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Preface
Genetic programming (GP) is a collection of evolutionary computation tech-
niques that allow computers to solve problems automatically. Since its in-
ception twenty years ago, GP has been used to solve a wide range of prac-
tical problems, producing a number of human-competitive results and even
patentable new inventions. Like many other areas of computer science, GP
is evolving rapidly, with new ideas, techniques and applications being con-
stantly proposed. While this shows how wonderfully prolific GP is, it also
makes it difficult for newcomers to become acquainted with the main ideas
in the field, and form a mental map of its different branches. Even for people
who have been interested in GP for a while, it is difficult to keep up with
the pace of new developments.

Many books have been written which describe aspects of GP. Some
provide general introductions to the field as a whole. However, no new
introductory book on GP has been produced in the last decade, and anyone
wanting to learn about GP is forced to map the terrain painfully on their
own. This book attempts to fill that gap, by providing a modern field guide
to GP for both newcomers and old-timers.

It would have been straightforward to find a traditional publisher for such
a book. However, we want our book to be as accessible as possible to every-
one interested in learning about GP. Therefore, we have chosen to make it
freely available on-line, while also allowing printed copies to be ordered in-
expensively from http://lulu.com. Visit http://www.gp-field-guide.

org.uk for the details.

The book has undergone numerous iterations and revisions. It began as
a book-chapter overview of GP (more on this below), which quickly grew
to almost 100 pages. A technical report version of it was circulated on the
GP mailing list. People responded very positively, and some encouraged us
to continue and expand that survey into a book. We took their advice and
this field guide is the result.
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What’s in this book

The book is divided up into four parts.
Part I covers the basics of genetic programming (GP). This starts with a

gentle introduction which describes how a population of programs is stored
in the computer so that they can evolve with time. We explain how programs
are represented, how random programs are initially created, and how GP
creates a new generation by mutating the better existing programs or com-
bining pairs of good parent programs to produce offspring programs. This
is followed by a simple explanation of how to apply GP and an illustrative
example of using GP.

In Part II, we describe a variety of alternative representations for pro-
grams and some advanced GP techniques. These include: the evolution of
machine-code and parallel programs, the use of grammars and probability
distributions for the generation of programs, variants of GP which allow the
solution of problems with multiple objectives, many speed-up techniques
and some useful theoretical tools.

Part III provides valuable information for anyone interested in using GP
in practical applications. To illustrate genetic programming’s scope, this
part contains a review of many real-world applications of GP. These in-
clude: curve fitting, data modelling, symbolic regression, image analysis,
signal processing, financial trading, time series prediction, economic mod-
elling, industrial process control, medicine, biology, bioinformatics, hyper-
heuristics, artistic applications, computer games, entertainment, compres-
sion and human-competitive results. This is followed by a series of recom-
mendations and suggestions to obtain the most from a GP system. We then
provide some conclusions.

Part IV completes the book. In addition to a bibliography and an index,
this part includes two appendices that provide many pointers to resources,
further reading and a simple GP implementation in Java.
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Chapter 1

Introduction

The goal of having computers automatically solve problems is central to
artificial intelligence, machine learning, and the broad area encompassed by
what Turing called “machine intelligence” (Turing, 1948). Machine learning
pioneer Arthur Samuel, in his 1983 talk entitled “AI: Where It Has Been
and Where It Is Going” (Samuel, 1983), stated that the main goal of the
fields of machine learning and artificial intelligence is:

“to get machines to exhibit behaviour, which if done by humans,
would be assumed to involve the use of intelligence.”

Genetic programming (GP) is an evolutionary computation (EC)1 tech-
nique that automatically solves problems without requiring the user to know
or specify the form or structure of the solution in advance. At the most
abstract level GP is a systematic, domain-independent method for getting
computers to solve problems automatically starting from a high-level state-
ment of what needs to be done.

Since its inception, GP has attracted the interest of myriads of people
around the globe. This book gives an overview of the basics of GP, sum-
marised important work that gave direction and impetus to the field and
discusses some interesting new directions and applications. Things continue
to change rapidly in genetic programming as investigators and practitioners
discover new methods and applications. This makes it impossible to cover
all aspects of GP, and this book should be seen as a snapshot of a particular
moment in the history of the field.

1These are also known as evolutionary algorithms or EAs.

1
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Generate Population

of Random Programs

Run Programs and

Evaluate Their Quality

Breed Fitter Programs

Solution

(* (SIN (- y x))
   (IF (> x 15.43)
       (+ 2.3787 x)
       (* (SQRT y)
          (/ x 7.54))))

Figure 1.1: The basic control flow for genetic programming, where survival
of the fittest is used to find solutions.

1.1 Genetic Programming in a Nutshell

In genetic programming we evolve a population of computer programs. That
is, generation by generation, GP stochastically transforms populations of
programs into new, hopefully better, populations of programs, cf. Figure 1.1.
GP, like nature, is a random process, and it can never guarantee results.
GP’s essential randomness, however, can lead it to escape traps which de-
terministic methods may be captured by. Like nature, GP has been very
successful at evolving novel and unexpected ways of solving problems. (See
Chapter 12 for numerous examples.)

The basic steps in a GP system are shown in Algorithm 1.1. GP finds out
how well a program works by running it, and then comparing its behaviour
to some ideal (line 3). We might be interested, for example, in how well a
program predicts a time series or controls an industrial process. This com-
parison is quantified to give a numeric value called fitness. Those programs
that do well are chosen to breed (line 4) and produce new programs for the
next generation (line 5). The primary genetic operations that are used to
create new programs from existing ones are:

• Crossover: The creation of a child program by combining randomly
chosen parts from two selected parent programs.

• Mutation: The creation of a new child program by randomly altering
a randomly chosen part of a selected parent program.

1.2 Getting Started

Two key questions for those first exploring GP are:

1. What should I read to get started in GP?

2. Should I implement my own GP system or should I use an existing
package? If so, what package should I use?
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1: Randomly create an initial population of programs from the available
primitives (more on this in Section 2.2).

2: repeat
3: Execute each program and ascertain its fitness.
4: Select one or two program(s) from the population with a probability

based on fitness to participate in genetic operations (Section 2.3).
5: Create new individual program(s) by applying genetic operations with

specified probabilities (Section 2.4).
6: until an acceptable solution is found or some other stopping condition

is met (e.g., a maximum number of generations is reached).
7: return the best-so-far individual.

Algorithm 1.1: Genetic Programming

The best way to begin is obviously by reading this book, so you’re off to
a good start. We included a wide variety of references to help guide people
through at least some of the literature. No single work, however, could claim
to be completely comprehensive. Thus Appendix A reviews a whole host of
books, videos, journals, conferences, and on-line sources (including several
freely available GP systems) that should be of assistance.

We strongly encourage doing GP as well as reading about it; the dy-
namics of evolutionary algorithms are complex, and the experience of trac-
ing through runs is invaluable. In Appendix B we provide the full Java
implementation of Riccardo’s TinyGP system.

1.3 Prerequisites

Although this book has been written with beginners in mind, unavoidably
we had to make some assumptions about the typical background of our
readers. The book assumes some working knowledge of computer science
and computer programming; this is probably an essential prerequisite to get
the most from the book.

We don’t expect that readers will have been exposed to other flavours of
evolutionary algorithms before, although a little background might be useful.
The interested novice can easily find additional information on evolutionary
computation thanks to the plethora of tutorials available on the Internet.
Articles from Wikipedia and the genetic algorithm tutorial produced by
Whitley (1994) should suffice.



4 1 Introduction

1.4 Overview of this Field Guide

As we indicated in the section entitled “What’s in this book” (page v), the
book is divided up into four parts. In this section, we will have a closer look
at their content.

Part I is mainly for the benefit of beginners, so notions are introduced
at a relaxed pace. In the next chapter we provide a description of the key
elements in GP. These include how programs are stored (Section 2.1), the
initialisation of the population (Section 2.2), the selection of individuals
(Section 2.3) and the genetic operations of crossover and mutation (Sec-
tion 2.4). A discussion of the decisions that are needed before running GP
is given in Chapter 3. These preparatory steps include the specification of
the set of instructions that GP can use to construct programs (Sections 3.1
and 3.2), the definition of a fitness measure that can guide GP towards
good solutions (Section 3.3), setting GP parameters (Section 3.4) and, fi-
nally, the rule used to decide when to stop a GP run (Section 3.5). To help
the reader understand these, Chapter 4 presents a step-by-step application
of the preparatory steps (Section 4.1) and a detailed explanation of a sample
GP run (Section 4.2).

After these introductory chapters, we go up a gear in Part II where
we describe a variety of more advanced GP techniques. Chapter 5 consid-
ers additional initialisation strategies and genetic operators for the main GP
representation—syntax trees. In Chapter 6 we look at techniques for the evo-
lution of structured and grammatically-constrained programs. In particular,
we consider: modular and hierarchical structures including automatically de-
fined functions and architecture-altering operations (Section 6.1), systems
that constrain the syntax of evolved programs using grammars or type sys-
tems (Section 6.2), and developmental GP (Section 6.3). In Chapter 7 we
discuss alternative program representations, namely linear GP (Section 7.1)
and graph-based GP (Section 7.2).

In Chapter 8 we review systems where, instead of using mutation and
recombination to create new programs, they are simply generated randomly
according to a probability distribution which itself evolves. These are known
as estimation of distribution algorithms, cf. Sections 8.1 and 8.2. Section 8.3
reviews hybrids between GP and probabilistic grammars, where probability
distributions are associated with the elements of a grammar.

Many, if not most, real-world problems are multi-objective, in the sense
that their solutions are required to satisfy more than one criterion at the
same time. In Chapter 9, we review different techniques that allow GP to
solve multi-objective problems. These include the aggregation of multiple
objectives into a scalar fitness measure (Section 9.1), the use of the notion of
Pareto dominance (Section 9.2), the definition of dynamic or staged fitness
functions (Section 9.3), and the reliance on special biases on the genetic
operators to aid the optimisation of multiple objectives (Section 9.4).
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A variety of methods to speed up, parallelise and distribute genetic pro-
gramming runs are described in Chapter 10. We start by looking at ways
to reduce the number of fitness evaluations or increase their effectiveness
(Section 10.1) and ways to speed up their execution (Section 10.2). We
then point out (Section 10.3) that faster evaluation is not the only reason
for running GP in parallel, as geographic distribution has advantages in
its own right. In Section 10.4, we consider the first approach and describe
master-slave parallel architectures (Section 10.4.1), running GP on graphics
hardware (Section 10.4.2) and FPGAs (Section 10.4.3), and a fast method to
exploit the parallelism available on every computer (Section 10.4.4). Finally,
Section 10.5 looks at the second approach discussing the geographically dis-
tributed evolution of programs. We then give an overview of some of the
considerable work that has been done on GP’s theory and its practical uses
(Chapter 11).

After this review of techniques, Part III provides information for peo-
ple interested in using GP in practical applications. We survey the enor-
mous variety of applications of GP in Chapter 12. We start with a dis-
cussion of the general kinds of problems where GP has proved successful
(Section 12.1) and then describe a variety of GP applications, including:
curve fitting, data modelling and symbolic regression (Section 12.2); human
competitive results (Section 12.3); image analysis and signal processing (Sec-
tion 12.4); financial trading, time series prediction and economic modelling
(Section 12.5); industrial process control (Section 12.6); medicine, biology
and bioinformatics (Section 12.7); the evolution of search algorithms and
optimisers (Section 12.8); computer games and entertainment applications
(Section 12.9); artistic applications (12.10); and GP-based data compression
(Section 12.11). This is followed by a chapter providing a collection of trou-
bleshooting techniques used by experienced GP practitioners (Chapter 13)
and by our conclusions (Chapter 14).

In Part IV, we provide a resources appendix that reviews the many
sources of further information on GP, on its applications, and on related
problem solving systems (Appendix A). This is followed by a description
and the source code for a simple GP system in Java (Appendix B). The
results of a sample run with the system are also described in the appendix
and further illustrated via a Flip-O-Rama animation2 (see Section B.4).

The book ends with a large bibliography containing around 650 refer-
ences. Of these, around 420 contain pointers to on-line versions of the corre-
sponding papers. While this is very useful on its own, the users of the PDF
version of this book will be able to do more if they use a PDF viewer that
supports hyperlinks: they will be able to click on the URLs and retrieve the
cited articles. Around 550 of the papers in the bibliography are included in

2This is in the footer of the odd-numbered pages in the bibliography and in the index.
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the GP bibliography (Langdon, Gustafson, and Koza, 1995-2008).3 We have
linked those references to the corresponding BibTEXentries in the bibliog-
raphy. Just click on the GPBiB symbols to retrieve them instantaneously.
Entries in the bibliography typically include keywords, abstracts and often
further URLs.

With a slight self-referential violation of bibliographic etiquette, we have
also included in the bibliography the excellent (Poli et al., 2008) to clar-
ify how to cite this book. LATEX users can find the BibTEX entry for
this book at http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_
fieldguide.html.

3Available at http://www.cs.bham.ac.uk/~wbl/biblio/

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://www.cs.bham.ac.uk/~wbl/biblio/


Part I

Basics

Here Alice steps through the looking glass. . .

and the Jabberwock is slain.
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Chapter 2

Representation,
Initialisation and
Operators in Tree-based
GP

This chapter introduces the basic tools and terminology used in genetic
programming. In particular, it looks at how trial solutions are represented in
most GP systems (Section 2.1), how one might construct the initial random
population (Section 2.2), and how selection (Section 2.3) as well as crossover
and mutation (Section 2.4) are used to construct new programs.

2.1 Representation

In GP, programs are usually expressed as syntax trees rather than as lines of
code. For example Figure 2.1 shows the tree representation of the program
max(x+x,x+3*y). The variables and constants in the program (x, y and 3)
are leaves of the tree. In GP they are called terminals, whilst the arithmetic
operations (+, * and max) are internal nodes called functions. The sets of
allowed functions and terminals together form the primitive set of a GP
system.

In more advanced forms of GP, programs can be composed of multiple
components (e.g., subroutines). In this case the representation used in GP
is a set of trees (one for each component) grouped together under a special
root node that acts as glue, as illustrated in Figure 2.2. We will call these
(sub)trees branches. The number and type of the branches in a program,

9
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together with certain other features of their structure, form the architecture
of the program. This is discussed in more detail in Section 6.1.

It is common in the GP literature to represent expressions in a prefix no-
tation similar to that used in Lisp or Scheme. For example, max(x+x,x+3*y)
becomes (max (+ x x) (+ x (* 3 y))). This notation often makes it eas-
ier to see the relationship between (sub)expressions and their corresponding
(sub)trees. Therefore, in the following, we will use trees and their corre-
sponding prefix-notation expressions interchangeably.

How one implements GP trees will obviously depend a great deal on
the programming languages and libraries being used. Languages that pro-
vide automatic garbage collection and dynamic lists as fundamental data
types make it easier to implement expression trees and the necessary GP
operations. Most traditional languages used in AI research (e.g., Lisp and
Prolog), many recent languages (e.g., Ruby and Python), and the languages
associated with several scientific programming tools (e.g., MATLAB1 and
Mathematica2) have these facilities. In other languages, one may have to
implement lists/trees or use libraries that provide such data structures.

In high performance environments, the tree-based representation of pro-
grams may be too inefficient since it requires the storage and management
of numerous pointers. In some cases, it may be desirable to use GP primi-
tives which accept a variable number of arguments (a quantity we will call
arity). An example is the sequencing instruction progn, which accepts any
number of arguments, executes them one at a time and then returns the

x x

+ +

max

x

y3

∗

Figure 2.1: GP syntax tree representing max(x+x,x+3*y).

1MATLAB is a registered trademark of The MathWorks, Inc
2Mathematica is a registered trademark of Wolfram Research, Inc.
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ROOT

...

Component
1

Component
2

Component
N

Branches

Figure 2.2: Multi-component program representation.

value returned by the last argument. However, fortunately, it is now ex-
tremely common in GP applications for all functions to have a fixed number
of arguments. If this is the case, then, the brackets in prefix-notation ex-
pressions are redundant, and trees can efficiently be represented as simple
linear sequences. In effect, the function’s name gives its arity and from the
arities the brackets can be inferred. For example, the expression (max (+ x

x) (+ x (* 3 y))) could be written unambiguously as the sequence max

+ x x + x * 3 y.
The choice of whether to use such a linear representation or an explicit

tree representation is typically guided by questions of convenience, efficiency,
the genetic operations being used (some may be more easily or more effi-
ciently implemented in one representation), and other data one may wish
to collect during runs. (It is sometimes useful to attach additional infor-
mation to nodes, which may be easier to implement if they are explicitly
represented).

These tree representations are the most common in GP, e.g., numer-
ous high-quality, freely available GP implementations use them (see the
resources in Appendix A, page 148, for more information) and so does also
the simple GP system described in Appendix B. However, there are other
important representations, some of which are discussed in Chapter 7.

2.2 Initialising the Population

Like in other evolutionary algorithms, in GP the individuals in the initial
population are typically randomly generated. There are a number of dif-
ferent approaches to generating this random initial population. Here we



12 2 Tree-based GP

+

t=1

+

∗

t=2 t=3

x

+

∗

+

t=4

x

∗

y

+

t=6

x

∗

y

/

+

t=7

x

∗

y 01

/

+

t=5

x

∗

y

/

1

Figure 2.3: Creation of a full tree having maximum depth 2 using the full
initialisation method (t = time).

will describe two of the simplest (and earliest) methods (the full and grow

methods), and a widely used combination of the two known as Ramped half-
and-half.

In both the full and grow methods, the initial individuals are generated
so that they do not exceed a user specified maximum depth. The depth of
a node is the number of edges that need to be traversed to reach the node
starting from the tree’s root node (which is assumed to be at depth 0). The
depth of a tree is the depth of its deepest leaf (e.g., the tree in Figure 2.1 has
a depth of 3). In the full method (so named because it generates full trees,
i.e. all leaves are at the same depth) nodes are taken at random from the
function set until the maximum tree depth is reached. (Beyond that depth,
only terminals can be chosen.) Figure 2.3 shows a series of snapshots of the
construction of a full tree of depth 2. The children of the * and / nodes
must be leaves or otherwise the tree would be too deep. Thus, at both steps
t = 3, t = 4, t = 6 and t = 7 a terminal must be chosen (x, y, 1 and 0,
respectively).

Although, the full method generates trees where all the leaves are at
the same depth, this does not necessarily mean that all initial trees will
have an identical number of nodes (often referred to as the size of a tree)
or the same shape. This only happens, in fact, when all the functions in
the primitive set have an equal arity. Nonetheless, even when mixed-arity
primitive sets are used, the range of program sizes and shapes produced by
the full method may be rather limited. The grow method, on the contrary,
allows for the creation of trees of more varied sizes and shapes. Nodes are
selected from the whole primitive set (i.e., functions and terminals) until
the depth limit is reached. Once the depth limit is reached only terminals
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Figure 2.4: Creation of a five node tree using the grow initialisation method
with a maximum depth of 2 (t = time). A terminal is chosen at t = 2,
causing the left branch of the root to be closed at that point even though
the maximum depth had not been reached.

may be chosen (just as in the full method). Figure 2.4 illustrates this
process for the construction of a tree with depth limit 2. Here the first
argument of the + root node happens to be a terminal. This closes off that
branch preventing it from growing any more before it reached the depth
limit. The other argument is a function (-), but its arguments are forced
to be terminals to ensure that the resulting tree does not exceed the depth
limit. Pseudocode for a recursive implementation of both the full and grow

methods is given in Algorithm 2.1.

Because neither the grow or full method provide a very wide array of
sizes or shapes on their own, Koza (1992) proposed a combination called
ramped half-and-half. Half the initial population is constructed using full

and half is constructed using grow. This is done using a range of depth limits
(hence the term “ramped”) to help ensure that we generate trees having a
variety of sizes and shapes.

While these methods are easy to implement and use, they often make it
difficult to control the statistical distributions of important properties such
as the sizes and shapes of the generated trees. For example, the sizes and
shapes of the trees generated via the grow method are highly sensitive to the
sizes of the function and terminal sets. If, for example, one has significantly
more terminals than functions, the grow method will almost always generate
very short trees regardless of the depth limit. Similarly, if the number of
functions is considerably greater than the number of terminals, then the
grow method will behave quite similarly to the full method. The arities
of the functions in the primitive set also influence the size and shape of the
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procedure: gen rnd expr(func set,term set,max d,method)

1: if max d = 0 or
(

method = grow and rand() < |term set|
|term set|+|func set|

)

then
2: expr = choose random element( term set )
3: else
4: func = choose random element( func set )
5: for i = 1 to arity(func) do
6: arg i = gen rnd expr( func set, term set, max d - 1, method );
7: end for
8: expr = (func, arg 1, arg 2, ...);
9: end if

10: return expr

Notes: func set is a function set, term set is a terminal set, max d is the
maximum allowed depth for expressions, method is either full or grow,
expr is the generated expression in prefix notation and rand() is a function
that returns random numbers uniformly distributed between 0 and 1.

Algorithm 2.1: Pseudocode for recursive program generation with the
full and grow methods.

trees produced by grow.3 Section 5.1 (page 40) describes other initialisation
mechanisms which address these issues.

The initial population need not be entirely random. If something is
known about likely properties of the desired solution, trees having these
properties can be used to seed the initial population. This, too, will be
described in Section 5.1.

2.3 Selection

As with most evolutionary algorithms, genetic operators in GP are applied
to individuals that are probabilistically selected based on fitness. That is,
better individuals are more likely to have more child programs than inferior
individuals. The most commonly employed method for selecting individuals
in GP is tournament selection, which is discussed below, followed by fitness-
proportionate selection, but any standard evolutionary algorithm selection
mechanism can be used.

In tournament selection a number of individuals are chosen at random

3While these are particular problems for the grow method, they illustrate a general
issue where small (and often apparently inconsequential) changes such as the addition or
removal of a few functions from the function set can in fact have significant implications
for the GP system, and potentially introduce important but unintended biases.
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from the population. These are compared with each other and the best of
them is chosen to be the parent. When doing crossover, two parents are
needed and, so, two selection tournaments are made. Note that tourna-
ment selection only looks at which program is better than another. It does
not need to know how much better. This effectively automatically rescales
fitness, so that the selection pressure4 on the population remains constant.
Thus, a single extraordinarily good program cannot immediately swamp the
next generation with its children; if it did, this would lead to a rapid loss
of diversity with potentially disastrous consequences for a run. Conversely,
tournament selection amplifies small differences in fitness to prefer the bet-
ter program even if it is only marginally superior to the other individuals in
a tournament.

An element of noise is inherent in tournament selection due to the ran-
dom selection of candidates for tournaments. So, while preferring the best,
tournament selection does ensure that even average-quality programs have
some chance of having children. Since tournament selection is easy to imple-
ment and provides automatic fitness rescaling, it is commonly used in GP.

Considering that selection has been described many times in the evolu-
tionary algorithms literature, we will not provide details of the numerous
other mechanisms that have been proposed. (Goldberg, 1989), for example,
describes fitness-proportionate selection, stochastic universal sampling and
several others.

2.4 Recombination and Mutation

GP departs significantly from other evolutionary algorithms in the imple-
mentation of the operators of crossover and mutation. The most commonly
used form of crossover is subtree crossover. Given two parents, subtree
crossover randomly (and independently) selects a crossover point (a node)
in each parent tree. Then, it creates the offspring by replacing the subtree
rooted at the crossover point in a copy of the first parent with a copy of
the subtree rooted at the crossover point in the second parent, as illustrated
in Figure 2.5. Copies are used to avoid disrupting the original individuals.
This way, if selected multiple times, they can take part in the creation of
multiple offspring programs. Note that it is also possible to define a version
of crossover that returns two offspring, but this is not commonly used.

Often crossover points are not selected with uniform probability. Typical
GP primitive sets lead to trees with an average branching factor (the num-
ber of children of each node) of at least two, so the majority of the nodes
will be leaves. Consequently the uniform selection of crossover points leads

4A key property of any selection mechanism is selection pressure. A system with a
strong selection pressure very highly favours the more fit individuals, while a system with
a weak selection pressure isn’t so discriminating.
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Figure 2.5: Example of subtree crossover. Note that the trees on the left
are actually copies of the parents. So, their genetic material can freely be
used without altering the original individuals.

to crossover operations frequently exchanging only very small amounts of
genetic material (i.e., small subtrees); many crossovers may in fact reduce
to simply swapping two leaves. To counter this, Koza (1992) suggested the
widely used approach of choosing functions 90% of the time and leaves 10%
of the time. Many other types of crossover and mutation of GP trees are
possible. They will be described in Sections 5.2 and 5.3, pages 42–46.

The most commonly used form of mutation in GP (which we will call
subtree mutation) randomly selects a mutation point in a tree and substi-
tutes the subtree rooted there with a randomly generated subtree. This is
illustrated in Figure 2.6. Subtree mutation is sometimes implemented as
crossover between a program and a newly generated random program; this
operation is also known as “headless chicken” crossover (Angeline, 1997).

Another common form of mutation is point mutation, which is GP’s
rough equivalent of the bit-flip mutation used in genetic algorithms (Gold-
berg, 1989). In point mutation, a random node is selected and the primitive
stored there is replaced with a different random primitive of the same arity
taken from the primitive set. If no other primitives with that arity ex-
ist, nothing happens to that node (but other nodes may still be mutated).
When subtree mutation is applied, this involves the modification of exactly
one subtree. Point mutation, on the other hand, is typically applied on a
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Figure 2.6: Example of subtree mutation.

per-node basis. That is, each node is considered in turn and, with a certain
probability, it is altered as explained above. This allows multiple nodes to
be mutated independently in one application of point mutation.

The choice of which of the operators described above should be used
to create an offspring is probabilistic. Operators in GP are normally mu-
tually exclusive (unlike other evolutionary algorithms where offspring are
sometimes obtained via a composition of operators). Their probability of
application are called operator rates. Typically, crossover is applied with the
highest probability, the crossover rate often being 90% or higher. On the
contrary, the mutation rate is much smaller, typically being in the region of
1%.

When the rates of crossover and mutation add up to a value p which is
less than 100%, an operator called reproduction is also used, with a rate of
1 − p. Reproduction simply involves the selection of an individual based on
fitness and the insertion of a copy of it in the next generation.





Chapter 3

Getting Ready to Run
Genetic Programming

To apply a GP system to a problem, several decisions need to be made;
these are often termed the preparatory steps. The key choices are:

1. What it the terminal set?

2. What is the function set?

3. What is the fitness measure?

4. What parameters will be used for controlling the run?

5. What will be the termination criterion, and what will be designated
the result of the run?

3.1 Step 1: Terminal Set

While it is common to describe GP as evolving programs, GP is not typ-
ically used to evolve programs in the familiar Turing-complete languages
humans normally use for software development. It is instead more com-
mon to evolve programs (or expressions or formulae) in a more constrained
and often domain-specific language. The first two preparatory steps, the
definition of the terminal and function sets, specify such a language. That
is, together they define the ingredients that are available to GP to create
computer programs.

19
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The terminal set may consist of:

• the program’s external inputs. These typically take the form of named
variables (e.g., x, y).

• functions with no arguments. These may be included because they
return different values each time they are used, such as the function
rand() which returns random numbers, or a function dist to wall()

that returns the distance to an obstacle from a robot that GP is con-
trolling. Another possible reason is because the function produces side
effects. Functions with side effects do more than just return a value:
they may change some global data structures, print or draw something
on the screen, control the motors of a robot, etc.

• constants. These can be pre-specified, randomly generated as part of
the tree creation process, or created by mutation.

Using a primitive such as rand can cause the behaviour of an individual
program to vary every time it is called, even if it is given the same inputs.
This is desirable in some applications. However, we more often want a
set of fixed random constants that are generated as part of the process of
initialising the population. This is typically accomplished by introducing
a terminal that represents an ephemeral random constant. Every time this
terminal is chosen in the construction of an initial tree (or a new subtree
to use in an operation like mutation), a different random value is generated
which is then used for that particular terminal, and which will remain fixed
for the rest of the run. The use of ephemeral random constants is typically
denoted by including the symbol ℜ in the terminal set; see Chapter 4 for an
example.

3.2 Step 2: Function Set

The function set used in GP is typically driven by the nature of the problem
domain. In a simple numeric problem, for example, the function set may
consist of merely the arithmetic functions (+, -, *, /). However, all sorts
of other functions and constructs typically encountered in computer pro-
grams can be used. Table 3.1 shows a sample of some of the functions one
sees in the GP literature. Sometimes the primitive set includes specialised
functions and terminals which are designed to solve problems in a specific
problem domain. For example, if the goal is to program a robot to mop the
floor, then the function set might include such actions as move, turn, and
swish-the-mop.
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Table 3.1: Examples of primitives in GP function and terminal sets.

Function Set
Kind of Primitive Example(s)
Arithmetic +, *, /
Mathematical sin, cos, exp
Boolean AND, OR, NOT
Conditional IF-THEN-ELSE

Looping FOR, REPEAT
...

...

Terminal Set
Kind of Primitive Example(s)
Variables x, y
Constant values 3, 0.45
0-arity functions rand, go left

3.2.1 Closure

For GP to work effectively, most function sets are required to have an impor-
tant property known as closure (Koza, 1992), which can in turn be broken
down into the properties of type consistency and evaluation safety.

Type consistency is required because subtree crossover (as described in
Section 2.4) can mix and join nodes arbitrarily. As a result it is necessary
that any subtree can be used in any of the argument positions for every func-
tion in the function set, because it is always possible that subtree crossover
will generate that combination. It is thus common to require that all the
functions be type consistent, i.e., they all return values of the same type,
and that each of their arguments also have this type. For example +, -, *,
and / can can be defined so that they each take two integer arguments and
return an integer. Sometimes type consistency can be weakened somewhat
by providing an automatic conversion mechanism between types. We can,
for example, convert numbers to Booleans by treating all negative values as
false, and non-negative values as true. However, conversion mechanisms can
introduce unexpected biases into the search process, so they should be used
with care.

The type consistency requirement can seem quite limiting but often sim-
ple restructuring of the functions can resolve apparent problems. For exam-
ple, an if function is often defined as taking three arguments: the test, the
value to return if the test evaluates to true and the value to return if the
test evaluates to false. The first of these three arguments is clearly Boolean,
which would suggest that if can’t be used with numeric functions like +.
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This, however, can easily be worked around by providing a mechanism to
convert a numeric value into a Boolean automatically as discussed above.
Alternatively, one can replace the 3-input if with a function of four (nu-
meric) arguments a, b, c, d. The 4-input if implements “If a < b then return
value c otherwise return value d”.

An alternative to requiring type consistency is to extend the GP sys-
tem. Crossover and mutation might explicitly make use of type information
so that the children they produce do not contain illegal type mismatches.
When mutating a legal program, for example, mutation might be required
to generate a subtree which returns the same type as the subtree it has just
deleted. This is discussed further in Section 6.2.

The other component of closure is evaluation safety. Evaluation safety
is required because many commonly used functions can fail at run time. An
evolved expression might, for example, divide by 0, or call MOVE FORWARD

when facing a wall or precipice. This is typically dealt with by modifying
the normal behaviour of primitives. It is common to use protected versions
of numeric functions that can otherwise throw exceptions, such as division,
logarithm, exponential and square root. The protected version of a function
first tests for potential problems with its input(s) before executing the cor-
responding instruction; if a problem is spotted then some default value is
returned. Protected division (often notated with %) checks to see if its second
argument is 0. If so, % typically returns the value 1 (regardless of the value
of the first argument).1 Similarly, in a robotic application a MOVE AHEAD

instruction can be modified to do nothing if a forward move is illegal or if
moving the robot might damage it.

An alternative to protected functions is to trap run-time exceptions and
strongly reduce the fitness of programs that generate such errors. However,
if the likelihood of generating invalid expressions is very high, this can lead
to too many individuals in the population having nearly the same (very
poor) fitness. This makes it hard for selection to choose which individuals
might make good parents.

One type of run-time error that is more difficult to check for is numeric
overflow. If the underlying implementation system throws some sort of ex-
ception, then this can be handled either by protection or by penalising as
discussed above. However, it is common for implementation languages to
ignore integer overflow quietly and simply wrap around. If this is unaccept-
able, then the GP implementation must include appropriate checks to catch
and handle such overflows.

1The decision to return the value 1 provides the GP system with a simple way to
generate the constant 1, via an expression of the form (% x x). This combined with a
similar mechanism for generating 0 via (- x x) ensures that GP can easily construct
these two important constants.
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3.2.2 Sufficiency

There is one more property that primitives sets should have: sufficiency.
Sufficiency means it is possible to express a solution to the problem at hand
using the elements of the primitive set.2 Unfortunately, sufficiency can be
guaranteed only for those problems where theory, or experience with other
methods, tells us that a solution can be obtained by combining the elements
of the primitive set.

As an example of a sufficient primitive set consider {AND, OR, NOT, x1, x2,
..., xN}. It is always sufficient for Boolean induction problems, since it can
produce all Boolean functions of the variables x1, x2, ..., xN. An example
of insufficient set is {+, -, *, /, x, 0, 1, 2}, which is unable to represent
transcendental functions. The function exp(x), for example, is transcenden-
tal and therefore cannot be expressed as a rational function (basically, a
ratio of polynomials), and so cannot be represented exactly by any combi-
nation of {+, -, *, /, x, 0, 1, 2}. When a primitive set is insufficient, GP
can only develop programs that approximate the desired one. However, in
many cases such an approximation can be very close and good enough for
the user’s purpose. Adding a few unnecessary primitives in an attempt to
ensure sufficiency does not tend to slow down GP overmuch, although there
are cases where it can bias the system in unexpected ways.

