizing traffic-induced vibrations. It investigates the sensitivities of a number of quantities to bridge 

damage including: the identified modal parameters and their statistical patterns, Nair’s damage 

indicator (NDI) and its statistical pattern, and different sets of measurement points. The modal 

parameters are identified by autoregressive (AR) time-series models. The decision on bridge health 

condition is made and the sensitivity of variables is evaluated with the aid of the 

Mahalanobis-Taguchi system (MTS), a multivariate pattern-recognition tool. Several observations 

are made as follows. For the modal parameters, although bridge damage detection can be achieved 

by performing MTS on certain modal parameters of certain sets of measurement points, difficulties 

were faced in subjective selection of meaningful bridge modes and low sensitivity of the statistical 

pattern of modal parameters to damage. For NDI, bridge damage detection could be achieved by 

performing MTS on NDIs of most sets of measurement points. As a damage indicator, NDI was 

superior to modal parameters. Three main advantages were observed; it doesn’t require any 

subjective decision in calculating NDI thus potential human errors can be prevented and an 

automatic detection task can be achieved, its statistical pattern has high sensitivity to damage, and 

finally, it is flexible regarding the choice of sets of measurement points.  
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Fig. 1 Damage observed in a truss member due to corrosion. (adopted from [2]) 

 

1. Introduction 

The collapse of the I-35W Mississippi River Bridge in Minneapolis, Minnesota, USA on August 

1, 2007, was an unprecedented shock to the civil engineering community [1]. After the event, 

damage in members of steel truss bridges was also discovered during bridge inspections in Japan 

(see Fig. 1 [2]). In the aftermath of these events, maintaining and improving civil infrastructure 

including bridge structures have become keen technical issues, since any light structural damage or 

defects in a bridge can potentially result in fatal consequences. An effective maintenance strategy 

always relies on prompt and accurate decisions being made on the structural health condition. 

Structural health monitoring (SHM) using vibration data is one of the developing technologies for 

screening structural health condition [3, 4]. Most precedent studies on vibration-based SHM 

specifically examine the change in modal parameters of structures [5-16], based on a fundamental 

concept that the modal parameters are functions of a structure’s physical properties and thus may 

vary due to a change in the physical properties, such as reduced stiffness due to damage. Application 

of the concept and techniques of vibration-based SHM to bridge structures, or simply referred to as 

vibration-based bridge health monitoring (BHM), has also resulted in a great amount of studies 

aiming to maintain bridge safety [11, 15-20]. A major task in BHM is to utilize any effective 

technique to detect the existence, and ideally the location and magnitude also, of damage when it 

appears. 

For investigating the effectiveness of BHM techniques, field experiments on real bridges are 

important and of high reference value because they are conducted in an environment that is most 

similar to those within which the BHM systems will be operated. Such environments are generally 

not as well-controlled as those in numerical simulations and laboratories. However, most existing 

studies examine these BHM techniques by means of numerical simulations and laboratory 

experiments [16, 17, 19, 20], while still relatively few studies report their practical validity for real 

bridges, which are likely to be subject to budget limitations and service conditions that prevent 

relevant authorities from granting permission to apply damage to the bridge. Despite these 
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limitations, a bridge owner permitted a field experiment to be conducted on a continuous steel 

Gerber-truss bridge in Japan with artificial damage applied, referred to as the field damage 

experiment hereafter. More details about the experiment are given in Section 2.   

In the field experiment, how to excite the bridge economically, reliably and rapidly is an 

important technical issue. Ambient vibration induced by wind, ambient ground vibrations and daily 

traffic is one general excitation source. For small- and medium-span bridges like the experiment 

bridge in this study, which form the major portion of bridge infrastructure, wind and ambient ground 

vibrations are usually too small in magnitude to excite the bridges. On the other hand, daily traffic 

becomes dominant [19, 21]. In this study, a passing truck serves to excite the bridge and the 

truck-induced bridge vibrations are recorded for further analysis. 

The modal parameters of bridges, i.e. modal frequencies, damping ratios and mode shapes, and 

their derivatives, are often used to detect bridge damage. In many studies, the modal parameters are 

identified utilizing a linear time-series model [11, 15, 16]. Since the 1970s, the use of state-space 

models for modal-parameter identification in the time domain has been increasing and it has also 

yielded new approaches. Gersch et al. [22], for example, use the time series of an autoregressive 

moving average (ARMA) process to describe the random response of a vibrating structure subjected 

to white-noise excitations. Shinozuka et al. [23] present a second-order ARMA model to represent a 

vibrating structure in order to identify the structural parameters directly. Hoshiya and Saito [24] treat 

the parameters to be identified as additional state variables in the state vector using an extended 

Kalman filter. However, in identifying modal parameter using a time-series model, there is an 

unavoidable difficulty: the determination of physically meaningful modal parameters. A time-series 

model for bridge vibration responses usually comprises more terms, usually higher-order, than true 

structural terms, and thus yields spurious parameters unrelated to the true structural ones. Although 

the optimal order can be evaluated by certain existing criteria, it offers no clue in choosing physically 

meaningful modal parameters from spurious ones and therefore subjective judgment is usually 

required. Such a difficulty is discussed further in Section 4.1. Despite the difficulty, the modal 

parameters, identified with subjective judgment, are examined to determine if they are qualified to 

indicate bridge damage. In view of the above difficulty, an alternative damage indicator proposed by 

Nair et al. [25] is also examined in this study, considering the fact that it is simply composed of AR 

coefficients and thus free of modal-parameter identification. This indicator (hereafter referred to as 

Nair’s damage indicator, NDI) has been verified to be sensitive to bridge damage in laboratory 

experimental studies [20, 26] but not yet in field experimental studies. 