3.2.3 Evolving Structures other than Programs

There are many problems where solutions cannot be directly cast as com-
puter programs. For example, in many design problems the solution is an
artifact of some type: a bridge, a circuit, an antenna, a lens, etc. GP has
been applied to problems of this kind by using a trick: the primitive set is set
up so that the evolved programs construct solutions to the problem. This is
analogous to the process by which an egg grows into a chicken. For example,
if the goal is the automatic creation of an electronic controller for a plant,
the function set might include common components such as integrator,
differentiator, lead, lag, and gain, and the terminal set might contain
reference, signal, and plant output. Each of these primitives, when
executed, inserts the corresponding device into the controller being built.
If, on the other hand, the goal is to synthesise analogue electrical circuits,
the function set might include components such as transistors, capacitors,
resistors, etc. See Section 6.3 for more information on developmental GP
systems.

2More formally, the primitive set is sufficient if the set of all the possible recursive
compositions of primitives includes at least one solution.
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3.3 Step 3: Fitness Function

The first two preparatory steps define the primitive set for GP, and therefore
indirectly define the search space GP will explore. This includes all the
programs that can be constructed by composing the primitives in all possible
ways. However, at this stage, we still do not know which elements or regions
of this search space are good. I.e., which regions of the search space include
programs that solve, or approximately solve, the problem. This is the task
of the fitness measure, which is our primary (and often sole) mechanism
for giving a high-level statement of the problem’s requirements to the GP
system. For example, suppose the goal is to get GP to synthesise an amplifier
automatically. Then the fitness function is the mechanism which tells GP
to synthesise a circuit that amplifies an incoming signal. (As opposed to
evolving a circuit that suppresses the low frequencies of an incoming signal,
or computes its square root, etc. etc.)

Fitness can be measured in many ways. For example, in terms of: the
amount of error between its output and the desired output; the amount
of time (fuel, money, etc.) required to bring a system to a desired target
state; the accuracy of the program in recognising patterns or classifying
objects; the payoff that a game-playing program produces; the compliance
of a structure with user-specified design criteria.

There is something unusual about the fitness functions used in GP that
differentiates them from those used in most other evolutionary algorithms.
Because the structures being evolved in GP are computer programs, fitness
evaluation normally requires executing all the programs in the population,
typically multiple times. While one can compile the GP programs that make
up the population, the overhead of building a compiler is usually substantial,
so it is much more common to use an interpreter to evaluate the evolved
programs.

Interpreting a program tree means executing the nodes in the tree in
an order that guarantees that nodes are not executed before the value of
their arguments (if any) is known. This is usually done by traversing the
tree recursively starting from the root node, and postponing the evaluation
of each node until the values of its children (arguments) are known. Other
orders, such as going from the leaves to the root, are possible. If none
of the primitives have side effects, the two orders are equivalent.3 This
depth-first recursive process is illustrated in Figure 3.1. Algorithm 3.1 gives
a pseudocode implementation of the interpretation procedure. The code
assumes that programs are represented as prefix-notation expressions and
that such expressions can be treated as lists of components.

3Functional operations like addition don’t depend on the order in which their argu-
ments are evaluated. The order of side-effecting operations such as moving or turning a
robot, however, is obviously crucial.
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Figure 3.1: Example interpretation of a syntax tree (the terminal x is a
variable and has a value of -1). The number to the right of each internal
node represents the result of evaluating the subtree root at that node.

procedure: eval( expr )

1: if expr is a list then
2: proc = expr(1) {Non-terminal: extract root}
3: if proc is a function then
4: value = proc( eval(expr(2)), eval(expr(3)), ... ) {Function: evaluate

arguments}
5: else
6: value = proc( expr(2), expr(3), ...) {Macro: don’t evaluate argu-

ments}
7: end if
8: else
9: if expr is a variable or expr is a constant then

10: value = expr {Terminal variable or constant: just read the value}
11: else
12: value = expr() {Terminal 0-arity function: execute}
13: end if
14: end if
15: return value

Notes: expr is an expression in prefix notation, expr(1) represents the prim-
itive at the root of the expression, expr(2) represents the first argument of
that primitive, expr(3) represents the second argument, etc.

Algorithm 3.1: Interpreter for genetic programming
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In some problems we are interested in the output produced by a program,
namely the value returned when we evaluate the tree starting at the root
node. In other problems we are interested in the actions performed by a
program composed of functions with side effects. In either case the fitness
of a program typically depends on the results produced by its execution on
many different inputs or under a variety of different conditions. For example
the program might be tested on all possible combinations of inputs x1, x2,
..., xN. Alternatively, a robot control program might be tested with the
robot in a number of starting locations. These different test cases typically
contribute to the fitness value of a program incrementally, and for this reason
are called fitness cases.

Another common feature of GP fitness measures is that, for many prac-
tical problems, they are multi-objective, i.e., they combine two or more dif-
ferent elements that are often in competition with one another. The area of
multi-objective optimisation is a complex and active area of research in GP
and machine learning in general. See Chapter 9 and also (Deb, 2001).

3.4 Step 4: GP Parameters

The fourth preparatory step specifies the control parameters for the run.
The most important control parameter is the population size. Other control
parameters include the probabilities of performing the genetic operations, the
maximum size for programs and other details of the run.

It is impossible to make general recommendations for setting optimal
parameter values, as these depend too much on the details of the application.
However, genetic programming is in practice robust, and it is likely that
many different parameter values will work. As a consequence, one need not
typically spend a long time tuning GP for it to work adequately.

It is common to create the initial population randomly using ramped
half-and-half (Section 2.2) with a depth range of 2–6. The initial tree sizes
will depend upon the number of the functions, the number of terminals
and the arities of the functions. However, evolution will quickly move the
population away from its initial distribution.

Traditionally, 90% of children are created by subtree crossover. How-
ever, the use of a 50-50 mixture of crossover and a variety of mutations (cf.
Chapter 5) also appears to work well.

In many cases, the main limitation on the population size is the time
taken to evaluate the fitnesses, not the space required to store the individ-
uals. As a rule one prefers to have the largest population size that your
system can handle gracefully; normally, the population size should be at
least 500, and people often use much larger populations.4 Often, to a first

4There are, however, GP systems that frequently use much smaller populations. These
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approximation, GP runtime can be estimated by the product of: the number
of runs R, the number of generations G, the size of the population P , the
average size of the programs s and the number of fitness cases F .

Typically, the number of generations is limited to between ten and fifty;
the most productive search is usually performed in those early generations,
and if a solution hasn’t been found then, it’s unlikely to be found in a
reasonable amount of time. The folk wisdom on population size is to make
it as large as possible, but there are those who suggest using many runs with
much smaller populations instead. Some implementations do not require
arbitrary limits of tree size. Even so, because of bloat (the uncontrolled
growth of program sizes during GP runs; see Section 11.3), it is common to
impose either a size or a depth limit or both (see Section 11.3.2).

Sometimes the number of fitness cases is limited by the amount of train-
ing data5 available. In this case, the fitness function should use all of it.
(One does not necessarily need to use verification or holdout data, since
over-fitting can be avoided by other means, as discussed in Section 13.12,
page 140.) In other cases, e.g. 22-bit even parity, there can almost be too
much training data. Then the fitness function may be reduced to use just a
subset of the training data. This does not necessarily have to be done man-
ually as there are a number of algorithms that dynamically change the test
set as the GP runs. (These and other speedup techniques will be discussed
in Chapter 13, particularly Section 10.1, page 83.)

It is common to record these details in a tableau, such as Table 4.1 on
page 31.

3.5 Step 5: Termination and solution desig-

nation

The fifth preparatory step consists of specifying the termination criterion
and the method of designating the result of the run. The termination cri-
terion may include a maximum number of generations to be run as well as
a problem-specific success predicate. Typically, the single best-so-far indi-
vidual is then harvested and designated as the result of the run, although
one might wish to return additional individuals and data as necessary or
appropriate for the problem domain.

typically rely more on mutation than crossover for their primary search mechanism.
5Training data refers to the test cases used to evaluate the fitness of the evolved

individuals.





Chapter 4

Example
Genetic Programming Run

This chapter provides an illustrative run of GP in which the goal is to
automatically create a program with a target input/output behaviour. In
particular, we want to evolve an expression whose values match those of
the quadratic polynomial x2 + x + 1 in the range [−1, +1]. The process of
mechanically creating a computer program that fit certain numerical data
is sometimes called system identification or symbolic regression (see Sec-
tion 12.2 for more).

We begin with the five preparatory steps from the previous chapter and
then describe in detail the events in one run.

4.1 Preparatory Steps

The purpose of the first two preparatory steps is to specify the ingredients
the evolutionary process can use to construct potential solutions. Because
the problem is to find a mathematical function of one independent variable,
x, the terminal set (the inputs of the to-be-evolved programs) must include
this variable. The terminal set also includes ephemeral random constants
drawn from some reasonable range,1 say from −5.0 to +5.0, as described in

1What is a “reasonable” range is likely to be extremely problem dependent. While in
theory you can build up large constants using small constants and arithmetic operators,
the performance of your system is likely to improve considerably if you provide constants
of roughly the right magnitude from the beginning. Your choice of genetic operators can
also be important here. If you’re finding that your system is struggling to evolve the
right constants, it may be helpful to introduce mutation operators specifically designed
to search of the space of constants.

29
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Section 3.1. Thus the terminal set, T , is

T = {x,ℜ}.

The statement of the problem does not specify which functions may be
employed in the to-be-evolved program. One simple choice for the function
set is the four ordinary arithmetic functions: addition, subtraction, mul-
tiplication and division. Most numeric regression problems will require at
least these operations, sometimes with additional functions such as sin() and
log(). We will use the simple function set

F = {+, -, *, %},

where % is protected division as discussed in Section 3.2.1. Note that the
target polynomial can be expressed exactly using the terminal and function
sets we have chosen, so these primitives are sufficient (cf. page 23) for the
quadratic polynomial problem.

The third preparatory step involves constructing the fitness measure that
specifies what the user wants. The high-level goal of this problem is to find
a program whose output is equal to the values of the quadratic polynomial
x 2+x+1. Therefore, the fitness assigned to a particular individual in the
population must reflect how closely the output of an individual program
comes to the target polynomial x2 + x + 1.

In principle, the fitness measure could be defined in terms of the mathe-
matical integral of the difference between the evolved function and the target
function. However, for most symbolic regression problems, it is not practical
or even possible to compute the value of the integral analytically. Thus, it
is common to define the fitness to be the sum of absolute errors measured
at different values of the independent variable x in the range [−1.0, +1.0].
In particular, we will measure the errors for x ∈ {−1.0,−0.9, · · · , 0.9, 1.0}.
A smaller value of fitness (error) is better; a fitness (error) of zero would
indicate a perfect fit. With this definition, our fitness is (approximately)
proportional to the area between the parabola x2 + x + 1 and the curve
representing the candidate individual (see Figure 4.2 for examples).

The fourth step is where we set our run parameters. The population size
in this small illustrative example will be just four. The population size for
a run of GP typically consists of thousands of individuals, but we will use
this tiny population size to keep the example manageable. The crossover
operation is commonly used to generate about 90% of the individuals in
the population; the reproduction operation (where a fit individual is sim-
ply copied from one generation to the next) is used to generate about 8%
of the population; the mutation operation is used to generate about 1% of
the population; and the architecture-altering operations (see Section 6.1.2)
are used to generate perhaps 1% of the population. However, because this
example involves an abnormally small population of only four individuals,
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Table 4.1: Parameters for example genetic programming run

Objective: Find program whose output matches x2 + x + 1 over the
range −1 ≤ x ≤ +1.

Function set: +, −, % (protected division), and ×; all operating on floats
Terminal set: x, and constants chosen randomly between −5 and +5
Fitness: sum of absolute errors for x ∈ {−1.0,−0.9, . . . 0.9, 1.0}
Selection: fitness proportionate (roulette wheel) non elitist
Initial pop: ramped half-and-half (depth 1 to 2. 50% of terminals are

constants)
Parameters: population size 4, 50% subtree crossover, 25% reproduction,

25% subtree mutation, no tree size limits
Termination: Individual with fitness better than 0.1 found

the crossover operation will be used twice (each time generating one indi-
vidual), which corresponds to a crossover rate of 50%, while the mutation
and reproduction operations will each be used to generate one individual.
These are therefore applied with a rate of 25% each. For simplicity, the
architecture-altering operations are not used for this problem.

In the fifth and final step we need to specify a termination condition. A
reasonable termination criterion for this problem is that the run will continue
from generation to generation until the fitness (or error) of some individual
is less than 0.1. In this contrived example, our example run will (atypically)
yield an algebraically perfect solution with a fitness of zero after just one
generation.

4.2 Step-by-Step Sample Run

Now that we have performed the five preparatory steps, the run of GP can
be launched. The GP setup is summarised in Table 4.1.

4.2.1 Initialisation

GP starts by randomly creating a population of four individual computer
programs. The four programs are shown in Figure 4.1 in the form of trees.

The first randomly constructed program tree (Figure 4.1a) is equivalent
to the expression x+1. The second program (Figure 4.1b) adds the constant
terminal 1 to the result of multiplying x by x and is equivalent to x 2+1. The
third program (Figure 4.1c) adds the constant terminal 2 to the constant
terminal 0 and is equivalent to the constant value 2. The fourth program
(Figure 4.1d) is equivalent to x.
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(a) (b) (c) (d)

- + + *

+ 0 1 * 2 0 x -

x 1 x x -1 -2

x+1 x +1
2 2 x

Figure 4.1: Initial population of four randomly created individuals of gen-
eration 0.

4.2.2 Fitness Evaluation

Randomly created computer programs will typically be very poor at solving
any problem. However, even in a population of randomly created programs,
some programs are better than others. The four random individuals from
generation 0 in Figure 4.1 produce outputs that deviate by different amounts
from the target function x2 +x+1. Figure 4.2 compares the plots of each of
the four individuals in Figure 4.1 and the target quadratic function x2+x+1.
The sum of absolute errors for the straight line x+1 (the first individual) is
7.7 (Figure 4.2a). The sum of absolute errors for the parabola x 2+1 (the
second individual) is 11.0 (Figure 4.2b). The sums of the absolute errors for
the remaining two individuals are 17.98 (Figure 4.2c) and 28.7 (Figure 4.2d).

As can be seen in Figure 4.2, the straight line x+1 (Figure 4.2a) is closer
to the parabola x2 +x+1 in the range from –1 to +1 than any of three other
programs in the population. This straight line is, of course, not equivalent to
the parabola x2 + x + 1; it is not even a quadratic function. It is merely the
best candidate that happened to emerge from the blind (and very limited)
random search of generation 0.

In the valley of the blind,
the one-eyed man is king.

4.2.3 Selection, Crossover and Mutation

After the fitness of each individual in the population is found, GP then
probabilistically selects the fitter programs from the population to act as
the parents of the next generation. The genetic operations are applied to
the selected individuals to create offspring programs. The important point
is that our selection process is not greedy. Individuals that are known to be
inferior still have some chance of being selected. The best individual in the
population is not guaranteed to be selected and the worst individual in the
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Figure 4.2: Graphs of the evolved functions from generation 0. The solid
line in each plot is the target function x2 + x + 1, with the dashed line
being the evolved functions from the first generation (see Figure 4.1). The
fitness of each of the four randomly created individuals of generation 0 is
approximately proportional to the area between two curves, with the actual
fitness values being 7.7, 11.0, 17.98 and 28.7 for individuals (a) through (d),
respectively.

population will not necessarily be excluded.

In this example we will start with the reproduction operation. Because
the first individual (Figure 4.1a) is the most fit individual in the population,
it is very likely to be selected to participate in a genetic operation. Let us
suppose that this particular individual is, in fact, selected for reproduction.
If so, it is copied, without alteration, into the next generation (generation 1).
It is shown in Figure 4.3a as part of the population of the new generation.

We next perform the mutation operation. Because selection is proba-
bilistic, it is possible that the third best individual in the population (Fig-
ure 4.1c) is selected. One of the three nodes of this individual is then ran-
domly picked as the site for the mutation. In this example, the constant
terminal 2 is picked as the mutation site. This program is then randomly
mutated by deleting the entire subtree rooted at the picked point (in this
case, just the constant terminal 2) and inserting a subtree that is randomly
constructed in the same way that the individuals of the initial random pop-
ulation were originally created. In this particular instance, the randomly
grown subtree computes x divided by x using the protected division oper-
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Figure 4.3: Population of generation 1 (after one reproduction, one muta-
tion, and two one-offspring crossover operations).

ation %. The resulting individual is shown in Figure 4.3b. This particular
mutation changes the original individual from one having a constant value
of 2 into one having a constant value of 1, improving its fitness from 17.98
to 11.0.

Finally, we use the crossover operation to generate our final two indi-
viduals for the next generation. Because the first and second individuals in
generation 0 are both relatively fit, they are likely to be selected to partic-
ipate in crossover. However, selection can always pick suboptimal individ-
uals. So, let us assume that in our first application of crossover the pair of
selected parents is composed of the above-average tree in Figures 4.1a and
the below-average tree in Figure 4.1d. One point of the first parent, namely
the + function in Figure 4.1a, is randomly picked as the crossover point for
the first parent. One point of the second parent, namely the leftmost termi-
nal x in Figure 4.1d, is randomly picked as the crossover point for the second
parent. The crossover operation is then performed on the two parents. The
offspring (Figure 4.3c) is equivalent to x and is not particularly noteworthy.

Let us now assume, that in our second application of crossover, selection
chooses the two most fit individuals as parents: the individual in Figure 4.1b
as the first parent, and the individual in Figure 4.1a as the second. Let us
further imagine that crossover picks the leftmost terminal x in Figure 4.1b
as a crossover point for the first parent, and the + function in Figure 4.1a as
the crossover point for the second parent. Now the offspring (Figure 4.3d)
is equivalent to x2 + x + 1 and has a fitness (sum of absolute errors) of zero.
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4.2.4 Termination and Solution Designation

Because the fitness of the individual in Figure 4.3d is below 0.1, the termina-
tion criterion for the run is satisfied and the run is automatically terminated.
This best-so-far individual (Figure 4.3d) is then designated as the result of
the run.

Note that the best-of-run individual (Figure 4.3d) incorporates a good
trait (the quadratic term x 2) from the first parent (Figure 4.1b) with two
other good traits (the linear term x and constant term of 1) from the second
parent (Figure 4.1a). The crossover operation thus produced a solution to
this problem by recombining good traits from these two relatively fit parents
into a superior (indeed, perfect) offspring.

This is, obviously, a highly simplified example, and the dynamics of a
real GP run are typically far more complex than what is presented here.
Also, in general, there is no guarantee that an exact solution like this will
be found by GP.





Part II

Advanced Genetic
Programming

In which a search is organdized . . .

and Piglet encounters the Heffalump of Bloat.
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Chapter 5

Alternative Initialisations
and Operators in
Tree-based GP

The genetic programming system described in the preceding chapters is just
the beginning; in many ways it is the simplest thing that could possibly
work. Most of the techniques described in Part I date back to the late
1980’s and early 1990’s, a wide array of alternatives and extensions have
been explored since. A full catalogue of these would be far beyond the
scope of this book. The chapters in Part II survey a number of the more
prominent or historically important extensions to GP, particularly (but not
exclusively) in relation to the tree-based representation for programs.

We start, in this chapter, by reviewing a variety of initialisation strategies
(Section 5.1) and genetic operators (Sections 5.2 and 5.3) for tree-based GP
not covered in Part I. We also briefly look at some hybridisations of GP
with other techniques (Section 5.4).

5.1 Constructing the Initial Population

Koza’s ramped half-and-half method is the most common way of creating the
initial GP population (cf. Section 2.2, page 11). However, there are several
other ways of constructing a collection of random trees. In Section 5.1.2
we will briefly consider an unexpected impact of population initialisation.
There has also been some work with non-random or informed starting points
(cf. Section 5.1.3).

39
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5.1.1 Uniform Initialisation

The shape of the initial trees can be lost within a few generations (more on
this below). However, a good start given by the initial population can still be
crucial to the success of a GP run. In general, there are an infinite number of
possible computer programs. This means that it is impossible to search them
uniformly. Therefore, any method used to create the initial population will
have a bias. For example, ramped half-and-half tends to create bushy trees.
Such trees have a higher proportion of solutions to symmetric problems,
such as parity. Conversely, the smallest solution to the Sante Fe ant trail-
following problem is more randomly shaped (Langdon and Poli, 1998a). This
is partly why ramped half-and-half is very poor at finding programs which
can navigate the Sante Fe trail. Another reason is that many of the programs
generated by ramped half-and-half (with standard parameters) are simply
too small. Chellapilla (1997a) claims good results when the size of the initial
trees was more tightly controlled.

Iba (1996a) and Bohm and Geyer-Schulz (1996) report methods to pre-
cisely sample trees uniformly based on Alonso’s bijective algorithm (Alonso
and Schott, 1995). Although this algorithm has been criticised (Luke,
2000) for being computationally expensive, it can be readily used in prac-
tice. Langdon (2000) introduced the ramped uniform initialisation which
extends Alonso’s bijective algorithm by allowing the user to specify a range
of initial tree sizes. It then generates equal numbers of random trees
for each length in the chosen range. (C++ code can be obtained from
ftp://cs.ucl.ac.uk/genetic/gp-code/rand tree.cc.)

With these more “uniform” initialisations, most trees are asymmetric
with some leaves very close to the root of the tree. This is quite different
from the trees generated by ramped half-and-half which are on average some
distance from the root. Uniform sampling may be better in problems where
the desired solutions are asymmetric with some leaves being much more
important than others. For example, in data mining it is common to look
for solutions with a few dominant variables (which may be close to the root
node) whilst other variables are of little or no interest and may be some
distance from the root (or indeed not present in the tree). On the other
hand, problems like multiplexer or parity require all the inputs to be used
and are of similar importance. Bushier trees may be better at solving such
problems.

5.1.2 Initialisation may Affect Bloat

Crossover has a strong preference for creating a very non-uniform distri-
butions of tree sizes (Poli, Langdon, and Dignum, 2007). Crossover gener-
ates very short programs much more often than longer ones. Selection can
only partially combat this tendency. Typically, crossover will totally rear-

ftp://cs.ucl.ac.uk/genetic/gp-code/rand_tree.cc
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range the size and shape of the initial trees within a few generations. As
discussed in Section 11.3.1 (page 101), the excessive sampling of short pro-
grams appears to be an important cause of bloat (the uncontrolled growth
of programs during GP runs, which will be described in more detail in Sec-
tion 11.3, page 101 onwards). It has been shown (Dignum and Poli, 2007)
that when the initial population is created with the size distribution pre-
ferred by crossover (see Section 11.3.1), bloat is more marked. The distri-
bution has a known mathematical formula (it is a Lagrange distribution of
the second kind), but in practice it can be created by simply performing
multiple rounds of crossover on a population created in the traditional way
before the GP run starts. This is known as Lagrange initialisation. These
findings suggest that initialisation methods which tend to produce many
short programs may in fact induce bloat sooner than methods that produce
distributions more skewed towards larger programs.

5.1.3 Seeding

The most common way of starting a GP run from an informed non-random
point is seeding the initial population with an individual which, albeit not
a solution, is thought to be a good starting point. Such a seed may have
been produced by an earlier GP run or perhaps constructed by the user
(Aler, Borrajo, and Isasi, 2002; Holmes, 1995; Hsu and Gustafson, 2001;
Langdon and Nordin, 2000; Langdon and Treleaven, 1997; Westerberg and
Levine, 2001). However, Marek, Smart, and Martin (2002) reported that
hand written programs may not be robust enough to prosper in an evolving
population.

One point to be careful of is that such a seed individual is liable to be
much better than randomly created trees. Thus, its descendants may take
over the population within a few generations. So, under evolution the seeded
population is initially liable to lose diversity rapidly. Furthermore, depend-
ing upon the details of the selection scheme used, a single seed individual
may have some chance of being removed from the population. Both problems
are normally dealt with by filling the whole population with either identical
or mutated copies of the seed. This method creates a low diversity initial
population in a controlled way, thereby avoiding the initial uncontrolled loss
of diversity associated with single seeds. Furthermore, with many copies of
the seed, few selection methods will have much chance of removing all copies
of the seed before they are able to create children. Diversity preserving tech-
niques, such as multi-objective GP (e.g., (Parrott, Li, and Ciesielski, 2005),
(Setzkorn, 2005) and Chapter 9), demes (Langdon, 1998) (see Section 10.3),
fitness sharing (Goldberg, 1989) and the use of multiple seed trees, might
also be good cures for the problems associated with the use of a single seed.
In any case, the diversity of the population should be monitored to ensure
that there is significant mixing of different initial trees.
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5.2 GP Mutation

5.2.1 Is Mutation Necessary?

Mutation was used in early experiments in the evolution of programs, e.g.,
in (Bickel and Bickel, 1987; Cramer, 1985; Fujiki and Dickinson, 1987). It
was not, however, used in (Koza, 1992) and (Koza, 1994), as Koza wished to
demonstrate that mutation was not necessary and that GP was not perform-
ing a simple random search. This has significantly influenced the field, and
mutation is often omitted from GP runs. While mutation is not necessary
for GP to solve many problems, O’Reilly (1995) argued that mutation — in
combination with simulated annealing or stochastic iterated hill climbing —
can perform as well as crossover-based GP in some cases. Nowadays, mu-
tation is widely used in GP, especially in modelling applications. Koza also
advises to use of a low level of mutation; see, for example, (Koza, Bennett,
Andre, and Keane, 1996b).

Comparisons of crossover and mutation suggest that including mutation
can be advantageous. Chellapilla (1997b) found that a combination of six
mutation operators performed better than previously published GP work on
four simple problems. Harries and Smith (1997) also found that mutation
based hill climbers outperformed crossover-based GP systems on similar
problems. Luke and Spector (1997) suggested that the situation is complex,
and that the relative performance of crossover and mutation depends on
both the problem and the details of the GP system.

5.2.2 Mutation Cookbook

With linear bit string GAs, mutation usually consists of random changes in
bit values. In contrast, in GP there are many mutation operators in use.
Often multiple types of mutation are beneficially used simultaneously (e.g.,
see (Kraft, Petry, Buckles, and Sadasivan, 1994) and (Angeline, 1996)). We
describe a selection of mutation operators below:

Subtree mutation replaces a randomly selected subtree with another ran-
domly created subtree (Koza, 1992, page 106). Kinnear (1993) defined
a similar mutation operator, but with a restriction that prevents the
offspring from being more than 15% deeper than its parent.

Size-fair subtree mutation was proposed in two forms by Langdon
(1998). In both cases, the new random subtree is, on average, the
same size as the code it replaces. The size of the random code is given
either by the size of another random subtree in the program or chosen
at random in the range [l/2, 3l/2] (where l is the size of the subtree
being replaced). The first of these methods samples uniformly in the
space of possible programs, whereas the second samples uniformly in
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the space of program lengths. Experiments suggested that there was
far more bloat (cf. Section 11.3.1 page 101) with the first mutation
operator.

Node replacement mutation (also known as point mutation) is similar
to bit string mutation in that it randomly changes a point in the
individual. In linear GAs the change would be a bit flip. In GP,
instead, a node in the tree is randomly selected and randomly changed.
To ensure the tree remains legal, the replacement node has the same
number of arguments as the node it is replacing, e.g. (McKay, Willis,
and Barton, 1995, page 488).

Hoist mutation creates a new offspring individual which is copy of a ran-
domly chosen subtree of the parent. Thus, the offspring will be smaller
than the parent and will have a different root node (Kinnear, 1994a).

Shrink mutation replaces a randomly chosen subtree with a randomly
created terminal (Angeline, 1996). This is a special case of subtree
mutation where the replacement tree is a terminal. As with hoist
mutation, it is motivated by the desire to reduce program size.

Permutation mutation selects a random function node in a tree and then
randomly permuting its arguments (subtrees). Koza (1992) used per-
mutation in one experiment [page 600] where it was shown to have
little effect. In contrast, Maxwell (1996) had more success with a mu-
tation operator called swap, which is simply a permutation mutation
restricted to binary non-commutative functions.

Mutating constants at random Schoenauer, Sebag, Jouve, Lamy, and
Maitournam (1996) mutated constants by adding random noise from
a Gaussian distribution. Each change to a constant was considered a
separate mutation.

Mutating constants systematically A variety of potentially expensive
optimisation tools have been applied to try and fine-tune an existing
program by finding the “best” value for the constants within it. Indeed
STROGANOFF (Iba, Sato, and de Garis, 1995b; Nikolaev and Iba,
2006) optimises each tree modified by crossover. Clever mechanisms
are employed to minimise the computation required.

(McKay et al., 1995, page 489) is more in keeping with traditional GP
and uses a mutation operator that operates on terminals, replacing in-
put variables by constants and vice versa. In this approach “whenever
a new constant is introduced [. . . ] a non-linear least squares optimisa-
tion is performed to obtain the ‘best’ value of the constant(s)”. Schoe-
nauer, Lamy, and Jouve (1995) also used a mutation operator that
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affects all constants in an individual where “a numerical partial gra-
dient ascent is achieved to reach the nearest local optimum”. Finally,
Sharman, Esparcia Alcazar, and Li (1995) used simulated annealing to
update numerical values (which represented signal amplification gains)
within individuals.

5.3 GP Crossover

During biological sexual reproduction, the genetic material from both
mother and father is combined in such a way that genes in the child are
in approximately the same position as they were in its parents. This is quite
different from traditional tree-based GP crossover, which can move a subtree
to a totally different position in the tree structure.

Crossover operators that tend to preserve the position of genetic ma-
terial are called homologous, and several notions of homologous crossover
have been proposed for GP. It is fairly straightforward to realise homolo-
gous crossover when using linear representations, and homologous operators
are widely used in linear GP (cf. Figure 7.4, page 65) (Defoin Platel, Clergue,
and Collard, 2003; Francone, Conrads, Banzhaf, and Nordin, 1999; Hansen,
2003; Hansen, Lowry, Meservy, and McDonald, 2007; Nordin, Banzhaf, and
Francone, 1999; O’Neill, Ryan, Keijzer, and Cattolico, 2003). Various forms
of homologous crossover have also been proposed for tree-based GP (Col-
let, 2007; Langdon, 2000; Lones, 2003; MacCallum, 2003; Yamamoto and
Tschudin, 2005).

The oldest homologous crossover in tree-based GP is one-point crossover
(Langdon and Poli, 2002; Poli and Langdon, 1997, 1998a). This works by se-
lecting a common crossover point in the parent programs and then swapping
the corresponding subtrees. To allow for the two parents having different
shapes, one-point crossover analyses the two trees from the root nodes and
selects the crossover point only from the parts of the two trees in the common
region (see Figure 5.1). In the common region, the parents have the same
shape.1 The common region is related to homology, in the sense that the
common region represents the result of a matching process between parent
trees. Within the common region between two parent trees, the transfer of
homologous primitives can happen like it does in a linear bit string genetic
algorithm.

Uniform crossover for trees (Poli and Langdon, 1998b) works (in the
common region) like uniform crossover in GAs. That is, the offspring are
created by visiting the nodes in the common region and flipping a coin at

1Nodes in the common region need not be identical but they must have the same
arity. That is, they must both be leaves or both be functions with the same number of
inputs.
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Figure 5.1: Example of one-point crossover between parents of different
sizes and shapes.

each locus to decide whether the corresponding offspring node should be
picked from the first or the second parent. If a node to be inherited belongs
to the base of the common region and is a function, then the subtree rooted
there is inherited as well. With this form of crossover, there can be a greater
mixing of the code near the root than with other operators.

In context-preserving crossover (D’haeseleer, 1994), the crossover points
are constrained to have the same coordinates, like in one-point crossover.
Note that the crossover points are not limited to the common region.

In size-fair crossover (Langdon, 1999a, 2000) the first crossover point is
selected randomly, as with standard crossover. Then the size of the subtree
to be removed from the first parent is calculated. This is used to constrain
the choice of the second crossover point so as to guarantee that the subtree
excised from the second parent will not be “unfairly” big.

Harries and Smith (1997) suggested five new crossover operators that
are like standard crossover but with probabilistic restrictions on the depth
of crossover points within the parent trees.

Since crossover and mutation are specific to the representation used in
GP, each new representation tends to need new crossover and mutation
operators. For example “ripple crossover” (O’Neill et al., 2003) is a way
of looking at crossover in grammatical evolution (Section 6.2.3 page 55).
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As we shall see in Chapter 7, specific crossover operators exist for lin-
ear GP (Section 7.1) and graph based GP systems (Section 7.2), such as
PDGP (page 65), PADO (page 67) and Cartesian GP (page 67).

5.4 Other Techniques

GP can be hybridised with other techniques. For example, Iba, de Garis, and
Sato (1994), Nikolaev and Iba (2006), and Zhang and Mühlenbein (1995)
have incorporated information theoretic and minimum description length
ideas into GP fitness functions to provide a degree of regularisation and
so avoid over-fitting (and bloat, see Section 11.3). As mentioned in Sec-
tion 6.2.3, computer language grammars can be incorporated into GP.

Whereas genetic programming typically uses an evolutionary algorithm
to search the space of computer programs, various other heuristic search
methods can also be applied to program search, including: enumeration
(Olsson, 1995), hill climbing (O’Reilly and Oppacher, 1994a), and simu-
lated annealing (O’Reilly, 1996; Tsoulos and Lagaris, 2006). As discussed
in Chapter 8, it is also possible to extend Estimation of Distribution Algo-
rithms (EDAs) to the variable size representations used in GP.

Another alternative is to use co-evolution with multiple populations,
where the fitness of individuals in one population depends on the behaviour
of individuals in other populations. There have been many successful appli-
cations of co-evolution in GP, including (Azaria and Sipper, 2005a; Brameier,
Haan, Krings, and MacCallum, 2006; Buason, Bergfeldt, and Ziemke, 2005;
Channon, 2006; Dolinsky, Jenkinson, and Colquhoun, 2007; Funes, Sklar,
Juille, and Pollack, 1998a; Gagné and Parizeau, 2007; Hillis, 1992; Hornby
and Pollack, 2001; Mendes, de B. Voznika, Nievola, and Freitas, 2001; Pi-
aseczny, Suzuki, and Sawai, 2004; Schmidt and Lipson, 2006; Sharabi and
Sipper, 2006; Soule, 2003; Soule and Komireddy, 2006; Spector, 2002; Spec-
tor and Klein, 2006; Spector, Klein, Perry, and Feinstein, 2005b; Wilson and
Heywood, 2007; Zhang and Cho, 1999).