Mahalanobis-Taguchi system (MTS) [27-29], a multivariate pattern-recognition tool, is adopted 

to assist in making a decision on the bridge health condition. In the MTS approach, several 



observations of suitable variables gathered for the healthy condition are taken as a reference group 

and the Mahalanobis distance (MD) is taken to measure the degree of abnormality of individual 

candidate observations (probably in the damaged condition). In the experiment presented in this 

study, several runs of each test were carried out for healthy (or reference) and damage conditions 

respectively, each with several vibration responses measured from a set of sensors. Considering the 

modal parameters or NDI, identified from a single vibration response, either can be a variable and 

each test run provides an observation for MTS. In this study, the sensitivities of different properties 

and sets of variables to the bridge damage are investigated. 

As mentioned previously, a field experiment was conducted on a real continuous steel 

Gerber-truss bridge with artificial damage applied. The objective of this paper is to summarize the 

results of the experiment for bridge damage detection utilizing traffic-induced vibrations and to 

investigate the sensitivities to bridge damage of: the identified modal parameters and their statistical 

patterns, NDI and its statistical pattern and different sets of measurement points. The modal 

parameters are identified by AR time-series models, which are briefly described along with the 

definition of NDI in Section 3, following the introduction of the experiment in Section 2. The 

decision on the bridge health condition is made and the damage sensitivity of variables is evaluated 

with the aid of MTS, whose algorithm is also given in Section 3. In Section 4, the identified modal 

parameters, NDI, and the sensitivities of the former two variables and different sensor sets to the 

bridge damage are presented, followed by several concluding remarks regarding the implication and 

limitation of the damage detection technique in practical applications. 

 

(a)
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(b)  

Fig. 2 Experiment bridge: (a) elevation view; (b) photo. 

 



2. Field Experiment 

2.1. Experiment Bridge and Artificial Damage 

The experiment bridge was a continuous steel Gerber-truss bridge, as shown in Fig. 2. The 

bridge comprises 9 spans, among which the 6th span, i.e. P5-P6 span, is selected as the test span. It 

was about 65.5 m in span length and 8.5 m in width. The test bridge was closed and provided for the 

damage experiment before being demolished. 

In reference to damage previously observed in real steel truss bridges (see Fig. 1), a damage 

scenario consisting of a diagonal member fully severed was artificially applied in this study. The 

artificial damage was applied at the fourth diagonal member (marked in red in Fig. 2(a)). The 

cutting-off task was conducted as per the following procedure, along with many safety measures; 

Firstly, the damaged member was wrapped in a protection device (see Fig. 3(a)) assembled with 

brackets, jackets, steel bars and displacement restriction members to prevent any possible bridge 

collapse due to the abrupt release of tensile force of the damaged member. Then, via the jackets, a 

compressive force was applied which was equivalent to the design dead tensile force (about 658 kN) 

of the member. In this state, most of the tensile force of the member was expected to transfer to the 

protection device so that the member might hold little force before being cut off. Next, the member 

was fully severed using an Oxyacetylene cutting torch. Finally, the applied force of the protection 

device was steadily released. Figs. 3 (b) and (c) show photos of the element before and after it was 

severed. For differentiation, the bridge before the artificial damage is referred to as the intact bridge 

(even though it may not perfectly intact as in its newly-constructed status) and the bridge after the 

damage as the damaged bridge.  

(a)     
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 (a)  (b) (c) 

(b) (c)  

Fig. 3 Photo of damaged member: (a) protection device; (ab) before and (bc) after the damage. 
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Fig. 4 Sensor layout. 

 

2.2. Sensor Layout 

Fourteen accelerometers (Types ARS-1 and ARH-A by Tokyo Sokki Kenkyujo Co., Ltd.) were 

installed on the bridge deck and wired to data loggers (Types DC104 and DC204 by Tokyo Sokki 

Kenkyujo Co., Ltd.). Eleven of those accelerometers were at the damage side and the other three at 

the opposite side, as shown in Fig. 4. All accelerometers were located on the deck near the truss 

nodes, except for the accelerometers No. 3 and 5 which were located on the deck near the midpoint 

of two adjacent nodes close to the damaged member instead of nodes in order to offer a denser 

sensor deployment to investigate whether it has advantages in damage detection/localization. Three 

pairs of photoelectric switches were installed, at the two endspans and the midspan, for the purpose 

of detecting the instants that the experiment vehicle entered, exited and reached the midspan of the 

bridge. The sampling rate for all accelerometers was 200 Hz. Also, throughout this paper, the 

accelerometer ID is used to denote the measurement point ID. 
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2.3. Types of Test and Experiment Vehicle 

In the experiment, the bridge was excited by the passage of an experiment vehicle. The traffic 

was controlled to ensure that no other vehicle apart from the experiment vehicle was allowed. The 

experiment vehicle was a cargo truck of model LKG-CD5ZA, produced by UD Trucks Corp., as 

shown in Fig. 5. The experiment was conducted during daytime over two successive days. The 

experiment truck remained the same, but its total weight varied slightly from 253 kN on the first day 

to 258 kN on the second day (see Table 1 for more detailed weight allocations) due to the use of 

different piles of loading blocks. The temperature was not recorded, however no obvious variation in 

temperature was expected to occur due to the duration of the experiment on both days and the time of 

day it was carried out. The slight variations in total weight and weight allocation of the truck and that 

in the temperature can be reasonably neglected herein. 

The truck passed the bridge with three planned constant speeds: 10, 20 and 40 km/hr (designated 

as Cases V1, V2 and V3, respectively). The number of runs with respect to each speed is listed in 

Table 2. Another case, Case V4, is considered with all the runs in Cases V1 to V3, in order to present 

a more authentic case of normal traffic flow.  

 

 

Fig. 5 Photo of experiment vehicle. 

 

Table 1 Axle weight (in kN) of the experiment vehicle. 

 First day Second day 

Axle Front Rear1 Rear2 Whole Front Rear1 Rear2 Whole 

Left 35.8 47.8 41.7  37.0 47.7 41.9  

Right 34.1 48.1 45.7  36.2 49.7 45.9  

Total 69.9 95.9 87.4 253 73.2 97.4 87.8 258 

 

Table 2 Vehicle speed and number of runs. 
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Case 

ID 

Target speed 

(km/h) 

Average 

speed (km/h) 

Number of runs Remark 

Intact Damage  

V1 10 11.43 4 3  

V2 20 18.64 7 6  

V3 40 36.71 7 6  

V4 10, 20, 40  18 15 V1+V2+V3 cases 

 

  



3. Damage-Detection Method 

3.1. AR Model and Modal-Parameter Identification 

An autoregressive (AR) model is adopted to fit the time series of the measured bridge 

acceleration responses and then to identify the dominant frequencies and corresponding damping 

ratios of the bridge. Its algorithm is briefly described here while further details can be found in many 

other existing works e.g. [16, 30]. 

Given a set of discrete time series y(k) of length N (k = 1, …, N), it can be regarded as the output 

generated from an AR linear dynamic system of order p as 

 
1

( ) ( )
p

i

i

y(k) a y k i e k
=

= − +∑  (1) 

where ai is the i-th AR coefficient to be estimated and e(k) the error term. Multiplying Eq. (1) by 

y(k-s), (s = 1, …, p), and taking expected value (denoted as E[.]) yields the Yule-Walker equation, 

which is expressed as 

 rRa −=  (2) 

where R is the Toeplitz autocorrelation matrix assembled with elements Rs,I = rs-I = E[y(k-s)y(k-i)] 

defined as the autocorrelation function of y(k); a = [a1, …, ap]
T; r = [r1, …, rp]

T. AR coefficients ai 

can be solved by any effective solution technique involving a Toeplitz matrix, e.g. the 

Levinson-Durbin algorithm [30].  

Taking the z-transform of Eq. (1) yields 
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where Y(z) and E(z) are z-transforms of y(k) and e(k), respectively, H(z) the transfer function of the 

system, and z-i the forward shift operator. The system’s characteristic equation is then obtained by 

letting the denominator of H(z) equal zero, i.e.  
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The complex conjugate roots, zk and z*
k of Eq. (4) are the poles of the system, which have been 

proven to relate to the frequencies ωk and damping ratios hk of the system as (taking the k-th mode 

for example)  

 ( )* 2, exp 1k k k k k kz z h j hω ω= − ± −  (5) 

where j is the imaginary unit.  



Not all the system frequencies and damping ratios thus calculated are related to true bridge 

vibration modes. Some of them are related to other physical modes such as vehicle dynamics, road 

surface roughness, measurement noise and so on, while some of them relate to non-physical modes 

that present only for better fitting the mathematical model to the measured time series. To identify 

bridge vibration modes of our interest, certain subjective judgments are required. In this study, the 

judgment is made with the aid of (1) the singular value spectra yielded by performing frequency 

domain decomposition (FDD) [31] and (2) the stability diagrams obtained by performing 

multivariate AR analysis with respect to a wide range of orders [32].  

 

3.2. Nair’s Damage Indicator 

Nair’s damage indicator (NDI) is defined as [25]: 

 1

2 2 2

1 2 3

NDI
a

a a a
=

+ +
 (6) 

It is simply a function of the first three AR coefficients. Therefore, nothing related to modal 

information is required and thus neither is subjective judgment, indicating that automatic calculations 

are possible. The only parameter that has to be determined is the AR order. Several existing 

information criteria, e.g. the Akaike information criterion (AIC) [33] adopted herein, can be used to 

non-subjectively determine an optimal order from a number of candidate orders. This optimal order 

is that with which the numerical model is best fitted to the measured data series, while a certain 

large-order penalty is introduced. AIC is defined as AIC = -2(ML) + 2(NP), where ML denotes the 

maximum logarithm likelihood and NP the number of independently adjusted parameters within the 

model. The AR coefficients estimated with this optimal order, denoted as Mo, can thus be substituted 

into Eq. (6) to yield the NDI value.  

It is worthy of noting that previously other damage indicators similar to the NDI expression 

were tested in consideration of different combinations of AR coefficients, e.g. [20, 26] 
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where M is the number of AR coefficients. In the corresponding laboratory experimental sensitivity 

study on the parameter M, DI3 (exactly equivalent to NDI) was found to be the most sensitive 

indictor to damage. Hence, in this study, NDI is used without any additional sensitivity analysis on 

other similar forms of damage indicators. 