Finally, it is worth mentioning that program trees can be manipulated
with editing operations (Koza, 1992). For example, if the root node of
a subtree is × but one of its arguments is always guaranteed to evaluate
to 0, then we can replace the subtree rooted there with the terminal 0.
If the root node of a subtree is + and one argument evaluates to 0, we
can replace the subtree with the other argument of the +. Editing can
reduce the complexity of evolved solutions and can make them easier to
understand. However, it may also lead to GP getting stuck in local optima,
so editing operations should probably be used sparingly at run time. Other
reorganisation operations of various types are also possible. For example,
after trees are generated by GP, (Garcia-Almanza and Tsang, 2006, 2007)
prune branches and combine branches from different trees.



Chapter 6

Modular, Grammatical
and Developmental
Tree-based GP

This chapter discusses advanced techniques that are primarily focused on
two important issues in genetic programming: modularity and constraint.
In Section 6.1 we explore the evolution of modular, hierarchical structures,
and in Section 6.2 we looks at ways of constraining the evolutionary process,
typically based on some sort of domain knowledge. We also look at using
GP to evolve programs which themselves develop solutions (Section 6.3) or
even construct other programs (Section 6.4).

6.1 Evolving Modular and

Hierarchical Structures

The construction of any highly complex object or individual, whether an oak
tree or an airliner, typically uses hierarchical, modular structures to manage
and organise that complexity. Animals develop in a highly regular way
that yields a hierarchical structure of components ranging from systems and
organs down to cells and organelles. GP, as described so far, is typically used
to evolve expressions that, while being suitable solutions to many problems,
rarely exhibit any large-scale modular structure.

Given the pervasiveness of hierarchical structure as an organisational tool
in both biology and engineering, it seems likely that such modular structure
could be valuable in genetic programming as well. Consequently, this has
been a subject of study from the early days of genetic programming. For
example, Angeline and Pollack (1992) created dynamic libraries of subtrees
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taken from parts of fit GP trees. Special mutation operations allowed the
GP population to share code by referring to the same code within the li-
brary. Subsequently, Angeline suggested that the scheme’s advantages lay
in allowing GP individuals to access far more code than they actually “held”
within themselves, rather than principally in developing more modular code.
Rosca and Ballard (1996a) used a similar scheme, but were able to use much
more information from the fitness function to guide the selection of the code
to be inserted into the library and its subsequent use by members of the GP
population. Olsson (1999, 1995) later developed an abstraction operator for
use in his ADATE system, where sub-functions (anonymous lambda expres-
sions) were automatically extracted. Unlike Angeline’s library approach,
Olsson’s modules remained attached to the individual they were extracted
from.

Koza’s automatically defined functions (ADFs) (Koza, 1994) remain the
most widely used method of evolving reusable components and have been
used successfully in a variety of settings. Basic ADFs (covered in Sec-
tion 6.1.1) use a fixed architecture specified in advance by the user. Koza
later extended this using architecture altering operations (Section 6.1.2),
which allow the architecture to evolve along with the programs.

6.1.1 Automatically Defined Functions

Human programmers organise sequences of repeated steps into reusable com-
ponents such as subroutines, functions and classes. They then repeatedly
invoke these components, typically with different inputs. Reuse eliminates
the need to “reinvent the wheel” every time a particular sequence of steps
is needed. Reuse also makes it possible to exploit a problem’s modularities,
symmetries and regularities (thereby potentially accelerate the problem-
solving process). This can be taken further, as programmers typically or-
ganise these components into hierarchies in which top level components call
lower level ones, which call still lower levels, etc. Koza’s ADFs provide a
mechanism by which the evolutionary process can evolve these kinds of po-
tentially reusable components. We will review the basic concepts here, but
ADFs are discussed in great detail in (Koza, 1994).

When ADFs are used, a program consists of multiple components. These
typically consist of one or more function-defining branches (i.e., ADFs), as
well as one or more main result-producing branches (the RPB), as illustrated
in the example in Figure 6.1. The RPB is the “main” program that is
executed when the individual is evaluated. It can, however, call the ADFs,
which can in turn potentially call each other. A single ADF may be called
multiple times by the same RPB, or by a combination of the RPB and other
ADFs, allowing the logic that evolution has assembled in that ADF to be
re-used in different contexts.
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ROOT

ADF1 ADF2 RPB

Figure 6.1: Example of program structure with two automatically-defined
functions (ADF1 and ADF2) and one result-producing branch (RPB).

Consider, for example, the following individual consisting of a result-
producing branch and a single ADF:

RPB : ADF(ADF(ADF(x))) (6.1)

ADF : arg0× arg0 (6.2)

The ADF (Equation 6.2) is simply the squaring function, but by combining
this multiple times in the RPB (Equation 6.1) this individual computes x8

in a highly compact fashion.
It is important to not be fooled by a tidy example like this. ADFs

evolved in real applications are typically complex and can be very difficult
to understand. Further, simply including ADFs provides no guarantee of
modular re-use. As is discussed in Chapter 13, there are no silver bullets.
It may be that the RPB never calls an ADF or only calls it once. It is also
common for an ADF to not actually encapsulate any significant logic. For
example, an ADF might be as simple as a single terminal, in which case it
is essentially just providing a new name for that terminal.

In Koza’s approach, each ADF is attached (as a branch) to a specific indi-
vidual in the population. This is in contrast to both Angeline’s and Rosca’s
systems mentioned above, both of which have general pools of modules or
components which are shared across the population. Sometimes recursion
is allowed in ADFs, but this frequently leads to infinite computations. Typ-
ically, recursion is prevented by imposing an order on the ADFs within an
individual and by restricting calls so that ADFi can only call ADFj if i < j.

In the presence of ADFs, recombination operators are typically con-
strained to respect the larger structure. That is, during crossover, a subtree
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from ADFi can only be swapped with a subtree from another individual’s
ADFi.

The program’s result-producing branch and its ADFs typically have dif-
ferent function and terminal sets. For example, the terminal set for ADFs
usually include arguments, such as arg0, arg1. Typically the user must
decide in advance the primitive sets, the number of ADFs and any call re-
strictions to prevent recursion. However, these choices can be evolved using
the architecture-altering operations described in Section 6.1.2.

Koza also proposed other types of automatically evolved program com-
ponents (Koza, Andre, Bennet, and Keane, 1999). Automatically defined
iterations (ADIs), automatically defined loops (ADLs) and automatically
defined recursions (ADRs) provide means to reuse code. Automatically de-
fined stores (ADSs) provide means to reuse the result of executing code.

6.1.2 Program Architecture and Architecture-Altering
Operations

Koza (1994) defined the architecture of a program to be the total number of
trees, the type of each tree (e.g., RPB, ADF, ADI, ADL, ADR, or ADS), the
number of arguments (if any) possessed by each tree, and, finally, if there is
more than one tree, the nature of the hierarchical references (if any) allowed
among the trees (e.g., whether ADF1 can call ADF2).

There are three ways to determine the architecture of the computer pro-
grams that will be evolved:

1. The user may specify in advance the architecture of the overall pro-
gram, i.e., perform an architecture-defining preparatory step in addi-
tion to the five steps itemised in Chapter 3.

2. A run of genetic programming may employ the evolutionary design
of the architecture (as described in (Koza, 1994)), thereby enabling
the architecture of the overall program to emerge from a competitive
process during the run.

3. The run may employ a set of architecture-altering operations (Koza,
1994, 1995; Koza, Bennett, Andre, and Keane, 1999) which can cre-
ate new ADFs, remove ADFs, and increase or decrease the number
of inputs an ADF has. Note that many architecture changes (such
as those defined in (Koza, 1994)) are designed not to initially change
the semantics of the program and, so, the altered program often has
exactly the same fitness as its parent. Nevertheless, the new arrange-
ment of ADFs may make it easier for subsequent changes to evolve
better programs later.
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Koza and his colleagues have used these architecture altering operations
quite widely in their genetic design work, where they evolve GP trees that
encode a collection of developmental operations that, when interpreted, gen-
erate a complex structure like a circuit or an optical system (see, for example,
Section 12.3, page 118).

The idea of architecture altering operations was extended to the ex-
tremely general Genetic Programming Problem Solver (GPPS), which is
described in detail in (Koza et al., 1999, part 4). This is an open ended
system which combines a small set of basic vector-based primitives with the
architecture altering operations in a way that can, in theory, solve a wide
range of problems with almost no input required from the user other than
the fitness function. The problem is that this open-ended system needs a
very carefully constructed fitness function to guide it to a viable solution, an
enormous amount of computational effort, or both. As a result it is currently
an idea of more conceptual than practical value.

6.2 Constraining Structures

As discussed in Section 3.2.1, most GP systems require type consistency
where all subtrees return data of the same type. This ensures that the out-
put of any subtree can be used as one of the inputs to any node. The basic
subtree crossover operator shuffles tree components entirely randomly. Uni-
versal type compatibility ensures that crossover cannot lead to incompatible
connections between nodes. This is also required to stop mutation from
producing illegal programs.

An implicit assumption underlying this approach is that all combinations
of structures are equally likely to be useful. In many cases, however, we know
in advance that there are constraints on the structure of the solution, or we
have strong suspicions about the likely form solutions will take. In this
section, we will look at several different systems that use tools such as types
and grammars to bias or constrain search with the primary aim of increasing
the chance of finding a suitable program.

A problem domain might be naturally represented with multiple types.
This suggests that the functions used by GP and their arguments will not
necessarily be all of the same type. This can often be addressed through
creative definitions of functions and implicit type conversion. For example,
the Odin system (Holmes and Barclay, 1996) defines operations on inappro-
priate types to return a new fail object. These are handled by introducing
a binary fatbar that returns its first argument unless it is fail, in which case
it returns its second argument.

This sort of approach may not always be desirable. For example, if a
key goal is to evolve solutions that can be easily understood or analysed,
then one might prefer a GP system that is constrained structurally or via
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a type system, since these often generate results that are more comprehen-
sible (Haynes, Wainwright, Sen, and Schoenefeld, 1995), (Langdon, 1998,
page 126). Similarly, if there is domain knowledge that strongly suggests a
particular syntactic constraint on the solution, then ignoring that constraint
may make it much harder to find a solution.

We will focus here on three different approaches to constraining the syn-
tax of the evolved expression trees in GP: simple structure enforcement
(Section 6.2.1), strongly typed GP (Section 6.2.2) and grammar-based con-
straints (Section 6.2.3). Finally, we consider the advantages and disadvan-
tages of syntactic and type constraints and their biases (Section 6.2.4).

6.2.1 Enforcing Particular Structures

If a particular structure is believed or known to be important then one
can modify the GP system to require that all individuals have that struc-
ture (Koza, 1992). For example, if a problem is believed to have (or require)
a periodic solution, one might want to consider constraining the search to
solutions of the form a × sin(b × t). By allowing a and b to evolve freely
but keeping the rest of the structure fixed, one could restrict GP to evolving
expressions that are periodic. Syntax restrictions can also be used to make
GP follow sensible engineering practices. For example, we might want to
ensure that loop control variables appear in the correct parts of for loops
and nowhere else (Langdon, 1998, page 126).

Enforcing a user specified structure on the evolved solutions can be imple-
mented in a number of ways. One could ensure that all the initial individuals
have the structure of interest (for example, generating random subtrees for
a and b while fixing the rest) and then constrain crossover and mutation
so that they do not alter any of the fixed regions of a tree. An alternative
approach would be to evolve the various (sub)components separately. One
could evolve pairs of trees (a, b) (like ADFs). Alternatively, one could have
two separate populations, one of which is used to evolve candidates for a
while the other is evolving candidates for b.

A form of constraint-directed search in GP was also proposed in (Tsang
and Jin, 2006; Tsang and Li, 2002) to help GP to focus on more promising
areas of the space.

6.2.2 Strongly Typed GP

Since constraints are often driven by or expressed using a type system, a
natural approach is to incorporate types and their constraints into the GP
system (Montana, 1995). In strongly typed GP, every terminal has a type,
and every function has types for each of its arguments and a type for its
return value. The process that generates the initial, random expressions,
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and all the genetic operators are implemented so as to ensure that they do
not violate the type system’s constraints.

Returning to the if example from Section 3.2.1 (page 21), we might have
an application with both numeric and Boolean terminals (e.g., get speed

and is food ahead). We might then have an if function that takes three
arguments: a test (Boolean), the value to return if the test is true, and
the value to return if the test is false. Assuming that the second and third
values are numbers, then the output of the if is also going to be numeric.
If we choose the test argument as a crossover point in the first parent, then
the subtree (excised from the second parent) to insert must have a Boolean
output. That is, we must find either a function which returns a Boolean or
a Boolean terminal in the other parent tree to be the root of the subtree
which we will insert into the new child. Conversely if we choose either the
second or third argument as a crossover point in the first parent, then the
inserted subtree must be numeric. In all three cases, given that both parents
are type correct, restricting the second crossover point in this way ensures
the child will also be type correct.

This basic approach to types can be extended to more complex type sys-
tems including simple generics (Montana, 1995), multi-level type systems
(Haynes, Schoenefeld, and Wainwright, 1996), fully polymorphic types (Ols-
son, 1994), and polymorphic higher-order type systems (Yu, 2001).

6.2.3 Grammar-based Constraints

Another natural way to express constraints is via grammars, and these have
been used in GP in a variety of ways (Gruau, 1996; Hoai, McKay, and
Abbass, 2003; O’Neill and Ryan, 2003; Whigham, 1996; Wong and Leung,
1996). Many of these simply use a grammar as a means of expressing the
kinds of constraints discussed above in Section 6.2.1. For example, one could
enforce the structure for the period function using a grammar such as the
following:

tree ::= E × sin(E × t) (6.3)

E ::= var | (E op E)

op ::= + | − | × | ÷
var ::= x | y | z

Each line in this grammar is known as a rewrite rule or a production rule.
Elements that cannot be rewritten are known as the terminals of the gram-
mar1 while symbols that appear on the left-hand-side of a rule are known
as non-terminal symbols.

1Not to be confused with the terminals in the primitive set of a GP system.
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tree

E * sin ( E * t )

var ( E op E )

y var + var

x z

Figure 6.2: Example individual (a derivation tree) that might be evolved
in Whigham’s grammar-based GP system (Whigham, 1996) if the grammar
in Equation (6.3) was used. Rectangles represent non-terminal symbols of
the grammar.

In this sort of system, the grammar is typically used to ensure the initial
population is made up of legal “grammatical” programs. The grammar is
also used to guide the operations of the genetic operators. Thus we need to
keep track not only of the program itself, but also the syntax rules used to
derive it.

What actually is evolved in a grammar-based GP system depends on the
particular system. Whigham (1996), for example, evolved derivation trees,
which effectively are a hierarchical representation of which rewrite rules must
be applied, and in which order, to obtain a particular program. Figure 6.2
shows an example of a derivation tree representing a grammatical program
with respect to the grammar in Equation (6.3). In this system, crossover is
restricted to only swapping subtrees deriving from a common non-terminal
symbol in the grammar. So, for example, a subtree rooted by an E node
could be replaced by another also rooted by an E, while an E-rooted subtree
could not be replaced by an op-rooted one.

The actual program represented by a derivation tree can be obtained by
reading out the leaves of the tree one by one from left to right. For the
derivation tree in Figure 6.2, for example, this produces the program

y × sin((x + z) × t).

However, for efficiency reasons, in an actual implementation it is not con-
venient to extract the program represented by a derivation tree is this way.
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This is because programs need to be executed in order to evaluate their
fitness, and this flat program representation often requires further trans-
formations before execution. It is, therefore, common to directly convert a
derivation tree into a standard GP tree.

Grammar-based GP approaches can be extended by incorporating con-
cepts from computational linguistics. For example, McKay and colleagues
used tree adjoining grammars (TAGs) (Joshi and Schabes, 1997) to de-
sign new genetic representations and operators that respect grammatical
constraints while allowing new types of structural modifications (Hoai and
McKay, 2004; Hoai et al., 2003; Hoai, McKay, Essam, and Hao, 2005).

Another major grammar-based approach is grammatical evolution (GE)
(O’Neill and Ryan, 2003; Ryan, Collins, and O’Neill, 1998). GE does not
use trees, instead it represents individuals as variable-length sequences of
integers (cf. Equation 6.4) which are interpreted in the context of a user
supplied grammar.

For each rule in the grammar, the set of alternatives on the right hand
side are numbered from 0 upwards. In the example grammar in Equa-
tion (6.3) above, the first rule only has one option on the right hand side; so
this would be numbered 0. The second rule has two options, which would
be numbered 0 and 1. The third rule has four options which would be num-
bered 0 to 3. Finally the fourth rule has three options numbered 0 to 2. To
create a program from a GE individual one uses the values in the individual
to “choose” which alternative to take in the production rules. For example,
suppose a GE individual is represented by the sequence

39, 7, 2, 83, 66, 92, 57, 80, 47, 94 (6.4)

then we start with 39 and the first syntax rule, tree. However tree has no
alternatives, so we move to 7 and rule E. Now E has two alternatives and
7 is used (via modulus) to chose between them. More of the translation
process is given in Figure 6.3.

In this example we did not need to use all the numbers in the sequence
to generate a complete program. Indeed the last integer, 94, was not used.
In general, “extra” genetic material is simply ignored. More problematic is
when a sequence is “too short” in the sense that the end of the sequence
is reached before the translation process is complete. There are a variety
of options in this case, including failure (assigning this individual the worst
possible fitness) and wrapping (continuing the translation process, moving
back to the front of the numeric sequence). Grammatical evolution has been
very successful and is widely used.

6.2.4 Constraints and Bias

One of the common arguments in favour of constraint systems like types
and grammars is that they limit the search space by restricting the kind
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tree

→ 〈 39 mod 1 = 0, i.e., there is only one option 〉
E × sin(E × t)

→ 〈 7 mod 2 = 1, i.e., choose second option 〉
(E op E) × sin(E × t)

→ 〈 2 mod 2 = 0, i.e., take the first option 〉
(var op E) × sin(E × t)

→ 〈 83 mod 3 = 2, pick the third variable, 〉
(z op E) × sin(E × t)

→ 〈 66 mod 4 = 2, take the third operator 〉
(z × E) × sin(E × t)

. . .

(z × x) × sin(z × t)

Figure 6.3: Sample grammatical evolution derivation using the grammar in
Equation (6.3) and the integer sequence in Equation (6.4). The non-terminal
to be rewritten is underlined in each case.

of structures that can be constructed. While this is true, it can come at a
price.

An expressive type system typically requires more complex machinery to
support it. It often makes it more difficult to generate type-correct individ-
uals in the initial population or during mutation and it is more difficult to
find crossover points that do not violate the type system. In an extreme case
like, constructive type theory (Thompson, 1991), the type system is so pow-
erful that it can completely express the formal specification of the program.
Thus, any program/expression having this type is guaranteed to meet that
specification. In GP this would mean that all the members of the initial
population would need to be solutions to the problem, thus putting all the
problem solving burden on the initialisation phase and removing the need
for any evolution at all! Even without such extreme constraints, it has often
been found necessary to develop additional machinery in order to efficiently
generate an initial population that satisfies the constraints (Montana, 1995;
Ratle and Sebag, 2000; Schoenauer and Sebag, 2001; Yu, 2001).

As a rule, systems that focus on syntactic constraints (such as grammar-
based systems) require less machinery than those that focus on semantic
constraints (such as type systems), since it is typically easier to satisfy the
syntactic constraints in a mechanistic fashion. For example, grammar-based
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systems, such as grammatical evolution and the various TAG-based systems,
are typically simple to initialise, and mutation and crossover need to enforce
few, if any, constraints on the new child. The work (and the bias) in these
systems is much more in the choice of the grammar, and once it has been
designed, there is often little additional work required of the practitioner or
the GP system to enforce the implied constraints.

While a constraint system may limit the search space in valuable ways
(Ratle and Sebag, 2000) and can improve performance on interesting prob-
lems (Hoai, McKay, and Essam, 2006), there is no general guarantee that
constraint systems will make the evolutionary search process easier. There
is no broad assurance that a constraint will increase the density of solu-
tions or (perhaps more importantly) approximate solutions.2 Also, while
there are cases where constraint systems smooth the search landscape (Hoai
et al., 2006), it is also possible for constraint systems to make the search
landscape more rugged by preventing genetic operations from creating inter-
mediate forms on potentially valuable evolutionary paths. In the future, it
might be useful to extend solution density studies such as those summarised
in (Langdon and Poli, 2002) to the landscapes generated by constraint sys-
tems in order to better understand the impact of these constraints on the
underlying search spaces.

In summary, while types, grammars, and other constraint systems can
be powerful tools, all such systems carry biases. One therefore needs to be
careful to explore the biases introduced by the constraints and not simply
assume that they are beneficial.

6.3 Developmental Genetic Programming

By using appropriate terminals, functions and/or interpreters, GP can go
beyond the production of computer programs. In cellular encoding (Gruau,
1994; Gruau and Whitley, 1993; Gruau, 1994), programs are interpreted
as sequences of instructions which modify (grow) a simple initial structure
(embryo). Figure 6.4 shows part of the development of an electronic circuit.3

Once the program has finished, the quality of the structure it has produced
is measured and this is taken to be the fitness of the program.

Naturally, for cellular encoding to work the primitives of the language
must be able to grow structures appropriate to the problem domain. Typical
instructions involve the insertion and/or sizing of components, topological

2By “solution density” we refer to the ratio between the number of acceptable solutions
in a program search space and the size of the search space itself. This is a rough assessment
of how hard a problem is, since it gives an indication of how long random search would
take to explore the program space before finding an acceptable solution.

3The process is easier to explain with a movie. This can be downloaded from http:

//www.genetic-programming.com/gpdevelopment.html.

http://www.genetic-programming.com/gpdevelopment.html
http://www.genetic-programming.com/gpdevelopment.html
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Figure 6.4: Screen shot of an animated gif showing the development
of the topology and the sizing of an electrical circuit (from http://www.

genetic-programming.com/gpdevelopment.html).The program is inter-
preted in parallel. Solid arrows link the active code to the parts of the
electronic circuit (lower half) that are being modified. The three-headed
arrow from S shows that three new components (Z4) have just been created
in series. Their types (e.g., capacitor, inductor or resistor) and values will
be determined by the three arguments of the S “function”.

modifications of the structure, etc. Cellular encoding GP has successfully
been used to evolve neural networks (Gruau, 1994; Gruau and Whitley,
1993; Gruau, 1994) and electronic circuits (Koza et al., 1999; Koza, Andre,
Bennett, and Keane, 1996a; Koza, Bennett, Andre, and Keane, 1996c), as
well as in numerous other domains. A related approach proposed by Hoang,
Essam, McKay, and Nguyen (2007) combines tree adjoining grammars (Sec-
tion 6.2.3) with L-systems (Lindenmayer, 1968) to create a system where
each stage in the developmental process is a working program that respects
the grammatical constraints.

One of the advantages of indirect representations such as cellular en-
coding is that the standard GP operators can be used to evolve structures
(such as circuits) which may have nothing in common with standard GP
trees. In many of these systems, the structures being “grown” are also still
meaningful (and evaluable) at each point in their development. This allows
fitness evaluation. Another important advantage is that structures result-

http://www.genetic-programming.com/gpdevelopment.html
http://www.genetic-programming.com/gpdevelopment.html
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ing from developmental processes often have some regularity, which other
methods obtain through the use of ADFs, constraints, types, etc. A dis-
advantage is that, with cellular encoding, individuals require an additional
genotype-to-phenotype decoding step. However, when the fitness function
involves complex calculations with many fitness cases, the relative cost of the
decoding step is often small compared with the rest of the fitness function.

6.4 Strongly Typed Autoconstructive GP

with PushGP

While types are often used to constrain evolution, Spector’s PushGP (Klein
and Spector, 2007; Robinson and Spector, 2002; Spector, 2001; Spector,
Klein, and Keijzer, 2005a) is a move away from constraining evolution.

Essentially PushGP uses genetic programming to automatically create
programs written in the Push programming language. Push is a strongly
typed tree based language which does not enforce syntactic constraints.
Each of Push’s types has its own stack. In addition to stacks for inte-
gers, floats, Booleans and so on, there is a stack for objects of type program.
Using this code stack, Push naturally supports both recursion and program
modules (see Section 6.1.1) without human pre-specification. The code stack
allows an evolved program to push itself or fragments of itself onto the stack
for subsequent manipulation.

PushGP can use the code stack and other operations to allow programs to
construct their own crossover and other genetic operations and create their
own offspring. Programs are prevented from simply duplicating themselves
to deflect catastrophic loss of population diversity.





Chapter 7

Linear and Graph
Genetic Programming

Until now we have been talking about the evolution of programs expressed
as one or more trees which are evaluated by a suitable interpreter. This is
the original and most widespread type of GP, but there are other types of
GP where programs are represented in different ways. This chapter will look
at linear programs and graph-like (parallel) programs.

7.1 Linear Genetic Programming

In linear GP programs are linear sequences of instructions, such as the one
in Figure 7.1. The number of instructions can be fixed, meaning that every
program in the population has the same length, or variable, meaning that
different individuals can be of different sizes. In the following sections we
discuss reasons for using linear GP (Section 7.1.1). We then provide more
details on the different flavours of linear GP (Section 7.1.2). Finally, we
describe briefly the main genetic operations for linear GP (Section 7.1.3).

7.1.1 Motivations

There are two different reasons for trying linear GP. Firstly, almost all
computer architectures represent computer programs in a linear fashion with

Instruction 1 Instruction 2 .... Instruction N

Figure 7.1: Typical linear GP representation for programs.
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Arg 1

R0..R7

Output

R0..R7

Arg 2
Opcode

0...127

R0..R7
or+ − * /

Figure 7.2: Format of a linear GP engine instruction. R0 to R7 refer to
CPU’s registers.

neighbouring instructions being normally executed in consecutive time steps
(albeit control structures, jumps and loops may change the execution order).
So, why not evolve linear programs? This led Banzhaf (1993), Perkis (1994)
as well as Openshaw and Turton (1994) to try linear GP.

Secondly, computers do not naturally run tree-shaped programs, so in-
terpreters or compilers have to be used as part of tree-based GP. On the
contrary, by evolving the binary bit patterns actually obeyed by the com-
puter, linear GP can avoid the use of this computationally expensive ma-
chinery and GP can run several orders of magnitude faster. This desire for
speed drove Nordin (1994), Nordin et al. (1999), Crepeau (1995) and Eklund
(2002).

7.1.2 Linear GP Representations

As discussed in Section 2.1, it is possible to use a linear representation in
tree-based GP. When doing so, however, the linear structures are simply
flattened representations of the trees. Thus, in the linear structure one can
still identify the root node, its children, and the rest of the tree structure.
In such a system, instructions typically communicate via their arguments.

The semantics of linear GP are quite different, however. In linear GP, in-
structions typically read their input(s) from one or more registers or memory
locations and store the results of their calculations in a register. For exam-
ple, they might take the form shown in Figure 7.2. This means instructions
in linear GP all have equivalent roles and communicate only via registers
or memory. In linear GP there is no equivalent of the distinction between
functions and terminals inherent in tree-based GP. Also, in the absence of
loops or branches, the position of the instructions determines the order of
their execution. Typically, this not the case for the structures representing
trees.1

The instructions in linear GP may or may not represent executable ma-
chine code. That is, there are essentially two flavour of linear GP: machine
code GP, where each instruction is directly executable by the CPU, and

1Typically, in tree-based-GP the nodes are visited (but not executed) from left to right
in depth-first order. Primitives are only executed, however, when their arguments have
been evaluated. So, the root node is the first node visited but the last executed.
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interpreted linear GP, where each instruction is executable by some higher-
level virtual machine (typically written in an efficient language such as C
or C++). When the instructions are actual machine code, then the order
of the elements of the representation shown in Figure 7.2 is determined by
the particular computer architecture used, and the corresponding data must
be packed into bit fields of appropriate sizes. The overhead of packing and
unpacking data can be avoided, however, when one is using virtual machine
instructions since then the designer of a GP system has complete freedom
as to how the virtual machine will interpret its instructions.

If the goal is execution speed, then the evolved code should be machine
code for a real computer rather than some higher level language or virtual-
machine code. This is why Nordin (1994) started by evolving machine code
for SUN computers and Crepeau (1995) targeted the Z80. The linear GP
of Leung, Lee, and Cheang (2002) was designed for novel hardware, but much
of the GP development had to be run in simulation whilst the hardware itself
was under development.

The Sun SPARC has a simple 32-bit RISC architecture which eases
designing genetic operations which manipulate its machine code. Nordin
(1997) wrapped each machine code GP individual (which was a sequence of
machine instructions) inside a C function. Each of the GP program’s inputs
was copied from one of the C function’s arguments into one of the machine
registers. As well as the registers used for inputs,2 a small number (e.g.,
2–4) of other registers are used for scratch memory to store partial results of
intermediate calculations. Finally, the GP simply leaves its answer in one of
the registers. The external framework uses this as the C function’s return

value.
Since Unix was ported onto the x86, Intel’s complex instruction set,

which was already standard with Windows-based PCs, has had almost com-
plete dominance. Seeing this, Nordin ported his Sun RISC linear GP system
onto Intel’s CISC. Various changes were made to the genetic operations
which ensure that the initial random programs are made only of legal In-
tel machine code and that mutation operations, which act inside the x86’s
32-bit word, respect the x86’s complex sub-fields. Since the x86 has instruc-
tions of different lengths, special care has to be taken when altering them.
Typically, several short instructions are packed into each 4-byte word. If
there are any bytes left over, they are filled with no-operation codes. In
this way, best use is made of the available space, without instructions cross-
ing 32-bit boundaries. Nordin’s work led to Discipulus (Foster, 2001),
which has been used in applications ranging from bioinformatics (Vukusic,
Grellscheid, and Wiehe, 2007) to robotics (Langdon and Nordin, 2001) and

2Anyone using a register-based GP (linear or tree-based) should consider write-
protecting the input registers to prevent the inputs from being overwritten. Otherwise
evolved programs (especially in the early generations) are prone to writing over their
inputs before they’ve had a chance to use them in any constructive way.
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bomb disposal (Deschaine, Hoover, Skibinski, Patel, Francone, Nordin, and
Ades, 2002).

Note that execution speed is not the only reason for using linear GP. Al-
though interpreted linear programs are slower than machine-code programs,
an interpreted linear GP system can be more efficient than an interpreted
tree-based systems. Also, a simple linear structure lends itself to rapid anal-
ysis. Brameier and Banzhaf (2001) showed a linear program can be easily
scanned and any “dead code” it contains can be removed. In some ways the
search space of linear GP is also easier to analyse than that of trees (Lang-
don, 1999b, 2002a,b, 2003a; Langdon and Banzhaf, 2005). For example,
Langdon (2006); Langdon and Poli (2006,?, 2008) have used (in simulation)
two simple architectures, called T7 and T8 ), for several large scale experi-
ments and for the mathematical analysis of Turing complete GP. For these
reasons, it makes sense to consider linear virtual-machine code GP even
when using languages like Java that are typically run on virtual machines;
one can in fact use a virtual machine (like (Leung et al., 2002)) to inter-
pret the evolved byte code (Harvey, Foster, and Frincke, 1999; Lukschandl,
Borgvall, Nohle, Nordahl, and Nordin, 2000).

7.1.3 Linear GP Operators

The typical crossover and mutation operators for linear GP ignore the details
of the machine code of the computer being used. For example, crossover may
choose randomly two crossover points in each parent and swaps the code
between them. Since the crossed over fragments are typically of different
lengths, such a crossover may change the programs’ lengths, cf. Figure 7.3.
Since computer machine code is organised into 32- or 64-bit words, the
crossover points occur only at the boundaries between words. Therefore,
a whole number of words, containing a whole number of instructions are
typically swapped over. Similarly, mutation operations normally respect
word boundaries and generate legal machine code. However, linear GP lends
itself to a variety of other genetic operations. For example, Figure 7.4 shows
homologous crossover. Many other crossover and mutation operations are
possible (Langdon and Banzhaf, 2005).

In a compiling genetic programming system (Banzhaf, Francone, and
Nordin, 1996) the mutation operator acts on machine code instructions
and is constrained to “ensure that only instructions in the function set are
generated and that the register and constant values are within predefined
ranges allowed in the experimental set up”. On some classification prob-
lems Banzhaf et al. (1996) reported that performance was best when using
crossover and mutation in equal proportions. They suggested that this was
due to the GP population creating “introns” (blocks of code that does not
affect fitness) in response to the crossover operator, and that these were sub-
sequently converted into useful genetic material by their mutation operator.
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Parent 1

Parent 2

Offspring

Figure 7.3: Typical linear GP crossover. Two instructions are randomly
chosen in each parent (top two genomes) as cut points. The code fragment
excised from the first parent is then replaced with the code fragment excised
from the second to generate the child (lower chromosome).

Parent 1

Parent 2

Offspring 1

Offspring 2

Figure 7.4: Discipulus’s “homologous” crossover (Foster, 2001; Francone
et al., 1999; Nordin et al., 1999). Crossover is performed on two parents (top
two programs) to yield two offspring (bottom). The two crossover points are
the same in both parents, so the exised code does not change its position
relative to the start of the program (left edge), and the child programs have
the same lengths as their parents. Homologous crossover is often combined
with a small amount of normal two point crossover (Figure 7.3) to introduce
length changes into the GP population.

7.2 Graph-Based Genetic Programming

Trees are special types of graphs. So it is natural to ask what would happen
if one extended GP so as to be able to evolve graph-like programs. Starting
from the mid 1990s, researchers have proposed several extensions of GP that
do just that, albeit in different ways.