 

3.3. Mahalanobis-Taguchi System for Decision Making  

For the intact bridge, the candidate damage indicators, either the modal parameters or NDI, 

identified from the dynamic responses of several runs (or observations) may form a certain statistical 

pattern, while those for the damaged bridge may not follow this pattern. Based on this knowledge, 

the bridge damage can be detected by first recognizing the pattern of the observations of the intact 

bridge and then testing if a new observation, from the intact or damaged bridge, follows the above 

pattern or not: if yes, it is classified as intact; if not, it is classified as damage. To achieve this task, 

the Mahalanobis-Taguchi system (MTS), a multivariate pattern-recognition tool, is adopted in this 

study. The algorithm is introduced as follows. 

Given n observations, xp = [xp1, xp2, …, xpk], p=1~n, collected from the intact condition with 

respect to k variables as 

  (8) 

These observations form a ‘reference’ group, called Mahalanobis space (MS) or unit space, after 

being normalized by the mean μi and standard deviation σi of the i-th variable, i.e. Xpi = (xpi-μi)/σi, i = 

1~k, p = 1~n. With the MS, the Mahalanobis distance (MD) can be calculated for the p-th 

observation using the following equation 
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where Xp = [Xp1, Xp2, …, Xpk] and RMD∈Rn×k denotes the correlation matrix assembled with the 

elements rij =
1

n

mim
X
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⋅∑ ∑ )1/2. As can be seen from Eq. (8), and as shown in Fig. 6 

also, MD is a single measure of the distance in multidimensional space taking correlations into 

account. In MTS, it is taken to measure the degree of abnormality of any candidate observation and 

therefore to detect the health condition of the bridge from which the candidate observation is 

measured. For a candidate observation yq = [yq1, yq2, …, yqk], measured from the intact or damaged 

bridge, with respect to the same k variables, its MDs are calculated with the same correlation matrix 

RMD of the MS as follows, 
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where Yq = [Yq1, Yq2, …, Yqk] with elements Yqi = (yqi-μi)/σi, i = 1~k, is the observation vector 

normalized with the mean and standard deviation of the MS.  

Theoretically, the MDs corresponding to intact conditions are small while those from damage 

conditions are large. To make a quantitative decision on the health condition, a threshold is necessary. 

Herein, the threshold is determined in an objective way: by cross validation [29]. First we treat the 

1st observation from n observations of the intact (reference) condition as the candidate observation 

and take the normalized vectors of the remaining n-1 observations as the MS to calculate the MD of 

the 1st observation. Repeating this step n times by treating each observation as a candidate 

observation one by one yields n MDs. Removing the largest and smallest MD values to reduce the 

effect of possible outliers, the mean of the remaining n-2 MDs, termed the trimmed mean, is taken as 

the threshold for future damage detection. 

It should be noted that the MTS adopted herein is not a full version, which would also include the 

identification of useful variables, following the above algorithm, with the aid of orthogonal arrays 

(OA) and signal-to-noise (S/N) ratios [27, 28].The identification of useful variables is excluded 

because every variable (assigned in next section) is regarded as important so cannot be removed and 

therefore all the variables collected from a candidate sensor set (assigned in next section) are used to 

detect bridge damage. 

 

X1

X2

`

`

: Reference group data (intact)

2MD

1MD

: Mahalanobis distance of i-th observationMDi

: Reference group

: New observation 1 (intact)

: New observation 2 (abnormal)

 

Fig. 6 Illustration of Mahalanobis distance (MD). 



   

(a)  

   

(b)  

Fig. 7 Vehicle-induced bridge accelerations: (a) intact (v=40km/h, Run1); (b) damage (v=40km/h, 

Run3). Note: vertical lines at 5s and 12.5s mark the entrance and exit of the experiment vehicle 

respectively. 

 

5.4. Results and Discussions 

5.1.4.1. Modal Parameter MTS Analysis Results 

5.1.1.4.1.1. Modal Parameter Identification Example 

It is useful to illustrate this damage-detection method with an example. Fig. 7 shows example 

runs of bridge acceleration responses at measurement points No. 6 and No. 14 when the truck passed 

with a speed of 40 km/h (Case V3) for both intact and damage conditions. From this figure, it is not 

easy to identify any specific change in acceleration responses caused by the artificial damage.  

To identify meaningful modal parameters, FDD is performed on the response set from all 

measurement points for one run in order to obtain a singular spectrum, where dominant modes may 

show a peak at their corresponding modal frequency. Also, multivariate AR analysis is performed on 

the response sets - with respect to a wide range of model order - in order to obtain a stability diagram, 

where meaningful modes may present a vertical line corresponding to their corresponding modal 

frequency. Fig. 8 shows the stability diagrams superimposed by the singular spectra of 

vehicle-induced bridge accelerations of the same run as in Fig. 7. The identification of meaningful 
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bridge modes is carried out manually and subjectively by picking the modes that satisfy the 

following criteria: (a) presenting a peak at corresponding frequency in the singular spectrum; (b) 

presenting a vertical line at corresponding frequency in the stability diagram; (c) appearing in 

repeated runs (more results not shown here); (d) has a mode shape consistent with a physical 

interpretation. According to these criteria, two meaningful bridge modes are identified as shown in 

Fig. 9, one (designated as the 1st mode hereafter) with modal frequency around 1.96 Hz and the 

other (designated as the 2nd mode hereafter) around 7.64 Hz. Comparing those two modes for intact 

and damage conditions, little change occurs in modal frequencies while obvious change in damping 

ratios and mode shapes (especially at the nodes near the artificial damage) are observed as damage is 

applied.  

(a) (b)  

Fig. 8 Stability diagram and singular spectrum of vehicle-induced bridge accelerations: (a) intact 

(v=40km/h, Run1); (b) damage (v=40km/h, Run 3). 