7.2.1 Parallel Distributed GP

Poli (1996a, 1999a) proposed parallel distributed GP (PDGP), a form of GP
that is suitable for the evolution of highly parallel programs which effec-
tively reuse partial results. Programs are represented in PDGP as graphs
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Figure 7.5: A sample tree where the same subtree is used twice (a) and
the corresponding graph-based representation of the same program (b). The
graph representation may be more efficient since it makes it possible to avoid
the repeated evaluation of the same subtree.

with nodes representing functions and terminals. Edges represent both con-
trol flow and data flow. The possible efficiency gains obtained by a graph
representation are illustrated in Figure 7.5.

In the simplest form of PDGP edges are directed and unlabelled, in
which case PDGP is a generalisation of standard GP. However, more com-
plex representations can be used, which allow the evolution of: programs,
including standard tree-like programs, logic networks, neural networks, re-
current transition networks and finite state automata. This can be achieved
by extending the representation by associating labels with the edges of the
program graph. In addition to the function and terminal sets, this form of
PDGP requires the definition of a link set. The labels on the links depend
on what is to be evolved. For example, in neural networks, the link labels
are numerical constants for the neural network weights. In a finite state au-
tomaton, the edges are labelled with the input symbols that determine the
FSA’s state transitions. It is even possible for the labels to be automatically
defined edges, which play a role similar to ADFs (Section 6.1.1) by invoking
other PDGP graphs.

In PDGP, programs are manipulated by special crossover and mutation
operators which guarantee the syntactic correctness of the offspring. Each
node occupies a position in a regular grid. The genetic operators act by
moving, copying or randomly generating sub-regions of the grid. For this
reason PDGP search operators are very efficient.

PDGP programs can be executed according to different policies depend-
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ing on whether instructions with side effects are used or not. If there are
no side effects, running a PDGP program can be seen as a propagation of
the input values from the bottom to the top of the program’s graph (as in
a feed-forward artificial neural network or data flow parallel computer).

7.2.2 Parallel Algorithm Discovery and Orchestration

In a system called parallel algorithm discovery and orchestration (PADO),
Teller (1996) used a combination of GP and linear discrimination to obtain
parallel classification programs for signals and images.

PADO programs include three parts: a main loop, some ADFs and an
indexed memory. The main loop is repeatedly executed for a fixed amount
of time. When the time is up, PADO programs are forced to halt by some
external control structure. The output of a program is the weighted average
of the outputs produced at each iteration of the loop. The weights are
proportional to the iteration count, so that more recent outputs count more.

The main loop and the ADFs in PADO are structured as arbitrary di-
rected graphs of nodes. Each node can have multiple outgoing arcs that
indicate possible flows of control. Each node has two main parts: an ac-
tion and a branch-decision. Each program has an argument stack and all
PADO actions pop their inputs from this argument stack and push their re-
sult back onto the argument stack. The actions are drawn from a primitive
set including the standard algebraic operations, minimum, maximum, nega-
tion, read from indexed memory, write to indexed memory, deterministic
and non-deterministic branching instructions, and primitives related to the
task of classifying images. The evaluation of PADO programs starts from a
designated node. After the execution of each node, control is passed to the
node chosen by the branch-decision function of the current node.

7.2.3 Cartesian GP

In Miller’s Cartesian GP (Miller, 1999; Miller and Smith, 2006), programs
are represented by linear chromosomes containing integers. These are di-
vided into groups of three or four. Each group corresponds to a position in
a 2-D array. One integer in each group defines the primitive (e.g., an AND

gate) at that location in the array. Other integers in the group define the
locations (coordinates) in the genome from which the inputs for that primi-
tive should be drawn. Each primitive does not itself define where its output
is used; this is done by later primitives. A primitive’s output may be used
more than once, or indeed not used at all, depending on the way in which
the other functions’ inputs are specified. Thus, Cartesian GP’s chromo-
somes represent graph-like programs, which is very similar to PDGP. The
main difference between the two systems is that Cartesian GP operators act
at the level of the linear chromosome, while in PDGP they act directly on
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the graph. Also, traditionally Cartesian GP has always used mutation as
its main search operation, while PDGP used both crossover and mutation.
However, recently a new crossover has been proposed for Cartesian GP that
provides faster convergence (Clegg, Walker, and Miller, 2007).

7.2.4 Evolving Parallel Programs using Indirect
Encodings

The graph-based systems discussed above use representations which directly
encode parallel programs. However, it is also possible to use non-graph-
based GP to evolve parallel programs. For example, Bennett (1996) used a
parallel virtual machine in which several standard tree-like programs (called
“agents”) would have their nodes executed in parallel. He included a two-
stage mechanism which simulated parallelism of sensing actions and simple
conflict resolution (prioritisation) for actions with side effects. Andre, Ben-
nett, and Koza (1996) used GP to discover rules for cellular automata, a
highly parallel computational architecture, which could solve large majority-
classification problems. In conjunction with an interpreter implementing a
parallel virtual machine, GP can also be used to translate sequential pro-
grams into parallel ones (Walsh and Ryan, 1996), or to develop parallel
programs.



Chapter 8

Probabilistic Genetic
Programming

Genetic programming typically uses an evolutionary algorithm as its main
search engine. However, this is not the only option. The use of simulated
annealing and hill climbing to search the space of computer programs was
mentioned in Section 5.4. This chapter considers recent work where the ex-
ploration is performed by population-based search algorithms which adapt
and sample probability distributions instead of using traditional genetic op-
erators.

Sampling from a probability distribution means generating random val-
ues whose statistical properties match those of the given distribution. For
example, if one sampled a univariate Gaussian distribution, one would ex-
pect the resulting values to tend to have mean and standard deviation sim-
ilar to the mean and standard deviation of the Gaussian. The notion of
sampling can be extended to much more complex distributions involving
multiple variables. Furthermore, discrete as well as continuous variables are
possible.

8.1 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) are powerful population-based
searchers where the variation operations traditionally implemented via
crossover and mutation in EAs are replaced by the process of random sam-
pling from a probability distribution. The distribution is modified genera-
tion after generation, using information obtained from the fitter individuals
in the population. The objective of these changes in the distribution is to
increase the probability of generating individuals with high fitness.

69
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Different EDAs use different models for the probability distribution that
controls the sampling (see (Larrañaga, 2002; Larrañaga and Lozano, 2002)
for more information). For example, population-based incremental learning
(PBIL) (Baluja and Caruana, 1995) and the uniform multivariate distribu-
tion algorithm (UMDA) (Mühlenbein and Mahnig, 1999a,b) assume that
each variable is independent of the other variables. Consequently, these al-
gorithms need to store and adjust only a linear array of probabilities, one for
each variable. This works well for problems with weak interactions between
variables. Since no relationship between the variables is stored or learned,
however, PBIL and UMDA may have difficulties solving problems where the
interactions between variables are significant.

Naturally, higher order models are possible. For example, the MIMIC
algorithm of de Bonet, Isbell, and Viola (1997) uses second-order statis-
tics. It is also possible to use flexible models where interactions of dif-
ferent orders are captured. The Bayesian optimisation algorithm (BOA)
(Pelikan, Goldberg, and Cantú-Paz, 1999) uses baysian networks to rep-
resent generic sampling distributions, while the extended compact genetic
algorithm (eCGA) (Harik, 1999) clusters genes into groups where the genes
in each group are assumed to be linked but groups are considered inde-
pendent. The sampling distribution is then taken to be the product of the
distributions modelling the groups.

EDAs have been very successful. However, they are often unable to rep-
resent both the overall structure of the distribution and its local details,
typically being more successful at the former. This is because EDAs rep-
resent the sampling distribution using models with an, inevitably, limited
number of degrees of freedom. For example, suppose the optimal sampling
distribution has multiple peaks, corresponding to different local optima, sep-
arated by large unfit areas. Then, an EDA can either decide to represent
only one peak, or to represent all of them together with the unfit areas. If
the EDA chooses the wrong local peak this may lead to it getting stuck and
not finding the global optimum. Conversely if it takes a wider view, this
leads to wasting many trials sampling irrelevant poor solutions.

Consider, for example, a scenario where there are five binary variables,
x1, x2, x3, x4 and x5, and two promising regions: one near the string of all
zeros, i.e., (x1, x2, x3, x4, x5) = (0, 0, 0, 0, 0), and the other near the string
of all ones, i.e., (x1, x2, x3, x4, x5) = (1, 1, 1, 1, 1). One option for a (simple)
EDA is to focus on one of the two regions, e.g., setting the variables xi

to 0 with high probability (say, 90%). This, however, fails to explore the
other region, and risks missing the global optimum. The other option is to
maintain both regions as possibilities by setting all the probabilities to 50%,
i.e., each of the variables xi is as likely to be 0 as 1. These probabilities will
generate samples in both of the promising regions. For example, the strings
(0, 0, 0, 0, 0) and (1, 1, 1, 1, 1) will each be generated with a 3.125% proba-
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bility. Also, simple calculations show that 31.25% of individuals generated
by this distribution will be at Hamming distance 1 from either (0, 0, 0, 0, 0)
or (1, 1, 1, 1, 1).1 So, both optimal regions are sampled reasonably often.
However, it is clear that the majority (62.5%) of samples will be allocated
to less promising regions, where the Hamming distance will be 2 or 3 from
both (0, 0, 0, 0, 0) and (1, 1, 1, 1, 1). This is a significant concern, which is
why recently EDAs have often been used in combination with local search
(e.g., see (Zhang, Sun, and Tsang, 2005)).

There have been several applications of probabilistic model-based evolu-
tion (EDA-style) in the areas of tree-based and linear GP. We review them
in the rest of this chapter.

8.2 Pure EDA GP

The first EDA-type GP system was effectively an extension of PBIL to trees
called probabilistic incremental program evolution (PIPE) (Salustowicz and
Schmidhuber, 1997; Sa lustowicz, Wiering, and Schmidhuber, 1998; Salus-
towicz and Schmidhuber, 1999). In PIPE, the population is replaced by a
hierarchy of probability tables organised into a tree (such as the one in Fig-
ure 8.1). Each table represents the probability that a particular primitive
will be chosen at that specific location in a newly generated program tree.
At each generation a population of programs is created based on the current
tree of probability tables. The generation of a program begins by choosing a
root node based on the probabilities in the root table, and then continuing
down the hierarchy of probability tables until all branches of the tree are
complete (i.e., a terminal has been chosen on each branch). The fitness of
these new programs is computed, and the probability hierarchy is updated
on the basis of these fitnesses, so as to make the generation of above-average
fitness programs more likely in the next generation.

A positive feature of PIPE is that the probability of choosing a particular
primitive can vary with its depth (and, more generally, position) in the tree.
This makes it possible, for example, for terminals to become increasingly
probable as a node’s depth increases. A limitation of PIPE, however, is that
the primitives forming a tree are chosen independently from each other,2 so it
is impossible for PIPE to capture dependencies among primitives. Another
limitation is that the maximum size of the generated trees is constrained
by the size of the tree of probability tables. Ondas, Pelikan, and Sastry
(2005) compared the performance of PIPE and standard tree-based GP on

1The Hamming distance between two strings (whether binary or not) is the number
of positions where the two strings differ.

2There is a weak form of dependency, in that there can be a primitive in a particular
position only if the primitive just above it is a function. The choice of this parent primitive
does not, however, influence the choice of the child primitive.
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a small set of artificial problems, including a GP version of one-max3 and a
GP version of the fully deceptive trap function4. Results suggest that PIPE
and standard GP have similar scaling properties, but that standard subtree
crossover inherently links neighbouring nodes whereas PIPE does not.

Sastry and Goldberg (2003) proposed an algorithm called extended com-
pact GP (eCGP) which effectively extends the eCGA algorithm (Harik,
1999) to trees. Like PIPE, eCGA assumes that all trees will fit within a
fixed maximal tree. It partitions the nodes in this maximal tree into groups.
The nodes in a group are assumed to be linked and their co-occurrence is
modelled by a full joint distribution table. As with eCGA, the probability
of generating a particular tree is given by the product of the probabilities of
generating each group of nodes using the groups’ joint distributions. An ad-
vantage of this system is that, unlike PIPE, it captures dependencies among
primitives. However, to the best of our knowledge this system has only been
tested on the two artificial problems used by Ondas et al. (2005) to compare
PIPE and GP. Consequently its behaviour on more typical GP problems is
unknown.

Yanai and Iba (2003) proposed an EDA called estimation of distribution
programming (EDP) which, in principle, can capture complex dependencies
between a node in a program tree and the nodes directly above it or to its
left.5 As with eCGP and PIPE, programs are tree-like and are assumed
to always fit within an ideal maximal full tree. A conditional probability
table is necessary for each node in such a tree to capture the dependencies.
To keep the size of data structures manageable, only pairwise dependencies
between each node and its parent were stored and used. EDP was tested on
both the Max problem (Gathercole and Ross, 1995) and the 6-multiplexer.
A later hybrid algorithm combining EDP and GP was proposed (Yanai and
Iba, 2004) which showed promise when tested on three symbolic regression
problems.

An EDA based on a hierarchical BOA was used as the main mechanism
to generate new individuals in meta-optimising semantic evolutionary search
(MOSES) (Looks, 2007). This combined multiple strategies and used seman-
tics to restrict and direct the search. BOA was also used to evolve programs
in (Looks, Goertzel, and Pennachin, 2005) using a specialised representation
for trees.

3One-max is a simple GA test problem where the goal is to maximise the number of
1’s in a binary string.

4Trap functions are fitness functions that have a gradual slope leading to a sub-optimal
local maxima, and a steep valley between that local maxima and the global optima. They
therefore tend to “trap” populations on the local maxima

5In the general case a node can depend on the choices of any of the nodes that have
already been chosen. Since the tree is constructed in a depth-first, left-to-right fashion,
it can depend on any nodes that are its direct ancestors, or any nodes that are to its left
in the tree. In practice, however, EDP only tracked the conditional probability of a node
on its parent.
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Figure 8.1: Example of probability tree used for the generation of programs
in PIPE. New program trees are created starting from the root node at the
top and moving through the hierarchy. Each node in an offspring tree is
selected from the left hand side of the corresponding table with probability
given by the right hand side. Each branch of the tree continues to expand
until either the tree of probability tables is exhausted or a leaf (e.g., R) is
selected.
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Recently an EDA-based system called N-gram GP (Poli and McPhee,
2008a) has been proposed that allows the evolution of linear GP programs.
To some extent, N-gram GP overcomes the common difficulties EDAs have
in performing local search when using a centralised population model. The
N-gram GP system is able to capture both the local and the global features
of the optimal sampling distribution, albeit at the cost of imposing certain
other constraints. This makes it possible, for example, for the search to focus
on the neighbourhood of a small number of individuals without the need to
choose among them. Tests on polynomial symbolic regression problems and
the lawnmower problem were very encouraging.

8.3 Mixing Grammars and Probabilities

A variety of other systems have been proposed which combine the use of
grammars and probabilities. We mention only a few here; a more extended
review of these is available in (Shan, McKay, Essam, and Abbass, 2006).

Ratle and Sebag (2001) used a stochastic context-free grammar to gen-
erate program trees. The probability of applying each rewrite rule was
adapted using a standard EDA approach so as to increase the likelihood of
using successful rules. The system could also be run in a mode where rule
probabilities depended upon the depth of the non-terminal symbol to which
a rewrite rule was applied, thereby providing a higher degree of flexibility.

The approach taken in program evolution with explicit learning (PEEL)
(Shan, McKay, Abbass, and Essam, 2003) was slightly more general. PEEL
used a probabilistic L-system where rewrite rules were both depth- and
location-dependent. The probabilities with which rules were applied were
adapted by an ant colony optimisation (ACO) algorithm (Dorigo and
Stützle, 2004). Another feature of PEEL was that the L-system’s rules
could be automatically refined via splitting and specialisation.

Other programming systems based on probabilistic grammars which are
optimised via ant systems include ant-TAG (Abbass, Hoai, and McKay,
2002; Shan, Abbass, McKay, and Essam, 2002), which uses a tree-adjunct
grammar as its main representation, and generalised ant programming
(GAP) (Keber and Schuster, 2002), which is based on a context-free gram-
mar. Other systems which learn and use probabilistic grammars include
grammar model based program evolution (GMPE) (Shan, McKay, Baxter,
Abbass, Essam, and Hoai, 2004), the system described in (Bosman and de
Jong, 2004a,b) and Baysian automatic programming (BAP) (Regolin and
Pozo, 2005).



Chapter 9

Multi-objective
Genetic Programming

The area of multi-objective GP (MO GP) has been very active in the last
decade. In a multi-objective optimisation (MOO) problem, one optimises
with respect to multiple goals or fitness functions f1, f2, .... The task of a
MOO algorithm is to find solutions that are optimal, or at least acceptable,
according to all the criteria simultaneously.

In most cases changing an algorithm from single-objective to multi-
objective requires some alteration in the way selection is performed. This is
how many MO GP systems deal with multiple objectives. However, there
are other options. We review the main techniques in the following sections.

The complexity of evolved solutions is one of the most difficult things
to control in evolutionary systems such as GP, where the size and shape of
the evolved solutions is under the control of evolution. In some cases, for
example, the size of the evolved solutions may grow rapidly, as if evolution
was actively promoting it, without any clear benefit in terms of fitness. We
will provide a detailed discussion of this phenomenon, which is know as bloat,
and a variety of counter measures for it in Section 11.3. However, in this
chapter we will review work where the size of evolved solutions has been
used as an additional objective in multi-objective GP systems. Of course,
we will also describe work where other objectives were used.

9.1 Combining Multiple Objectives into a

Scalar Fitness Function

When given multiple fitness functions, it is natural to think of combining
them in some way so as to produce an aggregate scalar fitness function. For
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example, one could use a linear combination of the form f =
∑

i wifi, where
the parameters w1, w2, . . . are suitable constants. A MOO problem can then
be solved by using any single-objective optimisation technique with f as a
fitness function. This method has been used frequently in GP to control
bloat. By combining program fitness and program size to form a parsimo-
nious fitness function one can evolve solutions that satisfy both objectives
(see Koza (1992); Zhang and Mühlenbein (1993, 1995); Zhang, Ohm, and
Mühlenbein (1997) and Section 11.3.2).

A semi-linear aggregation of fitness and speed was used in (Langdon
and Poli, 1998b) to improve the performance of GP on the Santa Fe Trail
Ant problem. There, a threshold was used to limit the impact of speed to
avoid providing an excessive bias towards ants that were fast but could not
complete the trail.

A fitness measure which linearly combines two related objectives, the
sum of squared errors and the number of hits (a hit is a fitness case in which
the error falls below a pre-defined threshold), was used in (Langdon, Barrett,
and Buxton, 2003) to predict biochemical interactions in drug discovery.

Zhang and Bhowan (2004) used a MO GP approach for object detection.
Their fitness function was a linear combination of the detection rate (the
percentage of small objects correctly reported), the false alarm rate (the
percentage of non-objects incorrectly reported as objects), and the false
alarm area (the number of false alarm pixels which were not object centres
but were incorrectly reported as object centres).

O’Reilly and Hemberg (2007) used six objectives for the evolution of
L-systems which developed into 3-D surfaces in response to a simulated
environment. The objectives included the size of the surface, its smoothness,
its symmetry, its undulation, the degree of subdivision of the surface, and
the softness of its boundaries.

(Koza, Jones, Keane, and Streeter, 2004) used 16 different objectives
in the process of designing analogue electrical circuits. In the case of an
amplifier circuit these included: the 10dB initial gain, the supply current, the
offset voltage, the gain ratio, the output swing, the variable load resistance
signal output, etc. These objectives were combined in a complex heuristic
way into a scalar fitness measure. In particular, objectives were divided
into groups and many objectives were treated as penalties that were applied
to the main fitness components only if they are outside certain acceptable
tolerances.

9.2 Keeping the Objectives Separate

Since selection does not depend upon how the members of the population
are represented, the MOO techniques developed for other evolutionary al-
gorithms can be easily adapted to GP.
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Figure 9.1: Two-dimensional example of Pareto optimality and the Pareto
front, where the goal is to maximise along both the x and y axes. Solutions
A and B do not dominate each other. However, solution B is dominated by
solution 2. (Adapted from (Langdon, 1998).)

The main idea in MOO is the notion of Pareto dominance. Given a set
of objectives, a solution is said to Pareto dominate another if the first is not
inferior to the second in all objectives, and, additionally, there is at least one
objective where it is better. This notion can lead to a partial order, where
there is no longer a strict linear ordering of solutions. In Figure 9.1, for
example, individual A dominates (is better than) individual B along the y
axis, but B dominates A along the x axis. Thus there is no simple ordering
between then. The individual marked ‘2’, however dominates B on both
axes and would thus be considered strictly better than B.

In this case the goal of the search algorithm becomes the identification of
a set of solutions which are non-dominated by any others. Ideally, one would
want to find the Pareto front, i.e., the set of all non-dominated solutions in
the search space. However, this is often unrealistic, as the size of the Pareto
front is often limited only by the precision of the problem representation. If
x and y in Figure 9.1 are real-valued, for example, and the Pareto front is
a continuous curve, then it contains an infinite number of points, making a
complete enumeration impossible.

9.2.1 Multi-objective Bloat and Complexity Control

Rodriguez-Vazquez, Fonseca, and Fleming (1997) performed non-linear sys-
tem identification using a MO GP system, where individuals were selected
based on the Pareto dominance idea. The two objectives used were fitness
and model complexity. In each generation individuals were ranked based on
how many other individuals dominated them, and fitness was based on their
rank. To better cover the Pareto front, niching via fitness sharing (Gold-
berg, 1989) was also performed. Preference information was also included
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to focus the selection procedure towards specific regions of the Pareto front.
Hinchliffe, Willis, and Tham (1998) applied similar ideas to evolve parsimo-
nious and accurate models of chemical processes using MO GP. Langdon
and Nordin (2000) applied Pareto tournaments to obtain compact solutions
in programmatic image compression, two machine learning benchmark prob-
lems and a consumer profiling task. Nicolotti, Gillet, Fleming, and Green
(2002) used multi-objective GP to evolve quantitative structure–activity re-
lationship models in chemistry; objectives included model fitting, the total
number of terms and the occurrence of non-linear terms.

Ekart and Nemeth (2001) tried to control bloat using a variant of Pareto
tournament selection where an individual is selected if it is not dominated
by a set of randomly chosen individuals. If the test fails, another individual
is picked from the population, until one that is non-dominated is found.
In order to prevent very small individuals from taking over the population
in the early generations of runs, the Pareto criterion was modified so as
to consider as non-dominated solutions also those that were only slightly
bigger, provided their fitness was not worse.

Bleuler, Brack, Thiele, and Zitzler (2001) suggested using the well-known
multi-objective optimiser SPEA2 (Zitzler, Laumanns, and Thiele, 2001) to
reduce bloat. de Jong, Watson, and Pollack (2001) and de Jong and Pollack
(2003) proposed using a multi-objective approach to promote diversity and
reduce bloat, stressing that without diversity enhancement (given by modern
MOO methods) searches can easily converge to solutions that are too small
to solve a problem. Tests with even parity and other problems were very
encouraging. Badran and Rockett (2007) argued in favour of using mutation
to prevent the population from collapsing onto single-node individuals when
using a multi-objective GP.

As well as directly fighting bloat, MO GP can also be used to simplify
solution trees. After GP has found a suitable (but large) model, for example,
one can continue the evolutionary process, changing the fitness function to
include a second objective that the model be as small as possible (Langdon,
1998). GP can then trim the trees while ensuring that the simplified program
still fits the training data.

9.2.2 Other Objectives

Although much of the use of MOO techniques in GP has been aimed at
controlling bloat, there are also genuinely MOO applications.

For example, Langdon (1998) made extensive use of Pareto dominance
ranking to evolve different types of data structures. Up to six different
criteria were used to indicate to what degree an evolved data structure met
the requirements of the target data structure. The criteria were used in
Pareto-type tournament selection, where, unlike in other systems, a second
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round of comparisons with the rest of the population was used as a tie
breaker. The method successfully evolved queues, lists, and circular lists.

Langdon and Poli (1998b) used Pareto selection with two objectives,
fitness and speed, to improve the performance of GP on the Santa Fe Trail
Ant problem. Ross and Zhu (2004) used MO GP with different variants of
Pareto selection to evolve 2-D textures. The objectives were feature tests
that were used during fitness evaluation to rate how closely a candidate
texture matched visual characteristics of a target texture image. Dimopoulos
(2005) used MO GP to identify the Pareto set for a cell-formation problem
related to the design of a cellular manufacturing production system. The
objectives included the minimisation of total intercell part movement, and
the minimisation of within-cell load variation.

Rossi, Liberali, and Tettamanzi (2001) used MO GP in electronic design
automation to evolve VHDL code. The objectives used were the suitability
of the filter transfer function and the transition activity of digital blocks.
Cordon, Herrera-Viedma, and Luque (2002) used Pareto-dominance-based
GP to learn Boolean queries in information retrieval systems. They used two
objectives: precision (the ratio between the relevant documents retrieved in
response to a query and the total number of documents retrieved) and recall
(the ratio between the relevant documents retrieved and the total number
of documents relevant to the query in the database).

Barlow (2004) used a GP extension of the well-known NSGA-II MOO
algorithm (Deb, Agrawal, Pratap, and Meyarivan, 2000) for the evolution of
autonomous navigation controllers for unmanned aerial vehicles. Their task
was locating radar stations, and all work was done using simulators. Four
objectives were used: the normalised distance from the emitter, the circling
distance from the emitter, the stability of the flight, and the efficiency of
the flight.

Araujo (2006) used MO GP for the joint solution of the tasks of statistical
parsing and tagging of natural language. Their results suggest that solving
these tasks jointly led to better results than approaching them individually.

Han, Zhou, and Wang (2006) used a MO GP approach for the identi-
fication of chaotic systems where the objectives included chaotic invariants
obtained by chaotic time series analysis as well, as the complexity and per-
formance of the models.

Khan (2006) used MO GP to evolve digital watermarking programs. The
objectives were robustness in the decoding stage, and imperceptibility by the
human visual system. Khan and Mirza (2007) added a third objective aimed
at increasing the strength of the watermark in relation to attacks.

Kotanchek, Smits, and Vladislavleva (2006) compared different flavours
of Pareto-based GP systems in the symbolic regression of industrial data.
Weise and Geihs (2006) used MO GP to evolve protocols in sensor networks.
The goal was to identify one node on a network to act as a communication
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relay. The following objectives were used: the number of nodes that know
the designated node after a given amount of time, the size of the protocol
code, its memory requirements, and a transmission count.

Agapitos, Togelius, and Lucas (2007) used MO GP to encourage the
effective use of state variables in the evolution of controllers for toy car
racing. Three different objectives were used: the ratio of the number of
variables used within a program to the number of variables offered for use by
the primitive language, the ratio of the number of variables being set within
the program to the number of variables being accessed, and the average
positional distance between memory setting instructions and corresponding
memory reading instructions.

When two or three objectives need to be simultaneously optimised, the
Pareto front produced by an algorithm is often easy to visualise. When
more than three objectives are optimised, however, it becomes difficult to
directly visualise the set of non-dominated solutions. Valdes and Barton
(2006) proposed using GP to identify similarity mappings between high-
dimensional Pareto fronts and 3-D space, and then use virtual reality to
visualise the result.

9.2.3 Non-Pareto Criteria

Pareto dominance is not the only way to deal with multiple objectives with-
out aggregating them into a scalar fitness function.

Schmiedle, Drechsler, Grosse, and Drechsler (2001) compared GP with
four different MOO selection methods on the identification of binary deci-
sion diagrams. Linear weighting of the objectives was compared against: a)
Pareto dominance; b) a weaker form of Pareto dominance where a solution
is preferred to another if the number of objectives where the first is superior
to the second is bigger than the number of objectives where the opposite is
true; c) lexicographic ordering (where objectives are ordered based on the
user’s preference); and d) a new method based on priorities. The lexico-
graphic parsimony pressure method proposed in (Luke and Panait, 2002;
Ryan, 1994) is in fact a form of MOO with lexicographic ordering (in which
shorter programs are preferred to longer ones whenever their fitness is the
same or sufficiently similar). An approach which combines Pareto domi-
nance and lexicographic ordering was proposed in (Panait and Luke, 2004).

9.3 Multiple Objectives via Dynamic and

Staged Fitness Functions

Often it is possible to rank multiple objectives based on some notion of
importance. In these cases, it is possible to use dynamic fitness functions
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which initially guide GP towards solutions that maximise the main objec-
tive. When enough of the population has reached reasonable levels in that
objective, the fitness function is modified so as to guide the population to-
wards the optimisation of a second objective. In principle this process can
be iterated for multiple objectives. Of course, care needs to be taken to
ensure that the functionality reached with a set of previous fitness measures
is not wiped by the search for the optima of a later fitness function. This
can be avoided by making sure each new fitness function somehow includes
all the previous ones. For example, the fitness based on the new objectives
can be added to the pre-existing objectives with some appropriate scaling
factors.

A similar effect can be achieved via static, but staged, fitness functions.
These are staged in the sense that certain levels of fitness are only be made
available to an individual once it has reached a minimum acceptable perfor-
mance on all objectives at the previous level. If each level represents one of
the objectives, individuals are then encouraged to evolve in directions that
ensure that good performance is achieved and retained on all objectives.

Koza et al. (1999) used this strategy when using GP for the evolution of
electronic circuits where many criteria, such as input-output performance,
power consumption, size, etc., must all be taken into account to produce
good circuits. Kalganova and Miller (1999) used Cartesian GP (see Sec-
tion 7.2.3) to design combinational logic circuits. A circuit’s fitness was
given by a value between 0 and 100 representing the percentage of output
bits that were correct. If the circuit was 100% functional, then a further
component was added which represented the number of gates in the graph
that were not involved in the circuit. Since all individuals had the same
number of gates available in the Cartesian GP grid, this could be used to
minimise the number of gates actually used to solve the problem at hand.

9.4 MO GP via Operator Bias

While it is very common to use only modifications of the selection phase to
perform multi-objective search, it is also possible to combine MOO selection
with genetic operators exhibiting an inbuilt search bias which can steer the
algorithm towards optimising certain objectives.

In some sense the classical repair operators, which are used in constrained
optimisation to deal with hard constraints, are an extreme form of the idea
of using operators to help MOO search.1 More generally, it is possible to
imagine search operators with softer biases which favour the achievement
of one or more objectives. These can be the same or different from the
objectives that bias the selection of parents.

1In combinatorial optimisation, repair operators are applied to invalid offspring to
modify them in such a way as to ensure a problem’s hard constraints are respected.
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The pygmies and civil servants approach proposed in (Ryan, 1994, 1996)
combines the separation typical of Pareto-based approaches with biased
search operators. In this system two lists are built, one where individu-
als are ranked based on fitness and the other where individuals are ranked
based on a linear combination of fitness and size (i.e., a parsimonious fit-
ness function). During crossover, the algorithm draws one parent from the
first list and the other from the second list. This can be seen as a form of
disassortative mating aimed at maintain diversity in the population. An-
other example of this kind is (Zhang and Rockett, 2005) where crossover
was modified so that an offspring is retained only if it dominates either of
its parents.

Furthermore, as discussed in Sections 5.2 and 11.3.2, there are several
mutation operators with a direct or indirect bias towards smaller programs.
This provides a pressure towards the evolution of more parsimonious solu-
tions throughout a run.

As with the staged fitness functions discussed in the previous section,
it is also possible to activate operators with a known bias towards smaller
programs only when the main objective — say a 100% correct solution — has
been achieved. This was tested in (Pujol, 1999; Pujol and Poli, 1997), where
GP was used to evolve neural networks. After a 100% correct solution was
found, one hidden node of each network in the population was replaced by
a terminal, and the evolution process was resumed. This pruning procedure
was repeated until the specified number of generations had been reached.



Chapter 10

Fast and Distributed
Genetic Programming

Users of all artificial intelligence tools are always eager to extend the bound-
aries of their techniques, for example by attacking more and more difficult
problems. In fact, to solve hard problems it may be necessary to push GP
to the limit — populations of millions of programs and/or long runs may be
necessary.

There are a number of techniques to speed up, parallelise and distribute
GP search. We start by looking at ways to reduce the number of fitness
evaluations or increase their effectiveness (Section 10.1) and ways to speed
up their execution (Section 10.2). We then look at the idea of running GP
in parallel (Section 10.3) and point out that faster evaluation is not the
only reason for doing so, as geographic distribution has advantages in its
own right. In Section 10.4 we describe master–slave parallel architectures
(Section 10.4.1), running GP on graphics hardware (Section 10.4.2) and
FPGAs (Section 10.4.3). Section 10.4.4 describes a fast method to exploit
the parallelism available on every computer. Finally, Section 10.5 concludes
this chapter with a brief discussion of distributed, even global, evolution of
programs.

10.1 Reducing Fitness Evaluations and/or
Increasing their Effectiveness

While admirers of linear GP will suggest that machine code GP is the ul-
timate in speed, all forms of GP can be made faster in a number of ways.
The first is to reduce the number of times a program is evaluated.

Many applications find the fitness of programs by running them on mul-
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tiple training examples. The use of many examples provides an accurate
evaluation of a program’s quality. However, ultimately the point of fitness
evaluation is to make a binary decision — does this individual get a child or
not? The overwhelming proportion of GP’s computational effort (or indeed
the effort in any evolutionary computation technique) goes into adjusting
the probability of this binary decision. However, it is not clear that a high-
precision fitness evaluation is always necessary to decide well. Indeed, even
when the fitness evaluation is very accurate, most selection algorithms,1 be-
ing stochastic, inject noise into the decision of which points in the search
space to proceed from and which to abandon. In these cases, reducing the
number of times a program is evaluated is effectively an additional source
of noise. If a program has already demonstrated it works poorly compared
to the rest of the population on a fraction of the available training data, it
not likely to be chosen as a parent. Conversely, if it has already exceeded
many programs in the population after being tested on only a fraction of
the training set, then it is likely to be chosen as a parent (Langdon, 1998).
In either case, it is apparent that we do not gain much by running it on
the remaining training examples. Teller and Andre (1997) developed these
ideas into a useful algorithm called the rational allocation of trials.

As well as the computational cost, there are other negatives consequences
that come from using all the training data all the time, as doing so gives rise
to a static fitness function. In certain circumstances this may encourage the
population to evolve into a cul-de-sac where it is dominated by offspring of a
single initial program which did well on some fraction of the training cases,
but was unable to fit others. A static fitness function can create conditions
where good programs that perform moderately well on most portions of the
training data have lower fitness than those that do very well in only a few
small regions. With high selection pressure, it takes surprisingly little time
for the best individual to dominate the whole population.2

Gathercole and Ross (1994, 1997) investigated a number of ways of dy-
namically changing training samples,3 yielding a number of interacting ef-
fects. Firstly, by using only a subset of the available data, the GP fitness
evaluation took less time. Secondly, by changing which examples were being

1Common selection algorithms include roulette wheel selection (Goldberg, 1989), SUS
(Baker, 1987) and tournament selection.

2This is called the take over time (Goldberg, 1989). This can be formally analysed
(Blickle, 1996; Droste, Jansen, Rudolph, Schwefel, Tinnefeld, and Wegener, 2003), but
for tournament selection, a simple rule of thumb is often sufficient. If T is the tour-
nament size, roughly logT (Pop size) generations are needed for the whole population to
become descendants of a single individual. If, for example, we use binary tournaments
(T = 2), then “take over” will require about ten generations for a population of 1,024.
Alternatively, if we have a population of one million (106) and use ten individuals in each
tournament (T = 10), then after about six generations more or less everyone will have
the same great6 great5 great4 great3 grand2 mother1.

3Siegel (1994) proposed a rather different implementation.
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used over time, the evolving population saw more of the training data and so
was less liable to over fit a fraction of them. Thirdly, by randomly changing
the fitness function, it became more difficult for evolution to produce an
overspecialised individual which took over the population at the expense of
solutions which were viable on other parts of the training data. Dynamic
subset selection (DSS) appears to have been the most successful of Gather-
cole’s suggested algorithms. It has been incorporated into Discipulus (see
page 63), and was recently used in a large data mining application (Curry,
Lichodzijewski, and Heywood, 2007).

Where each fitness evaluation may take a long time, it may be attrac-
tive to interrupt a long-running program in order to let others run. In GP
systems which allow recursion or contain iterative elements (Brave, 1996;
Langdon, 1998; Wilson and Heywood, 2007; Wong and Leung, 1996) it is
common to enforce a time limit, a limit on the number of instructions ex-
ecuted, or a bound on the number of times a loop is executed. Maxwell
(1994) proposed a solution to the question of what fitness to give to a pro-
gram that has been interrupted. He allowed each program in the population
a quantum of CPU time. When the program used up its quantum it was
check-pointed.4 In Maxwell’s system, programs gained fitness as they ran,
i.e., each time a program correctly processed a fitness case, its fitness was
incremented. Tournament selection was then performed. If all members of
the tournament had used the same number of CPU quanta, then the fitter
program was the winner. If, however, one program had used less CPU than
the others (and had a lower fitness) then it was restarted and run until it
had used as much CPU as the others. Then fitnesses were compared in the
normal way.

Teller (1994) had a similar but slightly simpler approach: every indi-
vidual in the population was run for the same amount of time. When the
allotted time elapsed a program was aborted and an answer extracted from
it, regardless of whether it had terminated or not. Teller called this an “any
time” approach. This suits graph systems like Teller’s PADO (Section 7.2.2)
or linear GP (Chapter 7.1) where it is easy to designate a register as the
output register. The answer can then be extracted from this register or from
an indexed memory cell at any point (including whilst the programming is
running). Other any time approaches include (Spector and Alpern, 1995)
and (Langdon and Poli, 2008).

A simple technique to speed up the evaluation of complex fitness func-
tions is to organise the fitness function into stages of progressively increasing
computational cost. Individuals are evaluated stage by stage. Each stage
contributes to the overall fitness of a program. However, individuals need

4When a program is check-pointed, sufficient information (principally the program
counter and stack) is saved so that it can later be restarted from where it was stopped.
Many multi-tasking operating systems do something similar.
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to reach a minimum fitness value in each stage in order for them to be
allowed to progress to the next stage and acquire further fitness. Often
different stages represent different requirements and constraints imposed on
solutions.

Recently, a sophisticated technique called backward chaining GP has
been proposed (Poli, 2005; Poli and Langdon, 2005a,b, 2006a). In GP and
other evolutionary algorithms which use tournament selection with small
tournament sizes, backward chaining can radically reduce the number of
fitness evaluations. Tournament selection randomly draws programs from
the population to construct tournaments, the winners of which are then se-
lected. Although this process is repeated many times in each generation,
when the tournaments are small there is a significant probability that an
individual in the current generation is never chosen to become a member
of any tournament. By reordering the way operations are performed, back-
ward chaining GP exploits this. It not only avoids fitness calculations for
individuals that are never included in a tournament, but can also achieve
higher fitness sooner.

10.2 Reducing Cost of Fitness with Caches

In computer hardware it is common to use data caches which automatically
hold copies of data locally in order to avoid the delays associated with fetch-
ing them from disk or over a network every time they are needed. This can
work well when a small amount of data is needed many times over a short
interval.

Caches can also be used to store results of calculations, thereby avoiding
the re-calculation of data (Handley, 1994). GP populations have enormous
amounts of common code (Langdon, 1998; Langdon and Banzhaf, 2005;
Langdon and Poli, 2008). This is, after all, how genetic search works: it
promotes the genetic material of fit individuals. So, typically in each gener-
ation we see many copies of successful code.

In many (but by no means all) GP systems, subtrees have no side-effects.
This means results pass through a program’s root node in a well organised
and easy to understand fashion. Thus, if we remember a subtree’s inputs
and output when it was run before, we can avoid re-executing code whenever
we are required to run the subtree again. Note that this is true irrespective
of whether we need to run the same subtree inside a different individual or
at a different time (i.e., a later generation). Thus, if we stored the output
with the root node, we would only need to run the subtree once for any
given set of inputs. Whenever the interpreter comes to evaluate the subtree,
it needs only to check if the subtree’s root contains a cache of the values the
interpreter calculated last time, thus saving considerable computation time.

In order to achieve this, however, we need to overcome a problem: not
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only must the answer be stored, but the interpreter needs to know that the
subtree’s inputs are the same too. The common practices of GP come to our
aid here. Usually every tree in the population is run on exactly the same
inputs for each of the fitness cases. Thus, for a cache to work, the interpreter
does not need to know a tree’s inputs in detail, it need only know which of
the fixed set of test cases was used.

A simple means of implementing this type of cache is to store a vector of
values returned by each subtree for each of the test cases. Whenever a sub-
tree is created (i.e., in the initial generation, by crossover or by mutations)
the interpreter is run and the cache of values for its root node is set. Note
this is recursive, so caches can also be calculated for subtrees within it at
the same time. Now, when the interpreter is run and comes to a subtree’s
root node, it will simply retrieve the value it calculated earlier, using the
test case’s number as an index into the cache vector.

If a subtree is created by mutation, then its cache of values will be
initially empty and will have to be calculated. However, this costs no more
than it would without caches.

When code is inserted into an existing tree, be it by mutation or
crossover, the chance that the new code behaves identically to the old code
is normally very small. This means that the caches of every node between
the new code and the root node may be invalid. The simplest solution is
to re-evaluate them all. This may sound expensive, but the caches in all
the other parts of the individual remain valid and can be used when the
cache above them is re-evaluated. Thus, in effect, if the crossed over code is
inserted at depth d, only d nodes need to be evaluated.

The whole question of monitoring how effective individual caches are,
what their hit-rates are, etc. has been little explored. In practice, impressive
savings have been achieved by simple implementations, with little monitor-
ing and rudimentary garbage collection. Recent analysis (Ciesielski and Li,
2004; Dignum and Poli, 2007; Langdon and Poli, 2002; Poli et al., 2007)
has shown that GP trees tend not to have symmetric shapes, and many
leaves are very close to the root. This provides a theoretical explanation for
why considerable computational saving can be made by using fitness caches.
While it is possible to use hashing schemes to efficiently find common code,
in practice assuming that common code only arises because it was inherited
from the same location (e.g., by crossing over) is sufficient.

As well as the original Directed acyclic graph (DAG) implementation
(Handley, 1994) other work includes (Ciesielski and Li, 2004; Keijzer, 1996;
McPhee, Hopper, and Reierson, 1998; Yangiya, 1995). While so far we have
only considered programs where no side effects take place, there are cases
where caching can be extended outside this domain. For example, Langdon
(1998) used fitness caches in evolved trees with side effects by exploiting
syntax rules about where in the code the side-effects could lie.



88 10 Fast and Distributed Genetic Programming

10.3 Parallel and Distributed GP are Not

Equivalent

There are two important aspects of parallel evolutionary algorithms which
are equally important but are often confused. The first is the traditional
aspect of parallel computing. That is, we port an existing algorithm onto
a supercomputer so that it runs faster. The second aspect comes from the
biological inspiration for evolutionary computation.

In nature everything happens in parallel. Individuals succeed or fail in
producing and raising children at the same time as other members of their
species. These individuals are spread across oceans, lakes, rivers, plains,
forests, mountain chains, etc. It was this geographic spread that led Wright
(1932) to propose that geography and changes to it are of great importance
to the formation of new species and, so, to natural evolution as a whole.

Suppose a species occupies a range of hills. Individuals need not be able
to move from one end of the range to another in their lifetime, but their
descendents might. Wright (1932) proposed a mathematical model that can
predict the amount of mixing between descendents across the entire range
is needed to keep the whole population together as a single species. Based
on his model, he predicted that only a few migrants per generation between
hill tops are sufficient.

Now suppose the sea level rises. What was once a continuous range
of hills becomes a chain of islands. Suppose members of this species have
limited ability to swim. If the islands are close and the ocean currents are
sometimes favourable, it may be that every year a few individuals cross
between neighbouring islands. This may be enough to constrain diversifi-
cation and allow the population to remain a single species. However, if the
gaps between island become larger, the chance of an individual occasionally
crossing the sea and breeding becomes remote. On each island, then, the
sub-populations begin to diverge and over time new species, specific to each
island, are formed (Darwin, 1859).

In nature, changes in conditions across regions can lead to correspond-
ing differences in spatially distributed populations. Sometimes this can lead
to new species, as in the example above. In other cases the variation can
be gradual enough that there is no clear delineation that could be called a
species boundary, but geographically distant individuals are unable or un-
willing to mate, fulfilling a key property of different species. A particularly
dramatic example of this is a ring species. The Larus gulls, for example, live
along a ring that roughly follows the Arctic Circle. With one exception the
variants can interbreed all along its range, despite often having differences
significant enough that they have received different names. The key excep-
tion is in Europe, where the “ends” of the range meet. There the Herring
Gull (Larus argentatus) and the Lesser Black-backed Gull (Larus fuscus)
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intermingle, but rarely interbreed.
The topology of the landscape is often a strong determiner of the spatial

structure of a population. A large, fairly homogenous region, for example,
might give rise to a species being spatially differentiated in two dimensions
due to distance and climate. A river, on the other hand, may give rise to
a linear distribution, especially if there are structures like water falls that
restrict migration, and a river basin with several tributaries could lead to a
tree structure.

In evolutionary computation we can choose whether we want to model
some form of geography. We can run GP on parallel hardware so as to speed
up runs, but without introducing a notion of proximity that limits which
individuals are allowed to mate. Alternatively, we can model some form of
geography, introducing spatial structure as a result.

In the following two sections we will discuss both ideas. It is important
to note, however, that one does not need to use parallel hardware to use ge-
ographically distributed GP populations. Although parallel hardware natu-
rally lends itself to the implementation of physically-distributed populations,
one can obtain similar benefits by using logically-distributed populations in
a single machine.

10.4 Running GP on Parallel Hardware

In contrast to much of computer science, evolutionary computation can be
readily run on parallel computer hardware; indeed it is “embarrassingly par-
allel” (Andre and Koza, 1998). For example, when Openshaw and Turton
(1994) ran GP on a Cray supercomputer they obtained about 30% of its
theoretical peak performance, embarrassing their supercomputer savvy col-
leagues who rarely got better than a few percent out of it.

In Sections 10.4.1–10.4.3 we look at three ways of running GP on par-
allel hardware. Section 10.4.4 shows how to get 32 parallel operations from
standard hardware.

10.4.1 Master–slave GP

If the objective is purely to speed up runs, we may want our parallel GP to
work exactly the same as it did on a single computer. This is possible, but
to achieve it we have to be very careful to ensure that, even if some parts of
the population are evaluated more quickly, parallelisation does not change
how we apply selection and which GP individual crosses over with which.
Probably the easiest way to implement this is the master–slave model.

In the master–slave model (Oussaidène, Chopard, Pictet, and Tomassini,
1997) breeding, selection crossover, mutation etc. occur just as they would
on a single computer and only fitness evaluation is spread across a network
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of computers. Each GP individual and its fitness cases are sent across the
network to a different compute node. The central node waits for the compute
nodes to return their individuals’ fitnesses. Since individuals and fitness
values are typically stored in small data structures, this can be quite efficient
since transmission overheads are limited.

The central node is an obvious bottleneck. Also, a slow compute node
or a lengthy fitness case will slow down the whole GP population, since
eventually its result will be needed before moving onto the next generation.

10.4.2 GP Running on GPUs

Modern PC graphics cards contain powerful graphics processing units
(GPUs) including a large number of computing components. For exam-
ple, it is not atypical to have 128 streaming processors on a single PC’s
graphics card. In the last few years there has been an explosion of interest
in porting scientific or general purpose computation to mass market graphics
cards (Owens, Luebke, Govindaraju, Harris, Kruger, Lefohn, and Purcell,
2007).

Indeed, the principal manufactures (nVidia and ATI) claim faster than
Moore’s Law (Moore, 1965) increase in performance, suggesting that GPU
floating point performance will continue to double every twelve months,
rather than the 18–24 months observed for electronic circuits in general and
personal computer CPUs in particular. In fact, the apparent failure of PC
CPUs to keep up with Moore’s law in the last few years makes GPU comput-
ing even more attractive. Even today’s bottom-of-the-range GPUs greatly
exceed the floating point performance of their hosts’ CPU. However, this
speed comes at a price, since GPUs provide a restricted type of parallel pro-
cessing, often referred to a single instruction multiple data (SIMD) or single
program multiple data (SPMD). Each of the many processors simultaneously
runs the same program on different data items.

There have been a few genetic programming experiments with GPUs
(Chitty, 2007; Ebner, Reinhardt, and Albert, 2005; Harding and Banzhaf,
2007; Langdon and Banzhaf, 2008; Langdon and Harrison, 2008; Loviscach
and Meyer-Spradow, 2003; Meyer-Spradow and Loviscach, 2003; Reggia,
Tagamets, Contreras-Vidal, Jacobs, Weems, Naqvi, Winder, Chabuk, Jung,
and Yang, 2006). So far, in GP, GPUs have just been used for fitness eval-
uation.

Harding and Banzhaf (2007) used the Microsoft research GPU develop-
ment DirectXTMtools to compile (using a technique originally developed by
Harris and Buxton (1996)) a whole population of Cartesian GP network pro-
grams into a single GPU program which was loaded onto a laptop’s GPU to
run the fitness cases. Chitty (2007) used a conversion technique, somewhat
like an interpreter, to automatically convert each GP tree into a program
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that could be compiled for the GPU on the host PC. The compiled pro-
grams were transferred one at a time to a GPU for fitness evaluation. Both
groups obtained impressive speedups by running many test cases in parallel.

Langdon and Banzhaf (2008) and Langdon and Harrison (2008) created
a SIMD interpreter (Juille and Pollack, 1996) using RapidMind’s GNU C++
OpenGL framework to simultaneously run up to a quarter of a million GP
trees on an NVIDIA GPU (see Figure 10.1).5 As discussed in Section 7.1.2,
GP trees can be linearised. This avoids pointers and yields a very compact
data structure; reducing the amount of memory needed in turn facilitates
the use of large populations. To avoid recursive calls in the interpreter,
Langdon used reverse polish notation (RPN), i.e., a post-fix rather than
a pre-fix notation. Only small modifications are needed to crossover and
mutation so that they act directly on the RPN expressions. This means the
same representation is used on both the host and the GPU. Almost a billion
GP primitives can be interpreted by a single graphics card per second. In
both Cartesian and tree-based GP the genetic operations are done by the
host CPU. Wong, Wong, and Fok (2005) showed, for a genetic algorithm,
these too can be done by the GPU.

Although each of the GPU’s processors may be individually quite fast
and the manufacturers claim huge aggregate FLOPS ratings, the GPUs are
optimised for graphics work. In practice, it is hard to keep all the processors
fully loaded. Nevertheless 30 GFLOPS has been achieved (Langdon and
Harrison, 2008). Given the differences in CPU and GPU architectures and
clock speeds, often the speedup from using a GPU rather than the host
CPU is the most useful statistic. This is obviously determined by many
factors, including the relative importance of amount of computation and
size of data. The measured RPN tree speedups were 7.6-fold (Langdon and
Harrison, 2008) and 12.6-fold (Langdon and Banzhaf, 2008).

10.4.3 GP on FPGAs

Field programmable gate arrays (FPGAs) are chips which contain large ar-
rays of simple logic processing units whose functionality and connectivity
can be changed via software in microseconds by simply writing a configu-
ration into a static memory. Once an FPGA is configured it can update
all of its thousands of logic elements in parallel at the clock speed of the
circuit. Although an FPGA’s clock speed is often an order of magnitude
slower than that of a modern CPU, its massive parallelism makes it a very
powerful computational device. Because of this and of their flexibility there
has been significant interest in using FPGAs in GP.

Work has ranged from the use of FPGAs to speed up fitness evaluation

5Bigger populations, e.g. five million programs (Langdon and Harrison, 2008), are
possible by loading them onto the GPU in 256k units.
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(Koza, Bennett, Hutchings, Bade, Keane, and Andre, 1997; Seok, Lee, and
Zhang, 2000) to the definition of specialised operators (Martin and Poli,
2002). It is even possible to implement a complete GP on FPGAs, as sug-
gested in (Heywood and Zincir-Heywood, 2000; Martin, 2001, 2002; Sidhu,
Mei, and Prasanna, 1998). A massively parallel GP implementation has also
been proposed by Eklund (2001, 2004) although to date all tests with that
architecture have only been performed in simulation.

10.4.4 Sub-machine-code GP

We are nowadays so used to writing programs using high level sequential
languages that it is very easy to forget that, underneath, computers have a
high degree of parallelism. Internally, CPUs are made up of bit-slices which
make it possible for the CPU to process all of the bits of the operands of an
instruction in one go, in a single clock tick.

Sub-machine-code GP (SMCGP) (Poli and Langdon, 1999) is a technique
to speed up GP and to extend its scope by exploiting the internal parallelism
of sequential CPUs. In Boolean classification problems, SMCGP allows the
parallel evaluation of 32 or 64 (depending on the CPU’s word size) fitness
cases per program execution, thereby providing a significant speed-up. This
has made it possible to solve parity problems with up to 4 million fitness
cases (Poli and Page, 2000). SMCGP has also been applied with success
in binary image classification problems (Adorni, Cagnoni, and Mordonini,
2002; Quintana, Poli, and Claridge, 2003). The technique has also been
extended to process multiple fitness cases per program execution in continu-
ous symbolic regression problems where inputs and outputs are real-valued
numbers (Poli, 1999b).

10.5 Geographically Distributed GP

Unless some type of synchronisation is imposed, the parallel forms of GP
in which different parts of a population are evolved by different processing
elements will not be running the same algorithm as the standard single-
CPU version of GP. Therefore, almost certainly, different parallelisations
will produce different answers. However, as we discussed in Section 10.3,
this is not necessarily a bad thing.

Parallelisation itself can bring benefits similar to those hypothesised in
natural populations by Wright (1932). In particular, the population is of-
ten divided into semi-independent sub-populations called demes (Collins,
1992; D’haeseleer and Bluming, 1994; Langdon, 1998; Popovici and De Jong,
2006). The flow of genetic material between demes is restricted by limiting
the exchange of individuals between them. The limit can be on the number
of individuals that are allowed to migrate per generation. Alternatively the
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(a) (b)

Figure 10.2: Spatially structured GP populations. (a) Toroidal grid of
demes, where each deme (a node) contains a sub-population, and demes
periodically exchange a small group of high-fitness individuals using a grid
of communication channels. (b) Fine-grained distributed GP, where each
grid cell contains one individual and where the selection of a mating partner
for the individual in the centre cell is performed by executing a tournament
among randomly selected individuals (e.g., the individuals shaded) in its
3 × 3 neighbourhood.

demes may be considered to be arranged in a “geographical” topology that
constrains which demes can trade individuals. For example, it may be that
with limited migration between compute nodes, the evolved populations on
adjacent nodes will diverge, and that this increased diversity may lead to
better solutions. Fernandez, Tomassini, and Vanneschi (2003), for exam-
ple, report that distributing individuals between subpopulations offers an
advantage in terms of quality of solutions and computational effort.

When Koza first started using GP on a network of Transputers (Andre
and Koza, 1996), Andre experimentally determined the best migration rate
for their problem. He suggested Transputers arranged in an asynchronous
2-D toroidal square grid (such as the one in Figure 10.2a) should exchange
2% of their population with their four neighbours.

Densely connected grids have been widely adopted in parallel GP. Usu-
ally they allow innovative partial solutions to spread quickly. However, the
GA community reported better results from less connected topologies, such
as arranging the compute nodes’ populations in a ring, so that they could
transfer genes only between themselves and their two neighbours (Stender,
1993). Potter (1997) argues in favour of spatial separation in populations
and fine-grained distributed forms of GP (see Figure 10.2b). Whitley (2001)
gives some guidance on parallel genetic algorithms.
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Figure 10.3: A globally distributed GP system (Langdon, 2005a). The
server is the centre of the star architecture, with the lines connecting it
to users around the world. The users evolved snowflake patterns using a
continuously evolving L-System, and their (subjective) preferences provided
the fitness measure used to drive the system.

While many have looked enviously at Koza’s 1000 node Beowulf cluster
(Sterling, 1998) and other supercomputer realisations of GP (Bennett, Koza,
Shipman, and Stiffelman, 1999; Juille and Pollack, 1996), a supercomputer is
often not necessary. Many businesses and research centres leave computers
permanently switched on. During the night their computational resources
tend to be wasted. This computing power can easily and efficiently be
used to execute distributed GP runs overnight. Typically, GP does not
demand a high performance bus to interconnect the compute nodes, and
so existing office Ethernet networks are often sufficient. While parallel GP
systems can be implemented using MPI (Walker, 2001) or PVM (Fernandez,
Sanchez, Tomassini, and Gomez, 1999), the use of such tools is not necessary:
simple Unix commands and port-to-port HTTP is sufficient (Poli, Page,
and Langdon, 1999). The population can be split and stored on modest
computers. With only infrequent interchange of parts of the population
or fitness values little bandwidth is needed. Indeed a global population
spread via the Internet (Chong and Langdon, 1999; Draves, 2006; Klein and
Spector, 2007; Langdon, 2005a), à la seti@home, is perfectly feasible (see
Figure 10.3).

Other parallel GPs include (Cheang, Leung, and Lee, 2006; Folino, Piz-
zuti, and Spezzano, 2003; Gustafson and Burke, 2006; Klein and Spector,
2007; Tanev, Uozumi, and Akhmetov, 2004).





Chapter 11

GP Theory and its
Applications

Most of this book is about the mechanics of GP and its practical use for
solving problems. In fact, as will become clear in Chapter 12, GP has
been remarkably successful as a problem-solving and engineering tool. One
might wonder how this is possible, given that GP is a non-deterministic
algorithm, and as a result its behaviour varies from run to run. It is also a
complex adaptive system which sometimes shows intricate and unexpected
behaviours (such as bloat). Thus it is only natural to be interested in GP
from the scientific point of view. That is, we want to understand why can
GP solve problems, how it does it, what goes wrong when it cannot, what are
the reasons for certain undesirable behaviours, what can we do to get rid of
them without introducing new (and perhaps even less desirable) problems,
and so on.

GP is a search technique that explores the space of computer programs.
The search for solutions to a problem starts from a group of points (random
programs) in this search space. Those points that are above average quality
are then used to generate a new generation of points through crossover,
mutation, reproduction and possibly other genetic operations. This process
is repeated over and over again until a stopping criterion is satisfied. If we
could visualise this search, we would often find that initially the population
looks like a cloud of randomly scattered points, but that, generation after
generation, this cloud changes shape and moves in the search space. Because
GP is a stochastic search technique, in different runs we would observe
different trajectories. If we could see regularities, these might provide us
with a deep understanding of how the algorithm is searching the program
space for the solutions, and perhaps help us see why GP is successful in
finding solutions in certain runs and unsuccessful in others. Unfortunately,
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it is normally impossible to exactly visualise the program search space due
to its high dimensionality and complexity, making it that much harder to
understand.

An alternative approach to better understanding the dynamics of GP is
to study mathematical models of evolutionary search. There are a number
of cases where this approach has been very successful in illuminating some
of the fundamental processes and biases in GP systems. In this chapter we
will review several theoretical approaches to understanding GP, including
mathematical models of GP (Section 11.1), analyses of the structure of GP
search spaces (Section 11.2), and the use of theory to understand and combat
the chronic problem of bloat in a principled fashion (Section 11.3).

11.1 Mathematical Models
Schema theories are among the oldest and the best known models of evolu-
tionary algorithms (Holland, 1992; Whitley, 1994). Schema theories are
based on the idea of partitioning the search space into subsets, called
schemata. They are concerned with modelling and explaining the dynamics
of the distribution of the population over the schemata. Modern genetic
algorithm schema theory (Stephens and Waelbroeck, 1997, 1999) provides
exact information about the distribution of the population at the next gen-
eration in terms of quantities measured at the current generation, without
having to actually run the algorithm.

The theory of schemata in GP has had a difficult childhood. Some excel-
lent early efforts led to different worst-case-scenario schema theorems (Al-
tenberg, 1994; Koza, 1992; O’Reilly and Oppacher, 1994b; Poli and Langdon,
1997; Rosca, 1997; Whigham, 1995). Only very recently have the first ex-
act schema theories become available (Poli, 2000a,b, 2001a) which give exact
formulations (rather than lower bounds) for the expected number of individ-
uals sampling a schema at the next generation. Initially (Poli, 2000b, 2001a),
these exact theories were only applicable to GP with one-point crossover (see
Section 5.3). However, more recently they have been extended to the class of
homologous crossovers (Poli, McPhee, and Rowe, 2004) and to virtually all
types of crossovers that swap subtrees (Poli and McPhee, 2003a,b), including
standard GP crossover with and without uniform selection of the crossover
points (Section 2.4), one-point crossover, context-preserving crossover and
size-fair crossover (which have been described in Section 5.3), as well as
more constrained forms of crossover such as strongly-typed GP crossover
(see Section 6.2.2), and many others.

Other models of evolutionary algorithms include models based on
Markov chain theory (e.g. (Davis and Principe, 1993; Nix and Vose, 1992))
and on statistical mechanics (e.g. (Prügel-Bennett and Shapiro, 1994)).
Markov models have been applied to GP (Mitavskiy and Rowe, 2006; Poli
et al., 2004; Poli, Rowe, and McPhee, 2001), but so far they have not been
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developed as fully as the schema theory model.
Exact mathematical models of GP are probabilistic descriptions of the

operations of selection, reproduction, crossover and mutation. They explic-
itly represent how these operations determine which areas of the program
space will be sampled by GP, and with what probability. These models treat
the fitness function as a black box, however. That is, there is no represen-
tation of the fact that in GP, unlike in other evolutionary techniques, the
fitness function involves the execution of computer programs on a variety of
inputs. In other words, schema theories and Markov chains do not tell us
how fitness is distributed in the search space. Yet, without this information,
we have no way of closing the loop and fully characterising the behaviour of a
GP systems which is always the result of the interaction between the fitness
function and the search biases of the representation and genetic operations
used in the system.

11.2 Search Spaces

The characterisation of the space of computer programs explored by GP has
been another main topic of theoretical research (Langdon and Poli, 2002).
Of course results describing the space of all possible programs are widely
applicable, not only to GP and other search-based automatic programming
techniques, but also to many other areas ranging from software engineering
to theoretical computer science.

In this category are theoretical results showing that the distribution of
functionality of non Turing-complete programs approaches a limit as pro-
gram length increases. That is, although the number of programs of a
particular length grows exponentially with length, beyond a certain thresh-
old the fraction of programs implementing any particular functionality is
effectively constant. For example, in Figure 11.1 we plot the proportion of
binary program trees composed of NAND gates which implement each of the
223

= 256 Boolean functions of three inputs. Notice how, as the length of
programs increases, the proportion of programs implementing each function
approaches a limit.

This does not happen by accident. There is a very substantial body of
empirical evidence indicating that this happens in a variety of other systems.
In fact, there are also mathematical proofs of these convergence results for
two important forms of programs: Lisp (tree-like) S-expressions (without
side effects) and machine code programs without loops (Langdon, 2002a,b,
2003a,b, 2005b; Langdon and Poli, 2002). That the limiting distribution of
functionality reaches a limit as program length increases was also proven for
a variety of other non-Turing complete computers and languages, including:
a) cyclic (increment, decrement and NOP), b) bit flip computer (flip bit
and NOP), c) any non-reversible computer, d) any reversible computer,
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Figure 11.1: Proportion of NAND trees that yield each three-input func-
tions. As circuit size increases the distribution approaches a limit.

e) CCNOT (Toffoli gate) computer, f) quantum computers, g) the “average”
computer and h) AND, NAND, OR, NOR expressions.

Recently, (Langdon and Poli, 2006; Poli and Langdon, 2006b) started ex-
tending these results to Turing complete machine code programs. For this
purpose, a simple, but realistic, Turing complete machine code language,
T7, was considered. It includes: directly accessed bit addressable memory,
an addition operator, an unconditional jump, a conditional branch and four
copy instructions. A mathematical analysis of the halting process based on
a Markov chain model of program execution and halting was performed.
The model can be used to estimate, for any given program length, impor-
tant quantities, such as the halting probability and the run time of halting
programs. This showed a scaling law indicating that the halting probabil-
ity for programs of length L is of order 1/

√
L, while the expected number

of instructions executed by halting programs is of order
√

L. In contrast
to many proposed Markov models, this can be done very efficiently, mak-
ing it possible to compute these quantities for programs of tens of million
instructions in a few minutes. Experimental results confirmed the theory.
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11.3 Bloat

Starting in the early 1990s, researchers began to notice that in addition to
progressively increasing their mean and best fitness, GP populations also
showed certain other dynamics. In particular, it was noted that very often
the average size (number of nodes) of the programs in a population, after a
certain number of generations in which it was largely static, at some point
would start growing at a rapid pace. Typically the increase in program size
was not accompanied by any corresponding increase in fitness. The origin
of this phenomenon, which is known as bloat, has effectively been a mystery
for over a decade.

Note that there are situations where one would expect to see program
growth as part of the process of solving a problem. For example, GP runs
typically start from populations of small random programs, and it may be
necessary for the programs to grow in complexity for them to be able to
comply with all the fitness cases (a situation which often arises in continuous
symbolic regression problems). So, we should not equate growth with bloat
and we should define bloat as program growth without (significant) return in
terms of fitness.

Bloat is not only surprising, it also has significant practical effects: large
programs are computationally expensive to evolve and later use, can be hard
to interpret, and may exhibit poor generalisation. For these reasons bloat
has been a subject of intense study in GP. Over the years, many theories
have been proposed to explain various aspects of bloat, and while great
strides have been made, we still lack a single, universally-accepted unifying
theory to explain the broad range of empirical observations. We review the
key theoretical results on bloat in Section 11.3.1.

While discussions on the causes of bloat were going on, practitioners have
still had to face the reality of combating bloat in their runs. Consequently,
a variety of effective practical techniques have been proposed to counteract
bloat. We review these in Section 11.3.2, where we will particularly focus on
the parsimony pressure method (Koza, 1992; Zhang and Mühlenbein, 1993,
1995; Zhang et al., 1997), which is perhaps the simplest and most frequently
used method to control bloat in genetic programming.

11.3.1 Bloat in Theory

As mentioned above, there are several theories of bloat. Let us start by
looking at three of the oldest ones: the replication accuracy theory, the
removal bias theory and the nature of program search spaces theory.
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Three Classic Explanations for Bloat

The replication accuracy theory (McPhee and Miller, 1995) states that the
success of a GP individual depends on its ability to have offspring that are
functionally similar to the parent. As a consequence, GP evolves towards
(bloated) representations that increase replication accuracy.

The nodes in a GP tree can often be crudely categorised into two classes:
active code and inactive code. Roughly speaking, inactive code is code
that is not executed, or is executed but its output is then discarded. All
remaining code is active code. The removal bias theory (Soule and Foster,
1998a) observes that inactive code in a GP tree tends to be low in the tree,
residing, therefore, in smaller-than-average-size subtrees. Crossover events
excising inactive subtrees produce offspring with the same fitness as their
parents. On average the inserted subtree is bigger than the excised one, so
such offspring are bigger than average while retaining the fitness of their
parent, leading ultimately to growth in the average program size.

Finally, the nature of program search spaces theory (Langdon and Poli,
1997; Langdon, Soule, Poli, and Foster, 1999) predicts that above a certain
size, the distribution of fitnesses does not vary with size. Since there are more
long programs, the number of long programs of a given fitness is greater than
the number of short programs of the same fitness. Over time GP samples
longer and longer programs simply because there are more of them.

Executable Models of Bloat

The explanations for bloat provided by these three theories are largely qual-
itative. There have, however, been some efforts to mathematically formalise
and verify these theories. For example, Banzhaf and Langdon (2002) defined
an executable model of bloat where only the fitness, the size of active code and
the size of inactive code were represented (i.e., there was no representation of
program structures). Fitnesses of individuals were drawn from a bell-shaped
distribution, while active and inactive code lengths were modified by a size-
unbiased mutation operator. Various interesting effects were reported which
are very similar to corresponding effects found in GP runs. Rosca (2003) pro-
posed a similar, but slightly more sophisticated model which also included
an analogue of crossover. This provided further interesting evidence.