 

(a)
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(b)  
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Fig. 9 Identified mode shapes along with modal frequencies and damping ratios: (a) intact; (b) 

damage. 

Several issues should be noted herein. Firstly, if the response set from all 12 nodal measurement 

points is analysed, i.e. all measurement points excluding No. 3 and 5, rather than those from all 14 

measurement points, the identified results (not shown here) remain similar. This is likely to be a 

result of the global modal properties not being significantly affected by local vibration responses. 

Secondly, the modal parameter-identification approach is not limited to the present one as it is not 

the major focus of this study, however, the statistical properties of the identified modal parameters 

are. Any effective alternative approach can be adopted to identify modal parameters of the bridge. 

Thirdly, higher modes may provide more damage information and prove to be more 

damage-sensitive than the above two identified modes, but they are hard to identify precisely and 

stably and therefore are not given further consideration here. Lastly, it is recognized that the 

vehicle-bridge system is time-variant and the frequency of this system may vary as a function of 

vehicle location. However, the frequency variation can be negligible and the system regarded as 

time-invariant if the vehicle mass is small enough (say, less than 10% of the bridge mass) and the 

vehicle frequency is not close to the bridge frequency [34]; this is exactly the criteria that met in this 

study. Therefore it can be claimed that the modal-parameter identification methods, AR and FDD 

methods, employed herein are valid.  
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Fig. 10 Identified 1st modal frequencies (top) and damping ratios (bottom) for the intact (o) and 

damaged bridge (x) and their ratios of difference (bar w.r.t. right vertical axis): (a) Case V1; (b) Case 

V2; (c) Case V3. 
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5.1.2.4.1.2. Basic Statistical Properties 

After the two meaningful bridge modes are identified, it is possible to focus only on those two 

modes in single-variate AR analysis afterwards, i.e., perform the single-variate AR analysis on a 

single response from one measurement point and then pick the modes with dominant frequency near 

1.96 Hz or 7.64 Hz. By performing this analysis on the responses obtained from every measurement 

point in every run and every case, the modal frequencies and damping ratios of every run can be 

identified. Fig. 10 shows the identified 1st modal frequencies f1 and damping ratios d1 with respect to 

all 14 measurement points and Cases V1 to V3, for both the intact and damage conditions. The ratios 

of the difference (in mean) between intact and damage conditions are also shown in Fig. 10, relative 

to the intact condition. Several basic statistical observations can be made as follows;  

(1)  f1 was not very sensitive to damage, presenting little difference between intact and damage 

conditions and generally smaller than a ratio of 5%;  

(2)  d1 was more sensitive than f1 to damage because it presents larger difference, generally 

larger than a ratio of 10%;  

(3)  the relationship between the damage location and the rate of change in f1 or d1 was not clear;  

(4)  the effect of vehicle speed on the identified modal parameters was not clear, e.g. Case V2 (v 

= 20 km/h) gives larger rates of frequency change than the other two cases, but Case V1 (v 

= 10 km/h) gives larger rates of damping-ratio change than the other two cases.  

 

The identified 2nd modal frequencies (f2) and damping ratios (d2) also present similar statistical 

observations (results not shown here) with low sensitivity of f2, higher sensitivity of d2 to damage, no 

clear relationship between damage location and rate of change in frequency or damping ratio, and no 

clear effect of vehicle speed.  

It should be noted that obtaining an accurate measure of damping is very challenging. For 

example, a damping ratio of 8.77% is observed in Fig. 9(b), which is higher than commonly 

observed ones. To validate it, an independent Stochastic Space Identification (SSI) [35] was 

performed on the same time response data set. The identified frequency and damping ratio were 1.94 

Hz and 8.15% respectively, which were close to the corresponding values identified by the AR 

method. These outcomes validate each other but evaluation of which one is more effective is outside 

the scope of this paper. Moreover, acknowledging this aforementioned fact does not 

straightforwardly lead to damping (and its statistical properties) not being feasible for the purpose of 

damage detection. At a minimum, it should be tested for the experimental data. In particular, as the 
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data was collected from a rare field damage experiment, it is valuable to test damping in this scenario. 

Therefore, damping ratios are retained as candidate variables for damage detection. 

 

5.1.3.4.1.3. Damage Detection 

As mentioned earlier for the intact condition, the identified modal frequencies or damping ratios 

from different measurement points for many runs may form a specific pattern. However, the modal 

parameters for the damage condition may not follow this pattern. This forms the motivation for the 

application of the pattern-recognition tool, MTS. Before applying MTS, the variables of MTS should 

be properly chosen. In this section, the variables are chosen to be the modal frequencies or damping 

ratios identified from a set of measurement points (or sensors). The sensor set could be a factor 

affecting the pattern information and subsequent health-condition classification, which is also 

investigated as follows. Table 3 lists the investigated sensor sets, where Set 1 consists of all 14 

sensors; Set 2: all sensors at nodes; Set 3: all sensors on the damaged side; Set 4: all sensors at nodes 

on the damaged side; Set 5: the midspan-symmetric sensors at truss nodes on the damaged side; Set 6: 

the midspan-symmetric sensors at every second node on the damaged side; Sets 7A to 7J: sensors at 

adjacent nodes; and finally, Sets 7BL, 7BR, 7CL and 7CR:two adjacent sensors with one at a node and 

the other not at a node.  

Although there are a large number of sensor sets, each set has its own importance. Basically, Sets 

1 to 6 are used for damage detection and each set is a representative of one specific sensor allocation 

pattern, as indicated in Table 3. Sets 7A to 7J utilize pairs of sensors i.e. two sensors each. These sets 

are used for damage localization, which usually requires more local information; therefore there are a 

number of these types of set to incorporate a range of sensor pairings. It follows that there is some 

overlap between sets in terms of sensors used; some sensors are used in more than one set.  
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Table 3 Sensor sets. 

Set ID Sensor ID 
No. of 

Sensors 
Remark 

1 

(1~14) 

1 43 5 6 7 8 9 10 11

12 13 14

2

 

14 All sensors 

2 

(1,2,4,6~14) 

1 4 6 7 8 9 10 11

12 13 14

2  

12 Sensors at truss nodes 

3 

(1~11) 

1 43 5 6 7 8 9 10 112
 

11 Sensors on damaged side 

4 

(1,2,4,6~11) 

1 4 6 7 8 9 10 112  

9 Sensors at nodes on damaged side 

5 

(4,6~11) 

4 6 7 8 9 10 11  

7 
Sensors symmetric to midspan, at nodes on 

damaged side 

6 

(4,7,9,11) 

4 7 9 11  

4 
Sensors symmetric to midspan, at every 

second nodes on damaged side 

7A,  

7BL,7BR, 

7CL,7CR, 

7D-7J 

A(1,2);BL(2,3);BR(3,4);CL(4,5);CR(5,6);D(6,7);E(7

,8);F(8,9);G(9,10);H(10,11);I(12,13);J(13,14) 

1 43 5 6 7 8 9 10 11

12 13 14

2

A DBLBRCLCR E F G H

I J

 

2 Two adjacent sensors 

7B,7C 

B(2,4); C(4,6) 

4 62

B C  

2 Two sensors at adjacent nodes 



 

(a) (b)  

Fig. 11 MD calculated with (a) the 1st and (b) 2nd modal frequencies (top) and damping ratios 

(bottom) of the sensor Set 5 as variables. (Case V4) 

 

Take the sensor Set 5 for example. Taking the f1 identified for the sensors in Set 5 as variables 

and taking all 18 observations (runs) of Case V4 for the intact condition to construct the MS, one can 

calculate the MD of each observation for the intact condition as well as for the damage condition (15 

observations), as shown at the top of Fig. 11(a). Also, the MDs used for cross validation and the 

threshold calculated from them are plotted in the same figure. The same procedure can also be done 

if the candidate damage indicator is changed from f1 to d1, f2 or d2, yielding the MD results shown in 

the other parts of Fig. 11. It is visually observed that, as damage is applied, the MD generally 

increases regardless of whether the damage indicator is f1, d1, f2 or d2. However, so too does the MD 

for the cross validation, with some magnitudes larger than those of the damage condition and some 

smaller, making the damage-detection task difficult to achieve by simple visual readings. Hence it is 

proposed to make the decision on health condition with the aid of two MD-derived quantities: the 

ratio and mean of the MD over the threshold. The criteria for successful damage detection requires 

both the ratio and mean of the MD over the threshold to be larger for the damage condition than for 

cross validation - it fails if neither is larger. Finally, the damage detection is unconfirmed if either 
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one is larger. Following these criteria, the damage detection failed for f1, with both the ratio (27%) 

and mean (1.0) of the MD of the damage condition smaller than those (33% and 1.5) of cross 

validation; it was successful for f2, with both the ratio (47%) and mean (5.0) of the MD of the 

damage condition larger than those (33% and 1.9) of cross validation. For d1 and d2, the damage 

detection was successful for the former but failed for the latter.  

This damage detection procedure can be performed on all the other sensor sets. Taking f1, f2, d1 

and d2 respectively of sensor Sets 1 to 6 as variables of MTS, the ratios and means of MD over the 

threshold are obtained, with which the damage-detection task can be evaluated as successful, failed 

or unconfirmed, as summarized in Table 4. It is observed that only about half of the cases were 

successful in damage detection, indicating that the statistical patterns of modal parameters are not 

sensitive enough to damage. Damage detection was successful for certain modal parameters of 

certain sets of measurement point, e.g. d1 of Set 2, f1 and d1 of Set 3, d1 of Set 4, etc., but no specific 

rule could be followed in order to choose effective modal parameters and suitable sets.  

 

Table 4 Ratios and means of MD over the threshold (variables: the 1st and 2nd modal 

frequencies (f1, f2) and damping ratios (d1, d2) of Sets 1 to 6). 

Set ID Variables Condition Ratio (%) Mean Damage Detection* 

1  Intact 0 0  

 f1 Cross 94 773 × 

  Damage 87 159  

  Intact 0 0  

 f2 Cross 88 4160 × 

  Damage 73 517  

  Intact 0 0  

 d1 Cross 88 566 ∆ 

  Damage 100 285  

  Intact 0 0  

 d2 Cross 82 19600 × 

  Damage 73 134  

2  Intact 0 0  

 f1 Cross 76 98 × 

  Damage 73 92  

  Intact 0 0  

 f2 Cross 71 1450 × 

  Damage 47 108  

  Intact 0 0  

 d1 Cross 76 94 O 

  Damage 87 169  

  Intact 0 0  

 d2 Cross 65 538 × 

  Damage 60 68  

*Note: O: successful; ∆: unconfirmed; ×: failed. 