A strength of these executable models is their simplicity. A weakness is
that they suppress or remove many details of the representation and opera-
tors typically used in GP. This makes it difficult to verify if all the phenom-
ena observed in the model have analogues in GP runs, and if all important
behaviours of GP in relation to bloat are captured by the model.
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Size Evolution Equation

In (Poli, 2001b; Poli and McPhee, 2003b), a size evolution equation for ge-
netic programming was developed, which provided an exact formalisation of
the dynamics of average program size. The original equation was derived
from the exact schema theory for GP, and expressed mean program size as
a function of the size and selection probabilities of particular schemata rep-
resenting program shapes. The equation has recently been simplified (Poli
and McPhee, 2008b) giving:

E[µ(t + 1)] =
∑

ℓ

ℓ × p(ℓ, t), (11.1)

where µ(t + 1) is the mean size of the programs in the population at gen-
eration t + 1, E is the expectation operator, ℓ is a program size, and p(ℓ, t)
is the probability of selecting programs of size ℓ from the population in
generation t.

This equation can be rewritten in terms of the expected change in average
program size as:

E[µ(t + 1) − µ(t)] =
∑

ℓ

ℓ × (p(ℓ, t) − Φ(ℓ, t)), (11.2)

where Φ(ℓ, t) is the proportion of programs of size ℓ in the current genera-
tion. Both equations apply to a GP system with selection and any form of
symmetric subtree crossover.1

Note that Equations (11.1) and (11.2) do not directly explain bloat. They
are, however, important because they constrain what can and cannot hap-
pen size-wise in GP populations. Any explanation for bloat (including the
theories summarised above) has to agree with Equations (11.1) and (11.2).

In particular, Equation (11.1) predicts that, for symmetric subtree-
swapping crossover operators, the mean program size evolves as if selection
only was acting on the population. This means that if there is a change in
mean size (bloat, for example) it must be the result of some form of positive
or negative selective pressure on some or all of the length classes ℓ. Equa-
tion (11.2) shows that there can be bloat only if the selection probability
p(ℓ, t) is different from the proportion Φ(ℓ, t) for at least some ℓ. In par-
ticular, for bloat to happen there will have to be some small ℓ’s for which
p(ℓ, t) < Φ(ℓ, t) and also some bigger ℓ’s for which p(ℓ, t) > Φ(ℓ, t) (at least
on average).

1In a symmetric operator the probability of selecting particular crossover points in the
parents does not depend on the order in which the parents are drawn from the population.
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Crossover Bias Theory of Bloat

We conclude this review on theories of bloat with a recent explanation for
bloat called the crossover bias theory (Dignum and Poli, 2007; Poli et al.,
2007). This is based on and is consistent with the size evolution equation
(Equation 11.1).

On average, each application of subtree crossover removes as much ge-
netic material as it inserts; consequently crossover on its own does not pro-
duce growth or shrinkage. While the mean program size is unaffected, how-
ever, higher moments of the distribution are. In particular, crossover pushes
the population towards a particular distribution of program sizes, known
as a Lagrange distribution of the second kind, where small programs have a
much higher frequency than longer ones. For example, crossover generates a
very high proportion of single-node individuals. In virtually all problems of
practical interest, however, very small programs have no chance of solving
the problem. As a result, programs of above average size have a selective
advantage over programs of below average size, and the mean program size
increases.

Because crossover will continue to create small programs, which will then
be ignored by selection (in favour of the larger programs), the increase in
average size will continue generation by generation.

11.3.2 Bloat Control in Practice

Numerous empirical techniques have been proposed to control bloat (Lang-
don et al., 1999; Soule and Foster, 1998b). We cannot look at them all.
However, we briefly review some of the most important.

Size and Depth Limits

Rather naturally, the first and simplest method to control code growth is the
use of hard limits on the size or depth of the offspring programs generated
by the genetic operators.

Many implementations of this idea (e.g., (Koza, 1992)) apply a genetic
operator and then check whether the offspring is beyond the size or depth
limit. If it isn’t, the offspring enters the population. If, instead, the off-
spring exceeds the limit, one of the parents is returned. Obviously, this
implementation does not allow programs to grow too large. However, there
is a serious problem with this way of applying size limits, or more generally,
constraints to programs: parent programs that are more likely to violate a
constraint will tend to be copied (unaltered) more often than programs that
don’t. That is, the population will tend to be filled up with programs that
nearly infringe the constraint, which is typically not what is desired.
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It is well known, for example, that depth thresholds lead to the popu-
lation filling up with very bushy programs where most branches reach the
depth limit (being effectively full trees). On the contrary, size limits produce
populations of stringy programs which tend to all approach the size limit.
See (Crane and McPhee, 2005; McPhee, Jarvis, and Crane, 2004) for more
on the impact of size and depth limits, and the differences between them.

The problem can be fixed by not returning parents if the offspring violates
a constraint. This can be realised with two different strategies. Firstly, one
can just return the oversize offspring, but give it a fitness of 0, so that
selection will get rid of it at the next generation. Secondly, one can simply
declare the genetic operation failed, and try again. This can be done in two
alternative ways: a) the same parent or parents are used again, but new
mutation or crossover points are randomly chosen (which can be done up
to a certain number of times before giving up on those parents), or b) new
parents are selected and the genetic operation is attempted again.

If a limit is used, programs must not be so tightly constrained that they
cannot express any solution to the problem. As a rule of thumb, one should
try to estimate the size of the minimum possible solution (using the terminals
and functions given to GP) and add some percentage (e.g., 50-200%) as a
safety margin. In general, however, it may be hard to heuristically come up
with good limits, so some trial and error may be required. Alternatively,
one can use one of the many techniques that have been proposed to adjust
size limits during runs. These can be both at the level of individuals and the
population. See for example the work by Silva and Almeida (2003); Silva
and Costa (2004, 2005a,b); Silva, Silva, and Costa (2005).

Anti-bloat Genetic Operators

One can control bloat by using genetic operators which directly or indirectly
have an anti-bloat effect.

Among the most recent bloat-control methods are size fair crossover
and size fair mutation (Crawford-Marks and Spector, 2002; Langdon, 2000).
These work by constraining the choices made during the execution of a
genetic operation so as to actively prevent growth. In size-fair crossover, for
example, the crossover point in the first parent is selected randomly, as in
standard crossover. Then the size of the subtree to be excised is calculated.
This is used to constrain the choice of the second crossover point so as
to guarantee that the subtree chosen from the second parent will not be
“unfairly” big.

Older methods include several mutation operators that may help control
the average tree size in the population while still introducing new genetic
material. Kinnear (1993) proposes a mutation operator which prevents the
offspring’s depth being more than 15% larger than its parent. Langdon
(1998) proposes two mutation operators in which the new random subtree is
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on average the same size as the code it replaces. In Hoist mutation (Kinnear,
1994a) the new subtree is selected from the subtree being removed from the
parent, guaranteeing that the new program will be smaller than its parent.
Shrink mutation (Angeline, 1996) is a special case of subtree mutation where
the randomly chosen subtree is replaced by a randomly chosen terminal.
McPhee and Poli (2002) provides theoretical analysis and empirical evidence
that combinations of subtree crossover and subtree mutation operators can
control bloat in linear GP systems.

Other methods which control bloat by exploiting the bias of the operators
were discussed in Section 9.4.

Anti-Bloat Selection

As clarified by the size evolution equation discussed in the previous section,
in systems with symmetric operators, bloat can only happen if there are
some longer-than-average programs that are fitter than average or some
shorter-than-average programs that are less fit than average, or both. So,
it stands to reason that in order to control bloat one needs to somehow
modulate the selection probabilities of programs based on their size.

As we have discussed in Section 9.2.1, recent methods also include the
use of multi-objective optimisation to control bloat. This typically involves
the use of a modified selection based on the Pareto criterion.

A recent technique, the Tarpeian method (Poli, 2003), controls bloat
by acting directly on the selection probabilities in Equation (11.2). This is
done by setting the fitness of randomly chosen longer-than-average programs
to 0. This prevents them being parents. By changing how frequently this
is done the anti-bloat intensity of Tarpeian control can be modulated. An
advantage of the method is that the programs whose fitness is zeroed are
never executed, thereby speeding up runs.

The well-known parsimony pressure method (Koza, 1992; Zhang and
Mühlenbein, 1993, 1995; Zhang et al., 1997) changes the selection probabili-
ties by subtracting a value based on the size of each program from its fitness.
Bigger programs have more subtracted and, so, have lower fitness and tend
to have fewer children. That is, the new fitness function is f(x) − c × ℓ(x),
where ℓ(x) is the size of program x, f(x) is its original fitness and c is a con-
stant known as the parsimony coefficient.2 Zhang and Mühlenbein (1995)
showed some benefits of adaptively adjusting the coefficient c at each gen-
eration but most implementations actually keep the parsimony coefficient
constant.

2While the new fitness is used to guide evolution, one still needs to use the original
fitness function to recognise solutions and stop runs.
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The parsimony pressure method can be seen as a way to address the
generalisation–accuracy tradeoff common in machine learning (Rosca and
Ballard, 1996b; Zhang and Mühlenbein, 1995). There are also connections
between this method and the Minimum Description Length (MDL) principle
used to control bloat in (Iba, 1997; Iba et al., 1994; Iba, de Garis, and
Sato, 1995a). The MDL approach uses a fitness function which combines
program complexity (expressed as the number of bits necessary to encode
the program’s tree) and classification error (expressed as the number of
bits necessary to encode the errors on all fitness cases). Rosca also linked
the parsimony pressure method to his approximate evolution equations for
rooted-tree schemata (Rosca, 1996, 1997; Rosca and Ballard, 1996b, 1999).

Controlling bloat while at the same time maximising fitness turns the
evolution of programs into either a multi-objective optimisation problem or,
at least, into a constrained optimisation problem. The parsimony pressure
method effectively treats the minimisation of size as a soft constraint and
attempts to enforce this constraint using the penalty method, i.e., by decreas-
ing the fitness of programs by an amount that depends on their size. The
penalty is typically simply proportional to program size. The intensity with
which bloat is controlled is, therefore, determined by the parsimony coeffi-
cient. The value of this coefficient is very important: too small a value and
runs will still bloat wildly; too large a value and GP will take the minimisa-
tion of size as its main target and will almost ignore fitness, thus converging
towards extremely small but useless programs (Soule, 1998). However, good
values of the parsimony coefficient are highly dependent on particulars such
as the problem being solved, the choice of functions and terminals, and vari-
ous parameter settings. Furthermore, with a constant parsimony coefficient
the method can only achieve partial control over the dynamics of the average
program size over time.

Recently, a theoretically sound method for setting the parsimony coeffi-
cient in a principled manner has been proposed (Poli and McPhee, 2008b).
The covariant parsimony pressure method is based on an analysis of the size
evolution Equation (11.1), and is easy to implement. It recalculates the par-
simony coefficient c at each generation using c = Cov(ℓ, f)/ Var(ℓ), where
Cov(ℓ, f) is the covariance between program size ℓ and program fitness f
in the population, and Var(ℓ) is the variance of program sizes. Note that c
needs to be recalculated each generation because both Cov(ℓ, f) and Var(ℓ)
change from generation to generation. As shown in Figure 11.2 (in the por-
tion labelled “Local”), using this equation ensures that the mean program
size remains at the value set by the initialisation procedure (although there
can be a small amount of drift). There is a variant of the method that allows
the user to even decide what function the mean program size should follow
over time. As shown in the figure this provides complete control over the
population size dynamics.
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Figure 11.2: Plots of the evolution average size over 500 generations for
multiple runs of the 6-MUX problem with various forms of covariant parsi-
mony pressure. The “Constant” runs had a constant target size of 150. In
the “Sin” runs the target size was sin((generation + 1)/50.0) × 50.0 + 150.
For the “Linear” runs the target size was 150 + generation. The “Limited”
runs used no size control until the size reached 250, then the target was held
at 250. Finally, the “Local” runs used c = Cov(ℓ, f)/ Var(ℓ), which allowed
a certain amount of drift but still avoided runaway bloat (see text).



Part III

Practical Genetic
Programming

Three little pigs provide a demonstration of construction techniques. . .

and Goldilocks finally gets it just right.
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Chapter 12

Applications

Since its early beginnings, GP has produced a cornucopia of results. The
literature, which covers more than 5000 recorded uses of GP, reports an
enormous number of applications where GP has been successfully used as
an automatic programming tool, a machine learning tool or an automatic
problem-solving engine. It is impossible to list all such applications here.
In the following sections we start with a discussion of the general kinds
of problems where GP has proved successful (Section 12.1) and then re-
view a representative subset for each of the main application areas of GP
(Sections 12.2–12.11), devoting particular attention to the important areas
of symbolic regression (Section 12.2) and human-competitive results (Sec-
tion 12.3).

12.1 Where GP has Done Well

Based on the experience of numerous researchers over many years, it appears
that GP and other evolutionary computation methods have been especially
productive in areas having some or all of the following properties:

The interrelationships among the relevant variables is unknown
or poorly understood (or where it is suspected that the cur-
rent understanding may possibly be wrong). One of the partic-
ular values of GP (and other evolutionary algorithms) is in exploring
poorly understood domains. If the problem domain is well understood,
there may well be analytical tools that will provide quality solutions
without the uncertainty inherent in a stochastic search process such
as GP. GP, on the other hand, has proved successful where the appli-
cation is new or otherwise not well understood. It can help discover
which variables and operations are important; provide novel solutions
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to individual problems; unveil unexpected relationships among vari-
ables; and, sometimes GP can discover new concepts that can then be
applied in a wide variety of circumstances.

Finding the size and shape of the ultimate solution is a major
part of the problem. If the form of the solution is known, then
alternative search mechanisms that work on fixed size representations
(e.g., genetic algorithms) may be more efficient because they won’t
have to discover the size and shape of the solution.

Significant amounts of test data are available in computer-
readable form. GP (and most other machine learning and search
techniques) benefit from having significant pools of test data. At a
minimum there needs to be enough data to allow the system to learn
the salient features, while leaving enough at the end to use for valida-
tion and over-fitting tests. It is also useful if the test data are as clean
and accurate as possible. GP is capable of dealing gracefully with
certain amounts of noise in the data (especially if steps are taken to
reduce over-fitting), but cleaner data make the learning process easier
for any system, GP included.

There are good simulators to test the performance of tentative
solutions to a problem, but poor methods to directly obtain
good solutions. In many domains of science and engineering, sim-
ulators and analysis tools have been constructed that allow one to
evaluate the behaviour and performance of complex artifacts such as
aircraft, antennas, electronic circuits, control systems, optical systems,
games, etc. These simulators contain enormous amounts of knowledge
of the domain and have often required several years to create. These
tools solve the so-called direct problem of working out the behaviour
of a solution or tentative solution to a problem, given the solution it-
self. However, the knowledge stored in such systems cannot be easily
used to solve the inverse problem of designing an artifact from a set
of functional or performance requirements. A great advantage of GP
is that it is able to connect to simulators and analysis tools and to
“data-mine” the simulator to solve the inverse problem automatically.
That is, the user need not specify (or know) much about the form of
the eventual solution before starting.

Conventional mathematical analysis does not, or cannot, provide
analytic solutions. If there is a good exact analytic solution, one
probably wants to use it rather than spend the energy to evolve what
is likely to be an approximate solution. That said, GP might still be
a valuable option if the analytic solutions have undesirable properties
(e.g., unacceptable run times for large instances), or are based on
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assumptions that don’t apply in one’s circumstances (e.g., noise-free
data).

An approximate solution is acceptable (or is the only result that
is ever likely to be obtained). Evolution in general, and GP in
particular, is typically about being “good enough” rather than “the
best”. (A rabbit doesn’t have to be the fastest animal in the world:
it just has to be fast enough to escape that particular fox.) As a
result, evolutionary algorithms tend to work best in domains where
close approximations are both possible and acceptable.

Small improvements in performance are routinely measured (or
easily measurable) and highly prized. Technological efforts tend
to concentrate in areas of high economic importance. In these domains,
the state of the art tends to be fairly advanced, and, so, it is difficult
to improve over existing solutions. However, in these same domains
small improvements can be extremely valuable. GP can sometimes
discover small, but valuable, relationships.

Two (of many) examples of successful applications of GP that satisfy
many of these properties are the work of Lohn, Hornby, and Linden (2004) on
satellite antenna design and Spector’s evolution of new quantum computing
algorithms that out-performed all previous approaches (Spector, Barnum,
and Bernstein, 1998; Spector, Barnum, Bernstein, and Swamy, 1999). Both
of these domains are complex, without analytic solutions, yet in both cases
good simulators existed which could be used to evaluate the fitness of so-
lutions. In other words, people didn’t know how to solve the problems but
they could (automatically) recognise a good solution when they saw one.
Both of these applications resulted in the discovery of highly successful and
unexpected designs. The key component of the evolved quantum algorithm
could in fact be extracted and applied in a wide variety of other settings,
leading to major improvements in a number of related quantum algorithms
as well as the ones under specific study.

12.2 Curve Fitting, Data Modelling and

Symbolic Regression

In principle, there are as many possible applications of GP as there are ap-
plications for programs—in other words, virtually infinite. However, before
one can try to solve a new problem with GP, one needs to define an appropri-
ate fitness function. In problems where only the side effects of a program are
of interest, the fitness function usually compares the effects of the execution
of a program in some suitable environments with a desired behaviour, often
in a very application-dependent manner. However, in many problems the
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goal is to find a function whose output has some desired property, e.g., the
function matches some target values (as in the example given in Section 4.1).
This is generally known as a symbolic regression problem.

Many people are familiar with the notion of regression. Regression means
finding the coefficients of a predefined function such that the function best
fits some data. A problem with regression analysis is that, if the fit is not
good, the experimenter has to keep trying different functions by hand until
a good model for the data is found. Not only is this laborious, but also
the results of the analysis depend very much on the skills and inventiveness
of the experimenter. Furthermore, even expert users tend to have strong
mental biases when choosing functions to fit. For example, in many applica-
tion areas there is a considerable tradition of using only linear or quadratic
models, even when the data might be better fit by a more complex model.

Symbolic regression attempts to go beyond this. It consists of finding
a function that fits the given data points without making any assumptions
about the structure of that function. Since GP makes no such assumption,
it is well suited to this sort of discovery task. Symbolic regression was one
of the earliest applications of GP (Koza, 1992), and continues to be widely
studied (Cai, Pacheco-Vega, Sen, and Yang, 2006; Gustafson, Burke, and
Krasnogor, 2005; Keijzer, 2004; Lew, Spencer, Scarpa, Worden, Rutherford,
and Hemez, 2006).

The steps necessary to solve symbolic regression problems include the five
preparatory steps mentioned in Chapter 2. We practiced them in the exam-
ple in Chapter 4, which was an instance of a symbolic regression problem.
There is an important difference here, however: the data points provided in
Chapter 4 were computed using a simple formula, while in most realistic sit-
uations each point represents the measured values taken by some variables
at a certain time in some dynamic process, in a repetition of an experiment,
and so on. So, the collection of an appropriate set of data points for symbolic
regression is an important and sometimes complex task.

For instance, consider the case of using GP to evolve a soft sensor (Jor-
daan, Kordon, Chiang, and Smits, 2004). The intent is to evolve a function
that will provide a reasonable estimate of what a sensor (in an industrial
production facility) would report, based on data from other actual sensors
in the system. This is typically done in cases where placing an actual sensor
in that location would be difficult or expensive. However, it is necessary to
place at least one instance of such a sensor in a working system in order to
collect the data needed to train and test the GP system. Once the sensor
is placed, one would collect the values reported by that sensor and by all
the other real sensors that are available to the evolved function, at various
times, covering the various conditions under which the evolved system will
be expected to act.

Such experimental data typically come in large tables where numerous
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quantities are reported. Usually we know which variable we want to predict
(e.g., the soft sensor value), and which other quantities we can use to make
the prediction (e.g., the hard sensor values). If this is not known, then
experimenters must decide which are going to be their dependent variables
before applying GP. Sometimes, in practical situations, the data tables
include hundreds or even thousands of variables. It is well known that
in these cases the efficiency and effectiveness of any machine learning or
program induction method, including GP, can dramatically drop as most of
the variables are typically redundant or irrelevant. This forces the system
to waste considerable energy on isolating the key features. To avoid this,
it is necessary to perform some form of feature selection, i.e., we need to
decide which independent variables to keep and which to leave out. There
are many techniques to do this, but these are beyond the scope of this book.
However, it is worth noting that GP itself can be used to do feature selection
as shown in (Langdon and Buxton, 2004).

There are problems where more than one output (prediction) is required.
For example, Table 12.1 shows a data set with four variables controlled
during data collection (left) and six dependent variables (right). The data
were collected for the purpose of solving an inverse kinematics problem in the
Elvis robot (Langdon and Nordin, 2001). The robot is shown in Figure 12.1
during the acquisition of a data sample. The roles of the independent and
dependent variables are swapped when GP is given the task of controlling
the arm given data from the robot’s eyes.

There are several GP techniques which might be used to deal with ap-
plications where multiple outputs are required: GP individuals including
multiple trees (as in Figure 2.2, page 11), linear GP with multiple output
registers (see Section 7.1), graph-based GP with multiple output nodes (see
Section 7.2), a single GP tree with primitives operating on vectors, and so
forth.

Once a suitable data set is available, its independent variables must all
be represented in the primitive set. What other terminals and functions are
included depends very much on the type of the data being processed (are
they numeric? are they strings? etc.) and is often guided by the information
available to the experimenter and the process that generated the data. If
something is known (or strongly suspected) about the desired structure of
the function to be evolved, it may be very beneficial to use this information
(or to apply some constraints, like those discussed in Section 6.2). For
example, if the data are known to be periodic, then the function set should
probably include something like the sine function.

What is common to virtually all symbolic regression problems is that
the fitness function must measure how close the outputs produced by each
program are to the values of the dependent variables, when the correspond-
ing values of the independent ones are used as inputs for the program. So,
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Table 12.1: Samples showing the size and location of Elvis’s finger tip
as apparent to this two eyes, given various right arm actuator set points (4
degrees of freedom). Cf. Figure 12.1. When the data are used for training,
GP is asked to invert the mapping and evolve functions from data collected
by both cameras showing a target location to instructions to give to Elvis’s
four arm motors so that its arm moves to the target.

Arm actuator Left eye Right eye
x y size x y size

-376 -626 1000 -360 44 10 29 -9 12 25
-372 -622 1000 -380 43 7 29 -9 12 29
-377 -627 899 -359 43 9 33 -20 14 26
-385 -635 799 -319 38 16 27 -17 22 30
-393 -643 699 -279 36 24 26 -21 25 20
-401 -651 599 -239 32 32 25 -26 28 18
-409 -659 500 -200 32 35 24 -27 31 19
-417 -667 399 -159 31 41 17 -28 36 13
-425 -675 299 -119 30 45 25 -27 39 8
-433 -683 199 -79 31 47 20 -27 43 9
-441 -691 99 -39 31 49 16 -26 45 13

...
...

...
...

...
...

...
...

...
...

continues for a total of 691 lines

most symbolic regression fitness functions tend to include summing the er-
rors measured for each record in the data set, as we did in Section 4.2.2.
Usually either the absolute difference or the square of the error is used.

The fourth preparatory step typically involves choosing a size for the
population (which is often done initially based on the perceived difficulty of
the problem, and is then refined based on the actual results of preliminary
runs). The user also needs to set the balance between the selection strength
(normally tuned via the tournament size) and the intensity of variation
(which can be varied by modifying the mutation and crossover rates, but
many researchers tend to fix to some standard values).
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Figure 12.1: Elvis sitting with its right hand outstretched. The apparent
position and size of a bright red laser attached to its finger tip is recorded
(see Table 12.1). The data are then used to train a GP to move the robot’s
arm to a spot in three dimensions using only its eyes.

12.3 Human Competitive Results:

The Humies

Getting machines to produce human-like results is the very reason for the
existence of the fields of artificial intelligence and machine learning. How-
ever, it has always been very difficult to assess how much progress these
fields have made towards their ultimate goal. Alan Turing understood that
in order to avoid human biases when assessing machine intelligence, machine
behaviour must be evaluated objectively. This led him to propose an imi-
tation game, now known as the Turing test (Turing, 1950). Unfortunately,
the Turing test is not usable in practice, and so, there is a need for more
workable objective tests of machine intelligence.

Koza, Bennett, and Stiffelman (1999) suggested shifting attention from
the notion of intelligence to the notion of human competitiveness. A result
cannot acquire the rating of “human competitive” merely because it is en-
dorsed by researchers inside the specialised fields that are attempting to
create machine intelligence. A result produced by an automated method



118 12 Applications

must earn the rating of “human competitive” independently of the fact that
it was generated by an automated method.

Koza proposed that an automatically-created result should be considered
“human-competitive” if it satisfies at least one of these eight criteria:

1. The result was patented as an invention in the past, is an improvement
over a patented invention or would qualify today as a patentable new
invention.

2. The result is equal to or better than a result that was accepted as a new
scientific result at the time when it was published in a peer-reviewed
scientific journal.

3. The result is equal to or better than a result that was placed into a
database or archive of results maintained by an internationally recog-
nised panel of scientific experts.

4. The result is publishable in its own right as a new scientific result,
independent of the fact that the result was mechanically created.

5. The result is equal to or better than the most recent human-created
solution to a long-standing problem for which there has been a succes-
sion of increasingly better human-created solutions.

6. The result is equal to or better than a result that was considered an
achievement in its field at the time it was first discovered.

7. The result solves a problem of indisputable difficulty in its field.

8. The result holds its own or wins a regulated competition involving
human contestants (in the form of either live human players or human-
written computer programs).

These criteria are independent of, and at arm’s length from, the fields of
artificial intelligence, machine learning, and GP.

Over the years, dozens of results have passed the human-competitiveness
test. Some pre-2004 human-competitive results include:

• Creation of quantum algorithms, including a better-than-classical al-
gorithm for a database search problem and a solution to an AND/OR
query problem (Spector et al., 1998, 1999).

• Creation of a competitive soccer-playing program for the RoboCup 1997
competition (Luke, 1998).

• Creation of algorithms for the transmembrane segment identification
problem for proteins (Koza, 1994, Sections 18.8 and 18.10) and (Koza
et al., 1999, Sections 16.5 and 17.2).
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• Creation of a sorting network for seven items using only 16 steps (Koza
et al., 1999, Sections 21.4.4, 23.6, and 57.8.1).

• Synthesis of analogue circuits (with placement and routing, in some
cases), including: 60- and 96-decibel amplifiers (Koza et al., 1999,
Section 45.3); circuits for squaring, cubing, square root, cube root,
logarithm, and Gaussian functions (Koza et al., 1999, Section 47.5.3);
a circuit for time-optimal control of a robot (Koza et al., 1999, Section
48.3); an electronic thermometer (Koza et al., 1999, Section 49.3); a
voltage-current conversion circuit (Koza, Keane, Streeter, Mydlowec,
Yu, and Lanza, 2003, Section 15.4.4).

• Creation of a cellular automaton rule for the majority classification
problem that is better than all known rules written by humans (Andre
et al., 1996).

• Synthesis of topology for controllers, including: a PID (proportional,
integrative, and derivative) controller (Koza et al., 2003, Section 9.2)
and a PID-D2 (proportional, integrative, derivative, and second deriva-
tive) controller (Koza et al., 2003, Section 3.7); PID tuning rules that
outperform the Ziegler-Nichols and Astrom-Hagglund tuning rules
(Koza et al., 2003, Chapter 12); three non-PID controllers that out-
perform a PID controller that uses the Ziegler-Nichols or Astrom-
Hagglund tuning rules (Koza et al., 2003, Chapter 13).

In total (Koza and Poli, 2005) lists 36 human-competitive results. These
include 23 cases where GP has duplicated the functionality of a previously
patented invention, infringed a previously patented invention, or created a
patentable new invention. Specifically, there are fifteen examples where GP
has created an entity that either infringes or duplicates the functionality of
a previously patented 20th-century invention, six instances where GP has
done the same with respect to an invention patented after 1 January 2000,
and two cases where GP has created a patentable new invention. The two
new inventions are general-purpose controllers that outperform controllers
employing tuning rules that have been in widespread use in industry for
most of the 20th century.

Many of the pre-2004 results were obtained by Koza. However, since
2004, a competition has been held annually at ACM’s Genetic and Evolu-
tionary Computation Conference (termed the Human-Competitive awards
– the Humies). The $10,000 prize is awarded to projects that have pro-
duced automatically-created results which equal or better those produced
by humans.

The Humies Prizes have typically been awarded to applications of evo-
lutionary computation to high-tech fields. Many used GP. For example,
the 2004 gold medals were given for the design, via GP, of an antenna for
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Figure 12.2: Award winning human-competitive antenna design produced
by GP.

deployment on NASA’s Space Technology 5 Mission (see Figure 12.2) (Lohn
et al., 2004) and for evolutionary quantum computer programming (Spec-
tor, 2004). There were three silver medals in 2004: one for the evolution of
local search heuristics for SAT using GP (Fukunaga, 2004), one for the ap-
plication of GP to the synthesis of complex kinematic mechanisms (Lipson,
2004) and one for organisation design optimisation using GP (KHosraviani,
2003; KHosraviani, Levitt, and Koza, 2004). Also, four of the 2005 medals
were awarded for GP applications: the invention of optical lens systems (Al-
Sakran, Koza, and Jones, 2005; Koza, Al-Sakran, and Jones, 2005), the evo-
lution of a quantum Fourier transform algorithm (Massey, Clark, and Step-
ney, 2005), evolving assembly programs for Core War (Corno, Sanchez, and
Squillero, 2005) and various high-performance game players for Backgam-
mon, Robocode and Chess endgame (Azaria and Sipper, 2005a,b; Haupt-
man and Sipper, 2005; Shichel, Ziserman, and Sipper, 2005). In 2006, GP
again scored a gold medal with the synthesis of interest point detectors for
image analysis (Trujillo and Olague, 2006a,b), while it scored a silver medal
in 2007 with the evolution of an efficient search algorithm for the Mate-in-N
problem in Chess (Hauptman and Sipper, 2007) (see Figure 12.3).

Note that many human competitive results were presented at the Humies
2004–2007 competitions (e.g., 11 of the 2004 entries were judged to be human
competitive). However, only the very best were awarded medals. So, at the
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Figure 12.3: Example mate-in-2 problem.

time of writing we estimate that there are at least 60 human competitive
results obtained by GP. This shows GP’s potential as a powerful invention
machine.

12.4 Image and Signal Processing

Hampo and Marko (1992) were among the first people from industry to
consider using GP for signal processing. They evolved algorithms for pre-
processing electronic motor vehicle signals for possible use in engine moni-
toring and control.

Several applications of GP for image processing have been for military
uses. For example, Tackett (1993) evolved algorithms to find tanks in in-
frared images. Howard, Roberts, and Brankin (1999); Howard, Roberts, and
Ryan (2006) evolved programs to pick out ships from SAR radar mounted
on satellites in space and to locate ground vehicles from airborne photo re-
connaissance. They also used GP to process surveillance data for civilian
purposes, such as predicting motorway traffic jams from subsurface traffic
speed measurements (Howard and Roberts, 2004).

Using satellite SAR radar, Daida, Hommes, Bersano-Begey, Ross, and
Vesecky (1996) evolved algorithms to find features in polar sea ice. Opti-
cal satellite images can also be used for environmental studies (Chami and
Robilliard, 2002) and for prospecting for valuable minerals (Ross, Gualtieri,
Fueten, and Budkewitsch, 2005).

Alcazar used GP to find recurrent filters (including artificial neural net-
works (Esparcia-Alcazar and Sharman, 1996)) for one-dimensional electronic
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signals (Sharman and Esparcia-Alcazar, 1993). Local search (simulated an-
nealing or gradient descent) can be used to adjust or fine-tune “constant”
values within the structure created by genetic search (Smart and Zhang,
2004).

Yu and Bhanu (2006) have used GP to preprocess images, particularly
of human faces, to find regions of interest for subsequent analysis. See also
(Trujillo and Olague, 2006a).

Zhang has been particularly active at evolving programs with GP to
visually classify objects (typically coins) (Zhang and Smart, 2006). He has
also applied GP to human speech (Xie, Zhang, and Andreae, 2006).

“Parisian GP” is a system in which the image processing task is split
across a swarm of evolving agents (“flies”). In (Louchet, 2001; Louchet,
Guyon, Lesot, and Boumaza, 2002) the flies reconstruct three dimensions
from pairs of stereo images. For example, in (Louchet, 2001), as the flies
buzz around in three dimensions their position is projected onto the left and
right of a pair of stereo images. The fitness function tries to minimise the
discrepancy between the two images, thus encouraging the flies to settle on
visible surfaces in the 3-D space. So, the true 3-D space is inferred from
pairs of 2-D images taken from slightly different positions.

While the likes of Google have effectively indexed the written word, for
speech and pictures indexing has been much less effective. One area where
GP might be applied is in the automatic indexing of images. Some initial
steps in this direction are given in (Theiler, Harvey, Brumby, Szymanski,
Alferink, Perkins, Porter, and Bloch, 1999).

To some extent, extracting text from images (OCR) can be done fairly
reliably, and the accuracy rate on well formed letters and digits is close
to 100%. However, many interesting cases remain (Cilibrasi and Vitanyi,
2005) such as Arabic (Klassen and Heywood, 2002) and oriental languages,
handwriting (De Stefano, Cioppa, and Marcelli, 2002; Gagne and Parizeau,
2006; Krawiec, 2004; Teredesai and Govindaraju, 2005) (such as the MNIST
examples), other texts (Rivero, nal, Dorado, and Pazos, 2004) and musical
scores (Quintana, Poli, and Claridge, 2006).

The scope for applications of GP to image and signal processing is almost
unbounded. A promising area is medical imaging (Poli, 1996b). GP image
techniques can also be used with sonar signals (Martin, 2006). Off-line work
on images includes security and verification. For example, Usman, Khan,
Chamlawi, and Majid (2007) have used GP to detect image watermarks
which have been tampered with. Recent work by Zhang has incorporated
multi-objective fitness into GP image processing (Zhang and Rockett, 2006).