 

 



Table 4 (continued) 

Set ID Variables Condition Ratio (%) Mean Damage Detection* 

3  Intact 0 0  

 f1 Cross 59 74 O 

  Damage 67 88  

  Intact 0 0  

 f2 Cross 59 522 ∆ 

  Damage 60 405  

  Intact 0 0  

 d1 Cross 65 88 O 

  Damage 93 130  

  Intact 0 0  

 d2 Cross 59 570 × 

  Damage 47 62  

4  Intact 0 0  

 f1 Cross 35 43 × 

  Damage 33 22  

  Intact 0 0  

 f2 Cross 47 177 × 

  Damage 33 70  

  Intact 0 0  

 d1 Cross 41 57 O 

  Damage 87 109  

  Intact 0 0  

 d2 Cross 47 358 × 

  Damage 27 25  

5  Intact 0 0  

 f1 Cross 33 1.5 × 

  Damage 27 1.0  

  Intact 0 0  

 f2 Cross 33 1.9 O 

  Damage 47 5.0  

  Intact 0 0  

 d1 Cross 27 1.5 O 

  Damage 60 3.3  

  Intact 0 0  

 d2 Cross 27 2.7 × 

  Damage 20 1.4  

6  Intact 18 0.4  

 f1 Cross 27 1.2 O 

  Damage 40 2.2  

  Intact 12 0.4  

 f2 Cross 33 1.5 O 

  Damage 60 2.6  

  Intact 6 0.1  

 d1 Cross 27 0.9 O 

  Damage 67 3.6  

  Intact 6 0.2  

 d2 Cross 40 1.3 O 

  Damage 73 8.3  
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Fig. 12 Ratios (top) and means (bottom) of MD over threshold, calculated with the 1st (a) modal 

frequency and (b) damping ratio of Sets 7A, 7BL, 7BR, 7CL, 7CR, and 7D-7J as variables. (Case V4) 
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Fig. 13 Ratios (top) and means (bottom) of MD over threshold calculated with the 1st (a) modal 

frequency and (b) damping ratio of Sets 7A to 7J as variables. (Case V4) 

 

5.1.4.4.1.4. Damage Localization 

Further to damage detection, damage localization utilizing MTS on modal parameters is also 

investigated. To localize the damage, the smallest number of sensors are assigned to a set of MTS 

variables, say, two-sensor sets including Sets 7A to 7J, 7BL, 7BR, 7CL and 7CR as listed in Table 3. 

Fig. 12 shows the ratios and means of the MD over the threshold calculated with f1 and d1 of Sets 7A, 

7BL, 7BR, 7CL, 7CR, and 7D to 7J (adjacent-sensor sets) as variables, while Fig. 13 shows those of 

Sets 7A to 7J (adjacent-nodal-sensor sets) as variables, both with all sums of Case V4 as 

observations. Although damage detection is guaranteed by showing larger ratios and means in MD 

over the threshold for the damage condition than for the cross validation, damage localization seems 



to be difficult here, without any significant deviation in MDs with respect to sensors near the 

artificial damage, whether the adjacent-sensor or adjacent-nodal-sensor sets are utilized. Replacing f1 

and d1 with f2 and d2 also yields similar results (not shown here), indicating that damage localization 

is difficult to achieve whether the adjacent sensor or adjacent nodal sensor sets are taken as variables. 

 

5.1.5.4.1.5. Effect of Speed 

The effect of vehicle speed on the damage localization results is also investigated. As mentioned 

in Table 2, three vehicle speeds are considered: 10 (Case V1), 20 (Case V2) and 40 km/h (Case V3). 

Fig. 14 shows the ratios and means of MD over threshold calculated with f1 and d1 of Sets 7A, 7BL, 

7BR, 7CL, 7CR, and 7D to 7J (adjacent-sensor sets) as variables for those speed cases. No clear effect 

of vehicle speed on the damage localization results is observed, indicated by the lack of any larger 

means and ratios of the MD over the threshold appearing in the sets near the damage. The lack of a 

clear effect is most likely due to too small a number of observations in each case (e.g. as few as 3 for 

Case V1 in the damage condition) to form a distinguishable statistical pattern. Based on this 

observation, the speed factor is not considered any further and all three speed cases are collected 

together as another case, Case V4, for the purpose of studying other factors. 

In summary, although bridge damage detection can be achieved by performing MTS on certain 

modal parameters of certain sets of measurement points, several difficulties are faced: the first one is 

the subjective selection of meaningful bridge modes; the second one is the low sensitivity of the 

statistical pattern of modal parameters to damage.  
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Fig. 14 Ratios (top) and means (bottom) of MD over threshold, calculated with the 1st modal 

frequency (left, i.e. (a), (c), (e)) and damping ratio (right, i.e. (b), (d), (f)) of Sets 7A, 7BL, 7BR, 7CL, 

7CR, and 7D-7J in Case V1 ((a) and (b)), V2 ((c) and (d)) and V3 ((e) and (f)) as variables.  
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Fig. 14 (continued) 

 