In 1999 Poli, Cagnoni and others founded the annual European Work-
shop on Evolutionary Computation in Image Analysis and Signal Processing
(EvoIASP). EvoIASP is held every year with the EuroGP. Whilst not solely
dedicated to GP, many GP applications have been presented at EvoIASP.
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12.5 Financial Trading, Time Series

Prediction and Economic Modelling

GP is very widely used in the areas of financial trading, time series prediction
and economic modelling and it is impossible to describe all its applications.
It this section we will hint at just a few areas.

Chen has written more than 60 papers on using GP in finance and eco-
nomics. Recent papers have looked at the modelling of agents in stock
markets (Chen and Liao, 2005), game theory (Chen, Duffy, and Yeh, 2002),
evolving trading rules for the S&P 500 (Yu and Chen, 2004) and forecasting
the Heng-Sheng index (Chen, Wang, and Zhang, 1999).

The efficient markets hypothesis is a tenet of economics. It is founded
on the idea that everyone in a market has “perfect information” and acts
“rationally”. If the efficient markets hypothesis held, then everyone would
see the same value for items in the market and so agree the same price.
Without price differentials, there would be no money to be made from the
market itself. Whether it is trading potatoes in northern France or dollars
for yen, it is clear that traders are not all equal and considerable doubt has
been cast on the efficient markets hypothesis. So, people continue to play the
stock market. Game theory has been a standard tool used by economists to
try to understand markets but is increasingly supplemented by simulations
with both human and computerised agents. GP is increasingly being used
as part of these simulations of social systems.

Neely, Weller, and Dittmar (1997), Neely and Weller (1999, 2001) and
Neely (2003) of the US Federal Reserve Bank used GP to study intra-day
technical trading on the foreign exchange markets to suggest the market is
“efficient” and found no evidence of excess returns. This negative result
was criticised by Marney, Miller, Fyfe, and Tarbert (2001). Later work by
Neely, Weller, and Ulrich (2006) suggested that data after 1995 are consis-
tent with Lo’s adaptive markets hypothesis rather than the efficient markets
hypothesis. Note that here GP and computer tools are being used in a
novel data-driven approach to try and resolve issues which were previously
a matter of dogma.

From a more pragmatic viewpoint, Kaboudan shows GP can forecast in-
ternational currency exchange rates (Kaboudan, 2005), stocks (Kaboudan,
2000) and stock returns (Kaboudan, 1999). Tsang and his co-workers con-
tinue to apply GP to a variety of financial arenas, including: betting (Tsang,
Li, and Butler, 1998), forecasting stock prices (Li and Tsang, 1999; Tsang
and Li, 2002; Tsang, Yung, and Li, 2004), studying markets (Martinez-
Jaramillo and Tsang, 2007), approximating Nash equilibrium in game the-
ory (Jin, 2005; Jin and Tsang, 2006; Tsang and Jin, 2006) and arbitrage
(Tsang, Markose, and Er, 2005). Dempster and HSBC also use GP in for-
eign exchange trading (Austin, Bates, Dempster, Leemans, and Williams,
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2004; Dempster and Jones, 2000; Dempster, Payne, Romahi, and Thompson,
2001). Pillay has used GP in social studies and teaching aids in education,
e.g. (Pillay, 2003). As well as trees (Koza, 1990), other types of GP have
been used in finance, e.g. (Nikolaev and Iba, 2002).

Since 1995 the International Conference on Computing in Economics
and Finance (CEF) has been held every year. It regularly attracts GP pa-
pers, many of which are on-line. In 2007 Brabazon and O’Neill established
the European Workshop on Evolutionary Computation in Finance and Eco-
nomics (EvoFIN). EvoFIN is held with EuroGP.

12.6 Industrial Process Control

There is evidence that GP is frequently used in industrial process control,
although, of course, most industrialists have little time to spend on aca-
demic reporting. A notable exception is Dow Chemical, where a group has
been very active in publishing results (Castillo, Kordon, and Smits, 2006a;
Castillo, Kordon, Smits, Christenson, and Dickerson, 2006b; Jordaan, den
Doelder, and Smits, 2006; Kordon, Castillo, Smits, and Kotanchek, 2005;
Kotanchek et al., 2006; Mercure, Smits, and Kordon, 2001). Kordon (2006)
describes where industrial GP stands now and how it will progress.

Another active collaboration is that of Kovacic and Balic, who used GP
in the computer numerical control of industrial milling and cutting machin-
ery (Kovacic and Balic, 2003). The partnership of Deschaine and Francone
(Francone and Deschaine, 2004) is most famous for their use of Discipu-
lus (Foster, 2001) for detecting bomb fragments and unexploded ordnance
(Deschaine, 2006). Discipulus has also been used as an aid in the develop-
ment of control systems for rubbish incinerators (Deschaine, Patel, Guthrie,
Grimski, and Ades, 2001).

One of the earliest users of GP in control was Willis’ Chemical Engi-
neering group at Newcastle, which used GP to model flow in a plasticating
extruder (Willis, Hiden, and Montague, 1997a). Other GP applications in
the plastics industry include (Brezocnik, Balic, and Gusel, 2000). McKay,
Willis, Searson, and Montague (2000) also modelled extruding food. Sear-
son, Montague, and Willis (1998) modelled control of chemical reactions in
continuous stirred tank reactors. Marenbach (1998) investigated GP in the
control of biotech reactors. Willis, Hiden, Marenbach, McKay, and Mon-
tague (1997b) surveyed GP applications, including in the area of control.

Lewin, Lachman-Shalem, and Grosman (2006) and Dassau, Grosman,
and Lewin (2006) applied GP to the control of an integrated circuit fabrica-
tion plant. Domingos worked on simulations of nuclear reactors (PWRs to
be exact) to devise better ways of preventing xenon oscillations (Domingos,
Schirru, and Martinez, 2005). GP has also been used to identify the state
of a plant to be controlled (in order to decide which of various alternative
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control laws to apply). For example, Fleming’s group in Sheffield used multi-
objective GP (Hinchliffe and Willis, 2003; Rodriguez-Vazquez, Fonseca, and
Fleming, 2004) to reduce the cost of running aircraft jet engines (Arkov,
Evans, Fleming, Hill, Norton, Pratt, Rees, and Rodriguez-Vazquez, 2000;
Evans, Fleming, Hill, Norton, Pratt, Rees, and Rodriguez-Vazquez, 2001).

Alves da Silva and Abrao (2002) surveyed GP and other AI techniques
applied in the electrical power industry.

12.7 Medicine, Biology and Bioinformatics

GP has long been applied to medicine, biology and bioinformatics. Early
work by Handley (1993) and Koza and Andre (1996) used GP to make pre-
dictions about the behaviour and properties of biological systems, principally
proteins. Oakley, a practising medical doctor, used GP to model blood flow
in toes (Oakley, 1994) as part of his long term interests in frostbite.

In 2002 Banzhaf and Foster organised BioGEC: the first GECCO work-
shop on biological applications of genetic and evolutionary computation.
BioGEC has become a bi-annual feature of the annual GECCO conference.
Half a year later Marchiori and Corne organised EvoBio: the European con-
ference on evolutionary computation, machine learning and data mining in
bioinformatics. EvoBio is held every year alongside EuroGP. GP figures
heavily in both BioGEC and EvoBIO.

GP is often used in biomedical data mining. Of particular medical in-
terest are very wide data sets, with many inputs per sample (Lavington,
Dewhurst, Wilkins, and Freitas, 1999). Examples include infrared spectra
(Ellis, Broadhurst, and Goodacre, 2004; Ellis, Broadhurst, Kell, Rowland,
and Goodacre, 2002; Goodacre, 2003; Goodacre, Shann, Gilbert, Timmins,
McGovern, Alsberg, Kell, and Logan, 2000; Harrigan, LaPlante, Cosma,
Cockerell, Goodacre, Maddox, Luyendyk, Ganey, and Roth, 2004; John-
son, Gilbert, Winson, Goodacre, Smith, Rowland, Hall, and Kell, 2000;
McGovern, Broadhurst, Taylor, Kaderbhai, Winson, Small, Rowland, Kell,
and Goodacre, 2002; Taylor, Goodacre, Wade, Rowland, and Kell, 1998;
Vaidyanathan, Broadhurst, Kell, and Goodacre, 2003), single nuclear poly-
morphisms (Barrett, 2003; Reif, White, and Moore, 2004; Shah and Kusiak,
2004), chest pain (Bojarczuk, Lopes, and Freitas, 2000), and Affymetrix
GeneChip microarray data (de Sousa, de C. T. Gomes, Bezerra, de Castro,
and Von Zuben, 2004; Eriksson and Olsson, 2004; Heidema, Boer, Nagelk-
erke, Mariman, van der A, and Feskens, 2006; Ho, Hsieh, Chen, and Huang,
2006; Hong and Cho, 2006; Langdon and Buxton, 2004; Li, Jiang, Li, Moser,
Guo, Du, Wang, Topol, Wang, and Rao, 2005; Linden and Bhaya, 2007; Yu,
Yu, Almal, Dhanasekaran, Ghosh, Worzel, and Chinnaiyan, 2007).
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Kell and his colleagues in Aberystwyth have had great success in applying
GP widely in bioinformatics (see infrared spectra above and (Allen, Davey,
Broadhurst, Heald, Rowland, Oliver, and Kell, 2003; Day, Kell, and Griffith,
2002; Gilbert, Goodacre, Woodward, and Kell, 1997; Goodacre and Gilbert,
1999; Jones, Young, Taylor, Kell, and Rowland, 1998; Kell, 2002a,b,c; Kell,
Darby, and Draper, 2001; Shaw, Winson, Woodward, McGovern, Davey,
Kaderbhai, Broadhurst, Gilbert, Taylor, Timmins, Goodacre, Kell, Alsberg,
and Rowland, 2000; Woodward, Gilbert, and Kell, 1999)). Another very
active group is that of Moore and his colleagues (Moore, Parker, Olsen, and
Aune, 2002; Motsinger, Lee, Mellick, and Ritchie, 2006; Ritchie, Motsinger,
Bush, Coffey, and Moore, 2007; Ritchie, White, Parker, Hahn, and Moore,
2003).

Computational chemistry is widely used in the drug industry. The prop-
erties of simple molecules can be calculated. However, the interactions be-
tween chemicals which might be used as drugs and medicinal targets within
the body are beyond exact calculation. Therefore, there is great interest in
the pharmaceutical industry in approximate in silico models which attempt
to predict either favourable or adverse interactions between proto-drugs and
biochemical molecules. Since these are computational models, they can be
applied very cheaply in advance of the manufacturing of chemicals, to decide
which of the myriad of chemicals might be worth further study. Potentially,
such models can make a huge impact both in terms of money and time
without being anywhere near 100% correct. Machine learning and GP have
both been tried. GP approaches include (Bains, Gilbert, Sviridenko, Gas-
con, Scoffin, Birchall, Harvey, and Caldwell, 2002; Barrett and Langdon,
2006; Buxton, Langdon, and Barrett, 2001; Felton, 2000; Globus, Lawton,
and Wipke, 1998; Goodacre, Vaidyanathan, Dunn, Harrigan, and Kell, 2004;
Harrigan et al., 2004; Hasan, Daugelat, Rao, and Schreiber, 2006; Krasno-
gor, 2004; Si, Wang, Zhang, Hu, and Fan, 2006; Venkatraman, Dalby, and
Yang, 2004; Weaver, 2004).

12.8 GP to Create Searchers and Solvers –

Hyper-heuristics

Hyper-heuristics could simply be defined as “heuristics to choose other
heuristics” (Burke, Kendall, Newall, Hart, Ross, and Schulenburg, 2003).
A heuristic is considered as a rule-of-thumb or “educated guess” that re-
duces the search required to find a solution. The difference between meta-
heuristics and hyper-heuristics is that the former operate directly on the
problem search space with the goal of finding optimal or near-optimal so-
lutions. The latter, instead, operate on the heuristics search space (which
consists of the heuristics used to solve the target problem). The goal then
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is finding or generating high-quality heuristics for a problem, for a certain
class of instances of a problem, or even for a particular instance.

GP has been very successfully used as a hyperheuristic. For example, GP
has evolved competitive SAT solvers (Bader-El-Den and Poli, 2007a,b; Fuku-
naga, 2002; Kibria and Li, 2006), state-of-the-art or better than state-of-the-
art bin packing algorithms (Burke, Hyde, and Kendall, 2006; Burke, Hyde,
Kendall, and Woodward, 2007; Poli, Woodward, and Burke, 2007), particle
swarm optimisers (Poli, Di Chio, and Langdon, 2005; Poli, Langdon, and
Holland, 2005), evolutionary algorithms (Oltean, 2005), and travelling sales-
man problem solvers (Keller and Poli, 2007a,b,c; Oltean and Dumitrescu,
2004).

12.9 3/4 Entertainment and Computer Games

Today, a major usage of computers is interactive games (Priesterjahn,
Kramer, Weimer, and Goebels, 2006). There has been some work on in-
corporating artificial intelligence into mainstream commercial games. The
software owners are not keen on explaining exactly how much AI they use
or giving away sensitive information on how they use AI. Work on GP and
games includes (Azaria and Sipper, 2005a; Langdon and Poli, 2005; Vowk,
Wait, and Schmidt, 2004) as well as the human-competitive game players
mentioned in Section 12.3, page 120. Funes reports experiments which at-
tracted thousands of people via the Internet who were entertained by evolved
Tron players (Funes, Sklar, Juille, and Pollack, 1998b).

Since 2004, the annual IEEE CEC conference has included sessions on
evolutionary computation in games. After chairing the IEEE Symposium
on Computational Intelligence and Games 2005, at Essex University, Si-
mon Lucas founded the IEEE Computational Intelligence Society’s Techni-
cal Committee on Games. GP features heavily in the Games TC’s activi-
ties having being applied to Othello, poker, backgammon, draughts, chess,
Ms Pac-Man, robotic football and radio controlled model car racing.

12.10 The Arts

Computers have long been used to create purely aesthetic artifacts. Much
of today’s computer art tends to ape traditional drawing and painting, pro-
ducing static pictures on a computer monitor. However, the immediate
advantage of the computer screen — movement — can also be exploited. In
both cases evolutionary computation can and has been exploited. Indeed,
with evolution’s capacity for unlimited variation, evolutionary computation
offers the artist the scope to produce ever changing works. Some artists
have also worked with sound.
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The use of GP in computer art can be traced back at least to the work
of Sims (Sims, 1991) and Latham.1 Jacob’s work (Jacob, 2000, 2001) pro-
vides many examples. McCormack (2006) considers the recent state of play
in evolutionary art and music. Many recent techniques are described in
(Machado and Romero, 2008).

Evolutionary music (Todd and Werner, 1999) has been dominated by
Jazz (Spector and Alpern, 1994). An exception is Bach (Federman, Spark-
man, and Watt, 1999). Most approaches to evolving music have made at
least some use of interactive evolution (Takagi, 2001) in which the fitness
of programs is provided by users, often via the Internet (Ando, Dahlsted,
Nordahl, and Iba, 2007; Chao and Forrest, 2003). The limitation is al-
most always finding enough people willing to participate (Langdon, 2004).
Costelloe and Ryan (2007) tried to reduce the human burden. Algorithmic
approaches are also possible (Cilibrasi, Vitanyi, and de Wolf, 2004; Inagaki,
2002).

One of the sorrows of AI is that as soon as it works it stops being AI (and
celebrated as such) and becomes computer engineering. For example, the
use of computer generated images has recently become cost effective and is
widely used in Hollywood. One of the standard state-of-the-art techniques
is the use of Reynold’s swarming “boids” (Reynolds, 1987) to create ani-
mations of large numbers of rapidly moving animals. This was first used in
Cliffhanger (1993) to animate a cloud of bats. Its use is now commonplace
(herds of wildebeest, schooling fish, and even large crowds of people). In
1997 Reynold was awarded an Oscar.

Since 2003, EvoMUSART (the European Workshop on Evolutionary Mu-
sic and Art) has been held every year along with the EuroGP conference as
part of the EvoStar event.

12.11 Compression

Koza (1992) was the first to use genetic programming to perform compres-
sion. He considered, in particular, the lossy compression of images. The idea
was to treat an image as a function of two variables (the row and column
of each pixel) and to use GP to evolve a function that matches as closely as
possible the original. One can then use the evolved GP tree as a lossy com-
pressed version of the image, since it is possible to obtain the original image
by evaluating the program at each row-column pair of interest. The tech-
nique, which was termed programmatic compression, was tested on one small
synthetic image with good success. Programmatic compression was further
developed and applied to realistic data (images and sounds) by Nordin and
Banzhaf (1996).

1http://www.williamlatham1.com/

http://www.williamlatham1.com/
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Iterated Functions System (IFS) are important in the domain of frac-
tals and the fractal compression algorithm. Lutton, Levy-Vehel, Cretin,
Glevarec, and Roll (1995a,b) used genetic programming to solve the inverse
problem of identifying a mixed IFS whose attractor is a specific binary (black
and white) image of interest. The evolved program can then be taken to rep-
resent the original image. In principle, this can then be further compressed.
The technique is lossy, since rarely the inverse problem can be solved ex-
actly. No practical application or compression ratio results were reported
in (Lutton et al., 1995a,b). Using similar principles, Sarafopoulos (1999)
used GP to evolve affine IFSs whose attractors represent a binary image
containing a square (which was compressed exactly) and one containing a
fern (which was achieved with some error in the finer details).

Wavelets are frequently used in lossy image and signal compression.
Klappenecker and May (1995) used GP to evolve wavelet compression algo-
rithms (internal nodes represented conjugate quadrature filters, leaves rep-
resented quantisers). Results on a small set of real-world images were im-
pressive, with the GP compression outperforming JPEG at all compression
ratios.

The first lossless compression technique (Fukunaga and Stechert, 1998)
used GP to evolve non-linear predictors for images. These were used to
predict the gray level a pixel will take based on the gray values of a subset
of its neighbours (those that have already been computed in a row-by-row
and column-by-column scan of the image array). The prediction errors to-
gether with the model’s description represent a compressed version of the
image. These were compressed using the Huffman encoding. Results on five
images from the NASA Galileo Mission database were very promising with
GP compression outperforming some of the best human-designed lossless
compression algorithms.

In many compression algorithms some form of pre-processing or transfor-
mation of the original data is performed before compression. This often im-
proves compression ratios. Parent and Nowe (2002) evolved pre-processors
for image compression using GP. The objective of the pre-processor was to
reduce losslessly the entropy in the original image. In tests with five images
from the Canterbury corpus, GP was successful in significantly reducing the
image entropy. As verified via the application of bzip2, the resulting images
were markedly easier to compress.

In (Krantz, Lindberg, Thorburn, and Nordin, 2002) the use of program-
matic compression was extended from images to natural videos. A program
was evolved that generates intermediate frames of video sequence, where
each frame is composed by a series of transformed regions from the adjacent
frames. The results were encouraging in the sense that a good approxima-
tion to frames was achieved. While a significant improvement in compres-
sion was achieved, programmatic compression was very slow in comparison
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with standard compression methods, the time needed for compression being
measured in hours or even days. Acceleration in GP image compression was
achieved in (He, Wang, Zhang, Wang, and Fang, 2005), where an optimal
linear predictive technique was proposed which used a less complex fitness
function.

Recently Kattan and Poli (2008) proposed a GP system called GP-ZIP
for lossless data compression based on the idea of optimally combining well-
known lossless compression algorithms. The file to be compressed was di-
vided into chunks of a predefined length, and GP was asked to find the best
possible compression algorithm for each chunk in such a way as to minimise
the total length of the compressed file. The compression algorithms avail-
able to GP-ZIP included arithmetic coding, Lempel-Ziv-Welch, unbounded
prediction by partial matching, and run length encoding among others. Ex-
perimentation showed that when the file to be compressed is composed of
heterogeneous data fragments (as it is the case, for example, in archive files),
GP-zip is capable of achieving compression ratios that are significantly su-
perior to those obtained with other compression algorithms.



Chapter 13

Troubleshooting GP

The dynamics of evolutionary algorithms (including GP) are often very com-
plex, and the behaviour of an EA is typically challenging to predict or un-
derstand. As a result it is often difficult to troubleshoot such systems when
they are not performing as expected. While we obviously cannot provide
troubleshooting suggestions that are specific to every GP implementation
and application, we can suggest some general issues to keep in mind. To a
large extent the advice in (Kinnear, 1994b; Koza, 1992; Langdon, 1998) also
remains sound.

13.1 Is there a Bug in the Code?

Machine learning systems are notoriously difficult to protect from coding
and logical mistakes. Unless a mistake produces a runtime error, it may
remain hidden in a system for a long time and may contribute to the system
achieving unsatisfactory results. Such mistakes are difficult to find because
the system, being adaptive, will still work to some degree. This is also true
of GP.

The most common reaction to a system not producing satisfactory results
is to start playing with the parameters, the fitness function, the primitive set,
etc. However, one should also consider the possibility of a coding mistake.
The normal program validation techniques, such as inspection of critical
regions of code, should be used to ensure everything is alright.

If the code is part of an established GP implementation, coding errors
are less likely.1 A more probable source of coding errors is stretching the
GP library beyond its original intended use. Reading the manual carefully
is sometimes a good preventive cure for problems.

1Coding errors cannot be entirely excluded, though, especially if a GP library is large
and provides a rich set of features and functionalities.

131
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13.2 Can you Trust your Results?

Since GP is a stochastic search algorithm, different runs may have different
outcomes and yield different results. Because of this, one needs to be very
careful in making inferences regarding the degree of success of the system
from a small set of runs.

It is possible, for example, to run a GP system 10 times on a particular
problem, observe that all 10 runs failed to find a solution, and conclude that
GP cannot solve the problem. However, if the success probability is say 5%
with a particular choice of parameters and representation, the probability of
doing 10 runs and all of them failing is almost 60%! So, the failure to solve
the problem in these 10 runs should not come as a surprise, even though
there’s a reasonable chance that you would find a solution if you did more
runs.

For precisely this reason, it is very important to do enough runs and
use appropriate statistical tests to ensure that conclusions are statistically
significant.

GP runs can often be very time consuming, especially if the fitness func-
tion is computationally expensive. While parallel and distributed computing
(see Section 10.4) can significantly speed up the process, tools from the de-
sign of experiments literature (Bartz-Beielstein, 2006) can also be used to
reduce the number of different runs that are necessary to explore the space
in a statistically sound manner.

A common GP application is classification, e.g., evolving a program or
function that can classify patient biopsy data into two categories: cancerous
or benign. There are numerous pitfalls in this type of work, such as using
all the available data as training data, thereby leaving nothing to use for
validating your evolved solution on unseen data. There is a broad literature
on this and related subjects, and numerous tools such as cross-validation
that one can use when not enough data are available. (See, for example,
(Hastie, Tibshirani, and Friedman, 2001).) The aim must be to ensure that
your results can be trusted to work in the real world, rather than in just the
synthetic environment created by the fitness cases we chose.

13.3 There are No Silver Bullets

When working on real problems there are not likely to be any silver bullets.
No technique (including GP) is likely to solve all instances of an NP-hard
problem in an amount of time that grows linearly with the size of the prob-
lem. GP has proven extremely successful in a wide variety of domains (e.g.,
Chapter 12) but that doesn’t mean that it will work immediately or easily
in every domain, or even that it is the best tool for a specific domain.

While some of the successes in the field have been “easy”, most were the
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result of significant effort by experienced practitioners. It is likely that for
every GP approach that has successfully solved a problem, several others
have failed. It is in the nature of academic publishing that one does not get
to hear about failures.

So, don’t expect immediate success, and don’t become too discouraged
by poor early results.

13.4 Small Changes can have Big Effects

Don’t assume “a little fiddling” with parameters, operators, fitness func-
tions, etc., is harmless. One of the awkward realities of many widely appli-
cable tools is that they typically have numerous tunable parameters. Evo-
lutionary algorithms such as GP are no exception. Often changing a pa-
rameter or two can have a fairly minimal impact, and averaging over many
runs is required to reliably detect those effects. Some parameter changes,
however, can produce more dramatic effects. Changing the function set, for
example, can significantly change the distribution of the sizes and shapes of
trees, especially in the early generations, and potentially bias the system in
unexpected ways.

Another source of change can be the problem domain. A common mis-
take is to hope that parameter settings that worked well for one problem
will also work well for what appears to be a very similar problem. Problems
that appear similar to humans, however, may have quite different search
characteristics.

In addition, there are many small differences in GP implementations that
are rarely considered important or even reported. However, our experience is
that they may produce significant changes in the behaviour of a GP system.
Differences as small as an ‘>’ in place of a ‘≥’ in an if statement can have
an important effect. For example, the substitution ‘>’ ↔ ‘≥’ may influence
the winners of tournaments, the designation of the best-of-run individual,
the choice of which elements are cloned when elitism is used, or the offspring
produced by operators which accept the offspring only if it is better or not
worse than a parent.

13.5 Big Changes can have No Effect

When big changes appear to make little difference, this can sometimes be
used to identify problems with the domain representation and fitness mea-
sure. Alternatively it may be that the problem is simply too difficult, and
no change is likely to make a significant difference.

Suppose that you’re not making much progress during a set of runs. One
might react by sweeping the parameter space, doing runs with a variety of
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different parameter settings in the hope of finding a better collection of
parameter values. What if changing the parameter values really does not
have much impact? That may mean that GP just is not able to gain any
traction given your current representation of the problem domain and fitness
function. You might, therefore, reconsider how the problem is posed to GP.
If the representation and fitness make the problem essentially a search for a
needle in a haystack, then GP will mostly be lost searching through highly
sub-optimal solutions. If so, altering parameter values is unlikely to help.

Note that essentially the same symptoms are also observed if the problem
is really beyond the capabilities of your computing resources. For example,
if the solutions are exceptionally rare, unless there are nice fitness gradients
guiding GP towards them, finding any solution will likely be beyond the
capacity of current computer technology.

How can one distinguish which is the cause of the lack of success? Is it a
bad choice of representation and fitness or is it just an extremely hard prob-
lem? To answer these questions, it is important to look at what happened
when the population size was varied. Even in the absence of fitness guid-
ance, GP will search. In fact, it will perform a sort of random exploration
of the search space. It may not be a particularly rational exploration —
we know, for example, that GP with subtree crossover tends to oversample
and re-sample short programs — yet, it is still a form of stochastic search.
Thus, one may expect that, if the problem is solvable, as the population
size is progressively increased, sooner or later we should start seeing some
variation in the fitness of programs. This may be sufficient for evolution to
work with, particularly if we help it by improving the representation and
fitness function. If, instead, nothing interesting happened as the population
size was increased, then perhaps you don’t have enough computing power
to solve the problem as posed, or the problem has no solution.

13.6 Study your Populations

If you’re not getting your desired results, it is important to take the time
to dig around in the populations and see what is actually being evolved.2

For example, if you’re using ADFs because you think that your problem
would benefit from a modular solution, examine the individuals that you’re
evolving. Are they using ADFs? (Sometimes the result producing branch
simply will not refer to the ADFs at all.) Are they using them in a modular
way? Are ADFs being used multiple times? Do the ADFs encapsulate some
interesting logic, or are they just re-naming an input variable? If you’re
using grammatical evolution, on the other hand, are your evolved individuals
using your grammar as you expected? Or is the grammar in fact biasing

2If the system you’re using doesn’t allow you to dump individuals from a run, add
that functionality or use a different system.
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the system in an undesirable and unexpected way? Similar questions can be
asked for almost any flavour of GP; think about your goals and expectations,
and explore your populations to see to what degree those are being met.

Similarly, it can be valuable to look at the way your population changes
over time in more detail than that provided by the standard plot of fitness
vs. time. You might look at the distribution of tree sizes during your run,
or the distribution of fitness values. The distribution of fitness values might
suggest things about the structure of the search space as seen by your GP
system. If it seems to be dominated by disjoint values with large gaps
between them, then jumping those gaps may be a major challenge for your
system and it may be the cause for poor performance.

While it is important to look inside your populations, the time and ef-
fort required to do so is effectively a function of how much information is
recorded. Computer algorithms can easily generate enormous amounts of
data, especially if you produce a detailed log of events and individuals gener-
ated during your runs. Consequently, processing those results may become a
challenging data-mining exercise. Finding good ways to visualise those large
data sets can be extremely valuable. While there are a handful of papers
that specifically address visualisation, e.g., (Daida, Hilss, Ward, and Long,
2005; Pohlheim, 1999; Yamashiro, Yoshikawa, and Furuhashi, 2006), and
even the occasional workshop (Smith, Bullock, and Bird, 2002), most visu-
alisation techniques are scattered through the literature and we are unaware
of any comprehensive review. Where we can provide a bit more guidance is
program visualisation.

An obvious (but easy to forget) advantage of GP is that we create visible
programs. This need not be the case with other approaches. So, when
presenting GP results, as a matter of routine one should consider making
a figure which contains the whole evolved program. The dot component of
the Graphviz package3 can be particularly helpful in this regard; Figure 6.2
is an example of a tree diagram generated with a simple dot input file. The
program lisp2dot4 can help with the conversion from Lisp-style expressions
to dot input files.

As the evolved trees can often be very large, it is usually helpful to per-
form at least some basic simplifications such as removing excess significant
digits in constants and combining constant terms. Naturally, after clean-
ing up the evolved program, one should make sure it still works; you should
also clearly indicate in any presentation or write-up that the program you’re
presenting has been cleaned and is not the actual tree generated by GP.

There are methods to automatically simplify expressions (e.g., in Mathe-
matica and Emacs). However, since in general there is an exponentially large
number of equivalent expressions, automatic simplification is hard. Another

3http://www.graphviz.org/
4http://www.cs.ucl.ac.uk/staff/W.Langdon/lisp2dot.html

http://www.graphviz.org/
http://www.cs.ucl.ac.uk/staff/W.Langdon/lisp2dot.html
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Figure 13.1: Visualisation of the size and shape of the entire population of
1,000 individuals in the final generation of runs using a depth limit of 50 (on
the left) and a size limit of 600 (on the right). The inner circle is at depth
50, and the outer circle is at depth 100. These plots are from (Crane and
McPhee, 2005) and were drawn using the techniques described in (Daida
et al., 2005).

way is to use GP as a multi-objective evolutionary algorithm (cf. Chapter 9.)
In some cases the details of the trees are less important than their general

size and shape. Daida et al. (2005) presented a particularly useful set of
visualisation techniques for this situation.5 These techniques allow one to
see the size and shape of both individual trees as well as an aggregate view
of entire populations. Figure 13.1, for example, shows the impact of size and
depth limits on the size and shape of trees in two different runs with very
similar average sizes and depths. The plots make it clear, however, that the
shapes of the resulting trees were quite different.

13.7 Encourage Diversity

One important property to keep an eye on is population diversity. Two
particular measures that can be useful sources of information are:

Frequency of primitives Recognising when a primitive has been com-
pletely lost from the population (or its frequency has fallen to a low
level, consistent with the mutation rate) may help to diagnose prob-
lems.

5A Mathematica implementation of this technique can be downloaded from http:

//library.wolfram.com/infocenter/MathSource/5163/.

http://library.wolfram.com/infocenter/MathSource/5163/
http://library.wolfram.com/infocenter/MathSource/5163/
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Population variety If the variety —the number of distinct individuals in
the population— falls below 90% of the population size, this may in-
dicate that there is a problem. However, a high variety does not mean
the reverse. GP populations often contain introns (Section 11.3), and
so programs which are not identical may behave identically (Gustafson,
2004; McPhee and Hopper, 1999). Being different, these individuals
contribute to a high variety. So, a high variety need not indicate all
is well. Measuring phenotypic variation (i.e., diversity of behaviour)
may also be useful (McPhee, Ohs, and Hutchison, 2008).

Insufficient diversity may cause significant problems. Panmictic6 steady-
state populations with tournament selection, reproduction and crossover, for
example, are prone to premature convergence. If you find this to be an issue,
measures should be taken to encourage population diversity such as:

• Not using the reproduction operator.

• Adding one or more mutation operators.

• Using a weaker selection mechanism, e.g., using smaller tournament
sizes.

• Using uniform random selection (instead of the standard negative tour-
naments) to decide which individuals to remove from the population.7

• Using a generational population model instead of a steady-state model.

• Splitting large populations into semi-isolated demes (Section 10.5).8

• Using fitness sharing to encourage the formation of many fitness niches.

13.8 Embrace Approximation

There is a widespread belief that computer programs are fragile and that
any change to any bit in them will cause them to stop working. This is
fostered by the common knowledge that a small typing mistake by a human
programmer can sometimes introduce a troublesome bug into a program.

6In a panmictic population no mating restrictions are imposed as to which individual
mates with which.

7Doing this means that the selection scheme is no longer elitist, and it may be worth-
while to protect the best individual(s) to preserve the elitism.

8What is meant by a “large population” has changed over time. In the early days
of GP, populations of 1,000 or more could be considered large. However, CPU speeds
and computer memory have increased exponentially over time. So, at the time of writing
it is not unusual to see populations of hundred of thousands or millions of individuals
being used in the solution of hard problems. Research indicates that there are benefits in
splitting populations into demes even for much smaller populations. See Section 10.5.
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Programmers know from painful experience, however, that far from proving
immediately fatal, errors can lay hidden for years. Further, not all errors
are created equal. Some are indeed critical and must be dealt with immedi-
ately, while others are rare or largely inconsequential and so never become a
major priority. The worst are arguably the severe bugs that rarely express
themselves, as they can be extremely difficult to pin down yet still have dire
consequences when they appear.