5.2.4.2. NDI MTS Analysis Results 

5.2.1.4.2.1. Damage Detection 

In this section, another damage indicator is examined: NDI as defined in Section 3.2. Fig. 15 

shows the NDIs with respect to the 14 measurement points and Cases V1 to V3 for the intact and 

damage conditions, respectively, and their ratio of mean difference. It is observed through basic 

statistics that the means of NDI change as damage is applied, with ratios generally larger than those 

of f1 but smaller than those of d1. NDI’s statistical pattern also changes obviously via visual 

inspection, which can be evaluated quantitatively by performing MTS as follows. Fig. 16 shows two 

example MTS results, one is the MD calculated with NDIs of sensor Set 5 and the other is that of 

sensor Set 6; the increase of MD due to the artificial damage can be easily observed from either. For 

sensor Set 5, damage detection is successful, with both larger ratio (100%) and mean (13) of the MD 

over the threshold occurring for the damage condition compared to those (38% and 2) for cross 
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validation (see also Table 5). For sensor Set 6, damage detection is also successful, satisfying the 

same criteria. For other sets, the success or failure in damage detection tasks, according to the ratios 

and means of MD over threshold calculated for intact and damage conditions and cross validations 

are listed in Table 5. It is observed that most of the sensor sets offer successful damage detection, 

indicating that the NDI patterns are sensitive to damage regardless of the sensor sets considered 

herein. In concerning instrumentation and manpower costs, the sensor set with minimum number, i.e. 

Set 6 with 4 sensors at the damaged side in this study, could be an efficient layout that provides 

acceptably accurate prediction in practice.  
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Fig. 15 NDI calculated from the intact (o) and damaged bridge (x) and their ratios of mean difference 

(bar w.r.t. right vertical axis): (a) Case V1; (b) Case V2; (c) Case V3. 

 

(a) (b)  

Fig. 16 MD calculated with NDI of (a) Set 5 and (b) Set 6 as variables. 

 

  



Table 5 Ratios and means of MD over the threshold (variables: NDI of Sets 1 to 6).  

Set ID Condition Ratio (%) Mean Damage Detection* 

 Intact 0 0  

1 Cross 78 65 ∆ 

 Damage 100 24  

 Intact 0 0  

2 Cross 61 9 O 

 Damage 93 10  

 Intact 0 0  

3 Cross 50 8 O 

 Damage 100 16  

 Intact 0 0  

4 Cross 50 3 O 

 Damage 80 11  

 Intact 0 0  

5 Cross 38 2 O 

 Damage 100 13  

 Intact 7 0  

6 Cross 31 1 O 

 Damage 100 8  

*Note: O: successful; ∆: unconfirmed; ×: failed. 

 

5.2.2.4.2.2. Damage Localization 

Also, the damage localization utilizing MTS on NDI is investigated. Similar to Section 4.1, 

two-sensor sets including Sets 7A to 7J, 7BL, 7BR, 7CL and 7CR are taken into consideration. Fig. 

17(a) shows the ratios and means of MD over threshold calculated with NDI of Sets 7A, 7BL, 7BR, 

7CL, 7CR, and 7D to 7J (adjacent-sensor sets) as variables, while Fig. 17(b) shows those of Sets 7A 

to 7J (adjacent-nodal-sensor sets) as variables. Although damage detection is generally successful, 

with a MD larger for damage condition than for cross validation, damage localization is still difficult 

because both ratios and means of MD over threshold show no clear indication of the sensor sets 

around the artificial damage. The only figure offering clearer indication is the bottom one of Fig. 

17(a), i.e., the means of MD over threshold with NDI of adjacent-sensor sets, where the maximum 

occurs at Set CL, closest to the artificial damage. Apart from this figure, other figures offer either 

false indications, e.g. maximum at sets far from the artificial damage, or confusing results, e.g. 

maximum at multiple sets. The effect of vehicle speed on the damage localization results is also 

Formatted: Font color: Auto

Formatted: Font color: Auto



investigated. Like the observations in Section 4.1.5, no clear effect was observed (results not shown 

here). 

In summary, bridge damage detection can be achieved by performing MTS on NDIs of most sets 

of measurement points. This approach has several advantages: (1) no subjective decision is required 

in calculating NDI thus potential human errors can be prevented and an automatic detection task can 

be achieved; (2) high sensitivity of the statistical pattern of NDI to damage; (3) flexible choice of 

sets of measurement points.  
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Fig. 17 Ratios (top) and means (bottom) of MD over threshold calculated with NDI of (a) Sets 7A, 

7BL, 7BR, 7CL, 7CR, and 7D to 7J and (b) Sets 7A to 7J as variables. (Case V4) 

 

6.5. Concluding Remarks 

In this study, a field experiment was conducted on a real continuous steel Gerber-truss bridge 

with artificial damage applied in order to investigate bridge damage detection utilizing 

traffic-induced vibrations. The sensitivities to bridge damage of the identified modal parameters and 

their statistical patterns, Nair’s damage indicator (NDI) and its statistical pattern, and different sets of 

measurement points to the bridge damage were studied. Several concluding remarks can be drawn as 

follows.  

For the modal parameters, bridge damage detection was difficult to achieve by studying their 

changes using basic statistics. Although it can be achieved by performing MTS on certain modal 

parameters of certain sets of measurement points, two main difficulties were faced: the subjective 

selection of meaningful bridge modes and the low sensitivity of the statistical pattern of modal 

parameters to damage.  



For NDI, bridge damage detection can be achieved by performing MTS on NDIs of most sets of 

measurement points. As a damage indicator, NDI was superior to modal parameters, with the 

advantages of (1) no subjective decision is required in calculating NDI preventing potential human 

errors and enabling an automatic detection task to be implemented, (2) high sensitivity of its 

statistical pattern to damage, and (3) flexible choice of sets of measurement points considered herein. 

While these concluding remarks apply to bridge structures and damage scenarios similar to those 

in this experimental study, the approaches presented in this paper show potential for further real 

world implementation. Further field testing on various real bridges with damage scenarios would 

support the general applicability of such approaches. 
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