In summary, there is no such thing as a perfect (non-trivial) human-
written program and all such programs include a variety of errors of different
severity and with a different frequency of manifestation.9

This sort of variability is also very common in GP work. It provides the
sort of toehold that evolution can exploit in the early generations of GP
runs. The population of programs just needs to contain a few which move
vaguely in the right direction. Many of their offspring may be totally blind or
have no legs, just so long as a few continue to slime towards the light. Over
generations evolution may hopefully cobble together some useful features
from this initially unpromising ooze. The results, however, are unlikely
to be perfect or pretty. If you as a GP engineer insist on only accepting
solutions that are beautifully symmetric and walk on two legs on day one,
you are likely to be disappointed. As we have argued above, even human-
written programs often only approximate their intended functionality. So,
why should we not accept the same from GP?

If you accept this notion, then it is important to provide your system with
some sort of gradient upon which to act, allowing it to evolve ever better
approximations. It is also important to ensure that your test environment
(usually encapsulated in the fitness function) places appropriate emphasis on
the most important features of the space from a user perspective. Consider a
problem with five test cases, four of which are fairly easy and consequently
less important, with the fifth being crucial and quite difficult. A likely
outcome in such a setting is that individuals that can do the four easier
tasks, but are unable to make the jump to the fifth. There are several
things you could try: 1) weighting the hard task more heavily, 2) dividing
it up in some way into additional sub-tasks, or 3) changing it from being a
binary condition (meaning that an individual does or does not succeed on the
fifth task) to a continuous condition, so that an individual GP program can
partially succeed on the fifth task. The first of these options is the simplest
to implement. The second two, however, create a smoother gradient for the
evolutionary process to follow, and so may yield better results.

9This is, of course, no excuse for writing shoddy, bug-ridden code.
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13.9 Control Bloat

If you are running out of memory or your execution times seem inordinately
high, look at how your average program size is changing over time. If pro-
grams are growing extremely fast, you may want to implement some form
of bloat control (see Section 11.3). Naturally, long runs may simply be the
result of the population being very large or the fitness evaluation being slow.
In these cases, you may find the techniques described in Chapter 10 helpful.

Controlling bloat is also important if your goal is to find a comprehensible
model, since in practice smaller models are easier to understand. A large
model will not only be difficult to understand but also may over-fit the
training data (Gelly, Teytaud, Bredeche, and Schoenauer, 2006).

13.10 Checkpoint Results

Where GP run time is long, it is important to periodically save the current
state of the run. Should the system crash, the run can be restarted from
part way through rather than at the start. Care should be taken to save the
entire state, so restarting a run does not introduce any unknown variation.
The bulk of the state to be saved is the current population.This can be
compressed, e.g., using gzip. While compression can add a few percent
to run time, reductions in disk space to less than one bit per primitive
in the population have been achieved. Checkpointing also allows you to
later continue runs that seemed particularly promising when they reached
whatever maximum generation you set initially.

13.11 Report Well

There are many potential reasons why work may be poorly received. Here
are a few: insufficient explanation of methods and algorithms, insufficient
experimental evidence, insufficient analysis, lack of statistical significance,
lack of replicability, reading too much into one’s results, insufficient novelty,
poor presentation and poor English. In scientific, rather than commercial,
work it is vital to report enough details so that someone else can reproduce
your results. One very useful idea is to publish a table summarising your
GP run. Table 4.1 (page 31) contains an example tableau.

As explained in Section 13.2, it is essential to ensure that results are
statistically significant so that nobody can dismiss them as the consequence
of a lucky fluke. Complex ideas are often best explained by diagrams. When
possible, descriptions of non-trivial algorithms should be accompanied by
pseudocode, along with text describing the most important components of
the algorithm.
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In addition to reporting your results, make sure you also discuss their
implications. If, for example, what GP has evolved means the customer can
save money or could improve their process in some way, then this should
be highlighted. Also be careful to not construct excessively complex expla-
nations for the observations. It is very tempting to say “X is probably due
to Y”, but for this to be believable one should at least have made some
attempt to check if Y is indeed taking place, and whether modulations or
suppression of Y in fact produce modulations and/or suppression of X.

Finally, the most likely outcomes of a text that is badly written or badly
presented are: 1) your readers will misunderstand you, and 2) you will have
fewer readers. Spell checkers can help with typos, but whenever possible
one should ensure a native English speaker has proofread the text.

13.12 Convince your Customers

For any work in science, engineering, industry or commerce to make an im-
pact it must be presented in a form that can convince others of the validity
of its results and conclusions. This might include: a pitch within a corpo-
ration seeking continued financial support for a project, the submission of
a research paper to a journal or the presentation of a GP-based product to
potential customers.

The burden of proof is on the users of GP, and it is important to use the
customer’s language. If the fact that GP discovers a particular chemical is
important in a reaction or drug design, for example, one should make this
stand out during the presentation. A great advantage of GP over many AI
techniques in that its results are often simple equations. Ensure these are
intelligible to your customer, e.g., by simplification. Also make an effort to
present your results using your customer’s terminology. Your GP system
may produce answers as trees, but if the customers use spreadsheets, con-
sider translating the tree into a spreadsheet formula. Alternatively, your
customer may not be particularly interested in the details of the solution,
but instead care a great deal about which inputs the evolutionary process
tended to use.

Also, one should try to discover how the customers intend to validate
GP’s answer. Do not let them invent some totally new data which has
nothing to do with the data they supplied for training (“just to see how well
it does...”). Avoid customers with contrived data: GP is not omnipotent
and knows nothing about things it has not seen. At the same time you
should be scrupulous about your own use of holdout data. GP is a very
powerful machine learning technique, and with this comes the ever present
danger of over-fitting. One should never allow performance on data reserved
for validation to be used to choose which answer to present to the customer.
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Conclusions

In his seminal paper entitled “Intelligent Machinery”, Turing (1948) identi-
fied three ways by which human-competitive machine intelligence might be
achieved. In connection with one of those ways, Turing said:

There is the genetical or evolutionary search by which a com-
bination of genes is looked for, the criterion being the survival
value. (Turing, 1948)

Turing did not specify how to conduct the “genetical or evolutionary
search” for machine intelligence. In particular, he did not mention the idea of
a population-based parallel search in conjunction with sexual recombination
(crossover) as described in Holland’s 1975 book Adaptation in Natural and
Artificial Systems (Holland, 1992, second edition). However, in Turing’s
paper “Computing Machinery and Intelligence” (Turing, 1950), he did point
out:

We cannot expect to find a good child-machine at the first at-
tempt. One must experiment with teaching one such machine
and see how well it learns. One can then try another and see
if it is better or worse. There is an obvious connection between
this process and evolution:

‘Structure of the child machine’ = Hereditary material
‘Changes of the child machine’ = Mutations

‘Natural selection’ = Judgement of the experimenter

In other words, Turing perceived that one possibly productive approach
to machine intelligence would involve an evolutionary process in which a
description of a computer program (the hereditary material) undergoes pro-
gressive modification (mutation) under the guidance of natural selection
(that is, selective pressure in the form of what we now call “fitness”).
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Today, decades later, we can see that indeed Turing was right. GP has
started fulfilling his dream by providing us with a systematic method, based
on Darwinian evolution, for getting computers to automatically solve hard
real-life problems. To do so, it simply requires a high-level statement of
what needs to be done and enough computing power.

Turing also understood the need to evaluate objectively the behaviour ex-
hibited by machines, to avoid human biases when assessing their intelligence.
This led him to propose an imitation game, now known as the Turing test for
machine intelligence, whose goals are wonderfully summarised by Samuel’s
position statement quoted in the introduction of this book (page 1). The
eight criteria for human competitiveness we discussed in Section 12.3 are
essentially motivated by the same goals.

At present GP is unable to produce computer programs that would pass
the full Turing test for machine intelligence, and it might not be ready
for this immense task for centuries. Nonetheless, thanks to the constant
improvements in GP technology, in its theoretical foundations and in com-
puting power, GP has been able to solve dozens of difficult problems with
human-competitive results and to provide valuable solutions to many other
problems (see Chapter 12). These are a small step towards fulfilling Turing
and Samuel’s dreams, but they are also early signs of things to come. It is
reasonable to predict that in a few years time GP will be able to routinely
and competently solve important problems for us, in a variety of application
domains with human-competitive performance. Genetic programming will
then become an essential collaborator for many human activities. This will
be a remarkable step forward towards achieving true human-competitive
machine intelligence.

This field guide is an attempt to chart the terrain of techniques and
applications we have encountered in our journey in the world of genetic
programming. Much is still unmapped and undiscovered. We hope this
book will make it easier for other travellers to start many long and profitable
journeys in this exciting world.

If you have found this book to be useful, please feel free to redistribute it
(see page ii). Should you want to cite this book, please refer to the entry for
(Poli et al., 2008) in the bibliography.



Part IV

Tricks of the Trade

In the end we find that Mary does indeed have a little GP. . .

and the wolf is shown to have a very large bibliography.
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Appendix A

Resources

The field of GP took off in the early 1990’s, driven in significant part by
the publication of (Koza, 1992). Those early days were characterised by the
exponential growth common in the initial stages of successful technologies.
Many influential papers from that period can be found in the proceedings
of the International Conference on Genetic Algorithms (ICGA-93, ICGA-
95), the IEEE conferences on Evolutionary Computation (EC-1994), and
the Evolutionary Programming conferences. A surprisingly large number
of these are now available on-line, and we’ve included as many URLs as
we could in the bibliography.1 After almost twenty years, GP has matured
and is used in a wondrous array of applications from banking to betting,
from bomb detection to architectural design, from the steel industry to the
environment, from space to biology, and many others (as we have seen in
Section 12).

In 1996 it was possible to list almost all the studies and applications of
GP (Langdon, 1996), but today the range is far too great. In this appendix
we will review some of the wide variety of available sources on GP which
should assist readers who wish to explore further. Consulting information
available on the Web is certainly a good way to get quick answers for someone
who wants to know what GP is. These answers, however, will often be too
shallow for someone who really wants to then apply GP to solve practical
problems. People in this position should probably invest some time going
through more detailed accounts; some of the key books in the field include
(Banzhaf, Nordin, Keller, and Francone, 1998a; Koza, 1992; Langdon and
Poli, 2002), and others are listed in Section A.1. Technical papers in the
extensive GP literature may be the next stage. Although this literature is
easily accessible thanks to the complete on-line bibliography (Langdon et al.,
1995-2008), newcomers will often need to be selective in what they read. The

1Each included URL was tested and was operational at the time of writing.
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objective here may be different for different types of readers. Practitioners
may wish to focus initially on papers which deal with the same problem they
are interested in. Researchers and PhD students interested in developing a
deeper understanding of GP should also make sure they identify and read as
many seminal papers as possible, including papers or books on empirical and
theoretical studies on the inner mechanisms and behaviour of GP. These
are frequently cited in other papers and, so, can be easily identified.

A.1 Key Books

There are today more than 31 books written in English principally on GP
or its applications with more being written. These start with John Koza’s
Genetic Programming 1992 (often referred to as Jaws). Koza has subse-
quently published three additional books on GP: Genetic Programming II:
Automatic Discovery of Reusable Programs (1994) deals with ADFs; Ge-
netic Programming 3 (1999) covers, in particular, the evolution of analogue
circuits; Genetic Programming 4 (2003) uses GP for automatic invention.
MIT Press published three volumes in the series Advances in Genetic Pro-
gramming (Angeline and Kinnear, 1996; Kinnear, 1994c; Spector, Langdon,
O’Reilly, and Angeline, 1999). The joint GP / genetic algorithms Kluwer
book series edited by Koza and Goldberg now contains 14 books starting
with Genetic Programming and Data Structures (Langdon, 1998). Apart
from Jaws, these tend to be for the GP specialist. The late 1990s saw the
introduction of the first textbook dedicated to GP (Banzhaf et al., 1998a).
Eiben and Smith (2003) and Goldberg (1989) provide general treatments of
evolutionary algorithms.

Other titles include: Genetic Programming (in Japanese) (Iba, 1996b),
Principia Evolvica – Simulierte Evolution mit Mathematica (in German)
(Jacob, 1997) (English version (Jacob, 2001)), Data Mining Using Gram-
mar Based Genetic Programming and Applications (Wong and Leung, 2000),
Grammatical Evolution: Evolutionary Automatic Programming in a Arbi-
trary Language (O’Neill and Ryan, 2003), Humanoider: Sjavlarande robotar
och artificiell intelligens (in Swedish) (Nordin and Johanna, 2003), and Lin-
ear Genetic Programming (Brameier and Banzhaf, 2007).

Readers interested in mathematical and empirical analyses of GP be-
haviour may find Foundations of Genetic Programming (Langdon and Poli,
2002) useful.

Each of Koza’s four books has an accompanying video. These videos are
now available in DVD format. Also, a small set of videos on specific GP
techniques and applications is available via on-line resources such as Google
Video and YouTube.
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A.2 Key Journals

In addition to GP’s own Genetic Programming and Evolvable Machines jour-
nal, Evolutionary Computation, the IEEE transaction on Evolutionary Com-
putation, Complex Systems (Complex Systems Publication, Inc.), the new
Journal on Artificial Evolution and Applications and many others publish
GP articles. The GP bibliography (Langdon et al., 1995-2008) lists a further
375 different journals worldwide that have published articles related to GP.

A.3 Key International Meetings

EuroGP – the European Conference on Genetic Programming – has been
held every year since 1998. All EuroGP papers are available on line as part of
Springer’s LNCS series. The original annual Genetic Programming confer-
ence ran for three years (1996-1998) before combining in 1999 with the Inter-
national Conference on Genetic Algorithms (ICGA) to form GECCO. 98%
of GECCO papers are available on-line. The Michigan-based Genetic Pro-
gramming Theory and Practice workshop (O’Reilly, Yu, Riolo, and Worzel,
2004; Riolo and Worzel, 2003; Riolo, Soule, and Worzel, 2007a; Yu, Riolo,
and Worzel, 2005) has recently published its fifth proceedings (Riolo, Soule,
and Worzel, 2007b). Other EC conferences, such as CEC, PPSN, Evolution
Artificielle and WSC, also regularly contain GP papers.

A.4 GP Implementations

One of the reasons behind the success of GP is that it is easy to implement
own versions, and implementing a simple GP system from scratch remains
an excellent way to make sure one really understands the mechanics of GP.
In addition to being an exceptionally useful exercise, it is often easier to
customise (e.g., adding new, application specific genetic operators or imple-
menting unusual, knowledge-based initialisation strategies) a system one has
built for new purposes than a large GP distribution. All of this, however,
requires reasonable programming skills and the will to thoroughly test the
resulting system until it behaves as expected.

This is actually an extremely tricky issue in highly stochastic systems
such as GP, as we discussed in Section 13.1. The problem is that almost
any system will produce “interesting” behaviour, but it is typically very
hard to test whether it is exhibiting the correct interesting behaviour. It
is remarkably easy for small mistakes to go unnoticed for extended periods
of time (even years).2 It is also easy to incorrectly assume that “minor”

2Several years ago Nic and some of his students discovered that one of their systems
had been performing addition instead of subtraction for several months due to a copy-
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implementation decisions will not significantly affect the behaviour of the
system (see Section 13.4).

An alternative is to use one of the many public domain GP implemen-
tations and adapt this for one’s purposes. This process is faster, and good
implementations are often robust, efficient, well documented and compre-
hensive. The small price to pay is the need to study the available documen-
tation and examples. These often explain how to modify the GP system
to some extent. However, deeper modifications (such as the introduction
of new or unusual operators) will often require studying the actual source
code and a substantial amount of trial and error. Good publicly avail-
able GP implementations include: Lil-GP (Punch and Zongker, 1998), ECJ
(Luke, Panait, Balan, Paus, Skolicki, Popovici, Harrison, Bassett, Hubley,
and Chircop, 2000-2007), Open Beagle (Gagné and Parizeau, 2002) and
GPC++ (Fraser and Weinbrenner, 1993-1997). The most prominent com-
mercial implementation remains Discipulus (RML Technologies, 1998-2007);
see (Foster, 2001) for a review. A number of older unsupported tools can be
found at ftp://cs.ucl.ac.uk/genetic/ftp.io.com/.

While the earliest GP systems were implemented in Lisp, people have
since coded GP in a huge range of different languages, including C/C++,
Java (see an example in Appendix B), JavaScript, Perl, Prolog, Mathemat-
ica, Pop-11, MATLAB, Fortran, Occam and Haskell. Typically, these evolve
expressions and programs which look like simplified Lisp. More complex tar-
get languages can be supported, however, especially with the use of more
advanced tools such as grammars and type systems (see Chapter 6). Con-
versely, many successful programs in machine code or low-level languages
have also climbed from the primordial ooze of initial randomness.

A.5 On-Line Resources

On-line resources appear, disappear, and move with great speed, so all the
addresses here (and elsewhere in the book), which were correct at the time
of writing, are obviously subject to change without notice after publication.
Hopefully, the most valuable resources should be readily findable using stan-
dard search tools.

One of the key on-line resources is the GP bibliography (Langdon et al.,
1995-2008).3 At the time of writing, this bibliography contains about 5,000
GP entries, roughly half of which can be downloaded immediately.4

paste error. Fortunately no published results were affected, but it was a very unsettling
experience.

3http://www.cs.bham.ac.uk/~wbl/biblio/
4The GP bibliography is a volunteer effort and depends crucially on submissions from

users. Authors are encouraged to check that their GP publications are listed, and send
missing entries to the bibliography’s maintainers.

ftp://cs.ucl.ac.uk/genetic/ftp.io.com/
http://www.cs.bham.ac.uk/~wbl/biblio/
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The GP bibliography has a variety of interfaces, including a graphical
representation of GP’s collaborative network (see Figure A.1). The bibliog-
raphy allows for quick jumps between papers linked by authors and allows
one to sort the author list by the number of GP publications. Full refer-
ences are provided in both BibTEX and Refer formats for direct inclusion
in papers written in LATEX and Microsoft Word, respectively. The GP bib-
liography is also part of the Collection of Computer Sciences Bibliographies
(Achilles and Ortyl, 1995-2008), which provides a comprehensive Lucerne
syntax search engine.

From early on there has been an active, open email discussion list: the
Genetic Programming mailing list (2001-2008). The EC-Digest (1985-2008)
is a moderated list covering evolutionary computation more broadly, and
often contains GP related announcements.

Koza’s http://www.genetic-programming.org/ contains a ton of use-
ful information for the novice, including a short tutorial on “What is Genetic
Programming” and the Lisp implementation of GP from Genetic Program-
ming (Koza, 1992).

http://www.genetic-programming.org/


150 A Resources

Figure A.1: Co-authorship connections within GP. Each of the 1,141 dots
indicates an author, and edges link people who have co-authored one or
more GP papers. (To reduce clutter only links to first authors are shown.)
The size of each dot indicates the number of entries. The on-line version is
annotated using JavaScript and contains hyperlinks to authors and their
GP papers. The graph was created by GraphViz twopi, which tries to
place strongly connected people close together. This diagram displays just
the “centrally connected component” (Tomassini et al., 2007) and contains
approximately half of all GP papers. The remaining papers are not linked
by co-authorship to this graph. Several other large components are also
available on-line via the GP Bibliography (Langdon et al., 1995-2008).



Appendix B

TinyGP

TinyGP1 i s a highly optimised GP system that was originally developed to
meet the specifications set out in the TinyGP competition of the Genetic and
Evolutionary Computation Conference (GECCO) 2004. We include it as a
working example of a real GP system, to show that GP software tools are
not necessarily big, complex and difficult to understand. The system can be
used as is or can be modified or extended for a user’s specific applications.
Furthermore, TinyGP may serve as a guide to other implementations of
genetic programming.

The following section provides a description of the main characteristics
of TinyGP. Section B.2 describes the format for the input files for TinyGP.
Section B.3 provides further details on the implementation and the source
code for a Java version of TinyGP. Finally, Section B.4 describes a sample
run of the system.

There are numerous other GP systems available on-line. See Section A.4
for a discussion of some of the options.

B.1 Overview of TinyGP

TinyGP is a symbolic regression system with the following characteristics:

1. The terminal set includes a user-definable number of floating point
variables (named X1 to XN).

2. The function set includes multiplication, protected division, subtrac-
tion and addition.

3. The fitness cases are read from a file (the format is given below).

1http://cswww.essex.ac.uk/staff/rpoli/TinyGP/
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4. The system is steady state. A “generation” is considered concluded
when POPSIZE (see below) crossover/mutation events have been per-
formed.

5. Selection is performed using tournament selection.

6. Negative tournaments are used for the selection of the individuals to
be replaced at each steady-state-GP iteration.

7. Subtree crossover is used. The selection of crossover points is uniform,
so every node is chosen equally likely.

8. Point mutation is used. That is, points (nodes) in the tree are ran-
domly chosen. If a point is a terminal, then it is replaced by another
randomly chosen terminal. If it is a function, then it is replaced by
another randomly chosen function with the same number of inputs.

9. The following parameters are implemented as static class variables:

• The maximum length any GP program can take: MAX LEN.

• The size of the population: POPSIZE.

• The maximum depth initial programs can have: DEPTH. Note 0
represents the depth of programs containing just one terminal.

• The maximum number of generations allowed for a run:
GENERATIONS.

• The probability of creating new individuals via
crossover: CROSSOVER PROB. The mutation probability is
1 - CROSSOVER PROB.

• The mutation probability (per node) when point mutation is cho-
sen as the variation operator: PMUT PER NODE.

• The tournament size: TSIZE.

10. The parameters and the random seed are printed when each run starts.

11. The fitness function is minus the sum of the absolute differences be-
tween the actual program output and the desired output for each fit-
ness case. TinyGP maximises it.

12. The grow initialisation method is used to create the initial population.

13. At each generation the following statistics are calculated and printed:

• The generation number.

• The average fitness of the individuals in the population.

• The fitness of the best individual in the population.
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• The average size of the programs in the current generation.

• The best individual in the population.

14. The random number generator can be seeded via the command line.
If this command line parameter is absent, the system uses the current
time to seed the random number generator.

15. The name of the file containing the fitness cases can be passed to
the system via the command line. If the command line parameter is
absent, the system assumes the data are stored in the current directory
in a file called “problem.dat”.

16. If the total error made by the best program goes below 10−5 TinyGP
prints a message indicating success and stops. If the problem has
not been solved after the maximum number of generations, it prints a
message indicating failure and stops.

B.2 Input Data Files for TinyGP

The input files for TinyGP have the following plain ASCII format:

HEADER // See below
FITNESSCASE1 // The f i t n e s s ca s e s ( one per l i n e )
FITNESSCASE2
FITNESSCASE3
. . . .

Each fitness case is of the form

X1 . . . XN TARGET

where X1 to XN represent a set of input values for a program, while
TARGET represents the desired output for the given inputs.

The header has the following entries

NVAR NRAND MINRAND MAXRAND NFITCASES

where NVAR is an integer representing the number of variables the system
should use, NRAND is an integer representing the number of random con-
stants to be provided in the primitive set, MINRAND is a float representing
the lower limit of the range used to generate random constants, MAXRAND
is the corresponding upper limit, and NFITCASES is an integer represent-
ing the number of fitness cases. NRAND can be set to 0, in which case
MINRAND and MAXRAND are ignored. For example:

1 100 -5 5 63

0.0 0
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0.1 0.0998334166468282

0.2 0.198669330795061

0.3 0.29552020666134

....

55 LINES OMITTED

....

5.9 -0.373876664830236

6.0 -0.279415498198926

6.1 -0.182162504272095

6.2 -0.0830894028174964

These fitness cases are sin(x) for x ∈ {0.0, 0.1, 0.2, . . . 6.2}

B.3 Source Code

The original TinyGP system was implemented, in the C programming lan-
guage, to maximise efficiency and minimise the size of the executable.2 The
version presented here is a Java re-implementation of TinyGP. The original
version did not allow the use of random numerical constants.

How does TinyGP work? The system is based on the standard flattened
(linear) representation for trees, which effectively corresponds to listing the
primitives in prefix notation but without any brackets. Each primitive occu-
pies one byte. A program is simply a vector of characters. The parameters
of the system are as specified in Section B.1. They are fixed at compile time
through a series of static class variable assignments. The operators used
are subtree crossover and point mutation. The selection of the crossover
points is performed at random with uniform probability. The primitive set
and fitness function are as indicated above. The code uses recursion for the
creation of the initial population (grow), for the identification of the subtree
rooted at a particular crossover point (traverse), for program execution
(run), and for printing programs (print indiv). A small number of global
variables have been used. For example, the variable program is a program
counter used during the recursive interpretation of programs, which is auto-
matically incremented every time a primitive is evaluated. Although using
global variables is normally considered bad programming practice, this was
done purposely, after extensive experimentation, to reduce the executable’s
size.

2The C version of TinyGP is probably the world’s smallest tree-based symbolic-
regression GP system. The source code, in C, is 5,906 bytes. The original version included
a compilation script which, with a variety of tricks, created a self-extracting executable
occupying 2,871 bytes (while the actual size of the executable after self-extraction was
4,540 bytes). All optimisations in the code were aimed at bringing the executable size
(as opposed to the source code size) down, the main purpose being to show that, against
popular belief, it is possible to have really tiny and efficient GP systems.
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The code reads command line arguments using the standard args array.

Generally the code is quite standard and should be self-explanatory for
anyone who can program in Java, whether or not they have implemented a
GP system before. Therefore very few comments have been provided in the
source code.

The source is provided below.

1 /∗
2 ∗ Program: tiny gp . java
3 ∗
4 ∗ Author: Riccardo Poli (email : rpoli@essex . ac .uk)
5 ∗
6 ∗/
7

8 import java . u t i l . ∗ ;
9 import java . i o . ∗ ;

10 import java . t ex t . DecimalFormat ;
11

12 public class t iny gp {
13 double [ ] f i t n e s s ;
14 char [ ] [ ] pop ;
15 stat ic Random rd = new Random( ) ;
16 stat ic f ina l int
17 ADD = 110 ,
18 SUB = 111 ,
19 MUL = 112 ,
20 DIV = 113 ,
21 FSET START = ADD,
22 FSET END = DIV ;
23 stat ic double [ ] x = new double [FSET START ] ;
24 stat ic double minrandom , maxrandom ;
25 stat ic char [ ] program ;
26 stat ic int PC;
27 stat ic int varnumber , f i t n e s s c a s e s , randomnumber ;
28 stat ic double fbes tpop = 0 . 0 , favgpop = 0 . 0 ;
29 stat ic long seed ;
30 stat ic double avg l en ;
31 stat ic f ina l int
32 MAX LEN = 10000 ,
33 POPSIZE = 100000 ,
34 DEPTH = 5 ,
35 GENERATIONS = 100 ,
36 TSIZE = 2 ;
37 public stat ic f ina l double
38 PMUT PER NODE = 0.05 ,
39 CROSSOVER PROB = 0 . 9 ;
40 stat ic double [ ] [ ] t a r g e t s ;
41

42 double run ( ) { /∗ Interpreter ∗/
43 char p r i m i t i v e = program [PC++];
44 i f ( p r i m i t i v e < FSET START )
45 return ( x [ p r i m i t i v e ] ) ;
46 switch ( p r i m i t i v e ) {
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47 case ADD : return ( run ( ) + run ( ) ) ;
48 case SUB : return ( run ( ) − run ( ) ) ;
49 case MUL : return ( run ( ) ∗ run ( ) ) ;
50 case DIV : {
51 double num = run ( ) , den = run ( ) ;
52 i f ( Math . abs ( den ) <= 0.001 )
53 return ( num ) ;
54 else
55 return ( num / den ) ;
56 }
57 }

58 return ( 0 . 0 ) ; // should never get here
59 }
60

61 int t r a v e r s e ( char [ ] bu f f e r , int bu f f e r count ) {
62 i f ( b u f f e r [ bu f f e r count ] < FSET START )
63 return ( ++buf f e r count ) ;
64

65 switch ( b u f f e r [ bu f f e r count ] ) {
66 case ADD:
67 case SUB:
68 case MUL:
69 case DIV :
70 return ( t r a v e r s e ( bu f f e r , t r a v e r s e ( bu f f e r , ++bu f f e r count

) ) ) ;
71 }

72 return ( 0 ) ; // should never get here
73 }
74

75 void s e t u p f i t n e s s ( S t r ing fname ) {
76 try {
77 int i , j ;
78 St r ing l i n e ;
79

80 BufferedReader in =
81 new BufferedReader (
82 new
83 Fi leReader ( fname ) ) ;
84 l i n e = in . readLine ( ) ;
85 Str ingToken i ze r tokens = new Str ingToken i ze r ( l i n e ) ;
86 varnumber = I n t e g e r . pa r s e In t ( tokens . nextToken ( ) . tr im ( ) ) ;
87 randomnumber = I n t e g e r . pa r s e In t ( tokens . nextToken ( ) . tr im ( ) )

;
88 minrandom = Double . parseDouble ( tokens . nextToken ( ) .

tr im ( ) ) ;
89 maxrandom = Double . parseDouble ( tokens . nextToken ( ) . tr im ( ) )

;
90 f i t n e s s c a s e s = I n t e g e r . pa r s e In t ( tokens . nextToken ( ) . tr im ( ) )

;
91 t a r g e t s = new double [ f i t n e s s c a s e s ] [ varnumber +1] ;
92 i f ( varnumber + randomnumber >= FSET START )
93 System . out . p r i n t l n ( ” too many v a r i a b l e s and cons tant s ” ) ;
94

95 for ( i = 0 ; i < f i t n e s s c a s e s ; i ++ ) {
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96 l i n e = in . readLine ( ) ;
97 tokens = new Str ingToken i ze r ( l i n e ) ;
98 for ( j = 0 ; j <= varnumber ; j++) {
99 t a r g e t s [ i ] [ j ] = Double . parseDouble ( tokens . nextToken ( ) .

tr im ( ) ) ;
100 }
101 }
102 in . c l o s e ( ) ;
103 }
104 catch ( FileNotFoundException e ) {
105 System . out . p r i n t l n ( ”ERROR: Please prov ide a data f i l e ” ) ;
106 System . e x i t (0 ) ;
107 }
108 catch ( Exception e ) {
109 System . out . p r i n t l n ( ”ERROR: I n c o r r e c t data format ” ) ;
110 System . e x i t (0 ) ;
111 }
112 }
113

114 double f i t n e s s f u n c t i o n ( char [ ] Prog ) {
115 int i = 0 , l en ;
116 double r e s u l t , f i t = 0 . 0 ;
117

118 l en = t r a v e r s e ( Prog , 0 ) ;
119 for ( i = 0 ; i < f i t n e s s c a s e s ; i ++ ) {
120 for ( int j = 0 ; j < varnumber ; j ++ )
121 x [ j ] = t a r g e t s [ i ] [ j ] ;
122 program = Prog ;
123 PC = 0 ;
124 r e s u l t = run ( ) ;
125 f i t += Math . abs ( r e s u l t − t a r g e t s [ i ] [ varnumber ] ) ;
126 }
127 return(− f i t ) ;
128 }
129

130 int grow ( char [ ] bu f f e r , int pos , int max , int depth ) {
131 char prim = (char ) rd . next Int (2 ) ;
132

133 i f ( pos >= max )
134 return ( −1 ) ;
135

136 i f ( pos == 0 )
137 prim = 1 ;
138

139 i f ( prim == 0 | | depth == 0 ) {
140 prim = (char ) rd . next Int ( varnumber + randomnumber ) ;
141 b u f f e r [ pos ] = prim ;
142 return ( pos+1) ;
143 }
144 else {
145 prim = (char ) ( rd . next Int (FSET END − FSET START + 1) +

FSET START) ;
146 switch ( prim ) {
147 case ADD:
148 case SUB:
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149 case MUL:
150 case DIV :
151 b u f f e r [ pos ] = prim ;
152 return ( grow ( bu f f e r , grow ( bu f f e r , pos+1, max , depth−1) ,
153 max , depth−1 ) ) ;
154 }
155 }

156 return ( 0 ) ; // should never get here
157 }
158

159 int p r i n t i n d i v ( char [ ] bu f f e r , int b u f f e r c o u n t e r ) {
160 int a1=0, a2 ;
161 i f ( b u f f e r [ b u f f e r c o u n t e r ] < FSET START ) {
162 i f ( b u f f e r [ b u f f e r c o u n t e r ] < varnumber )
163 System . out . p r i n t ( ”X”+ ( b u f f e r [ b u f f e r c o u n t e r ] + 1 )+ ” ”

) ;
164 else
165 System . out . p r i n t ( x [ b u f f e r [ b u f f e r c o u n t e r ] ] ) ;
166 return ( ++b u f f e r c o u n t e r ) ;
167 }
168 switch ( b u f f e r [ b u f f e r c o u n t e r ] ) {
169 case ADD: System . out . p r i n t ( ” ( ” ) ;
170 a1=p r i n t i n d i v ( bu f f e r , ++b u f f e r c o u n t e r ) ;
171 System . out . p r i n t ( ” + ” ) ;
172 break ;
173 case SUB: System . out . p r i n t ( ” ( ” ) ;
174 a1=p r i n t i n d i v ( bu f f e r , ++b u f f e r c o u n t e r ) ;
175 System . out . p r i n t ( ” − ” ) ;
176 break ;
177 case MUL: System . out . p r i n t ( ” ( ” ) ;
178 a1=p r i n t i n d i v ( bu f f e r , ++b u f f e r c o u n t e r ) ;
179 System . out . p r i n t ( ” ∗ ” ) ;
180 break ;
181 case DIV : System . out . p r i n t ( ” ( ” ) ;
182 a1=p r i n t i n d i v ( bu f f e r , ++b u f f e r c o u n t e r ) ;
183 System . out . p r i n t ( ” / ” ) ;
184 break ;
185 }
186 a2=p r i n t i n d i v ( bu f f e r , a1 ) ;
187 System . out . p r i n t ( ” ) ” ) ;
188 return ( a2 ) ;
189 }
190

191

192 stat ic char [ ] b u f f e r = new char [MAX LEN] ;
193 char [ ] c r ea te random ind iv ( int depth ) {
194 char [ ] ind ;
195 int l en ;
196

197 l en = grow ( bu f f e r , 0 , MAX LEN, depth ) ;
198

199 while ( l en < 0 )
200 l en = grow ( bu f f e r , 0 , MAX LEN, depth ) ;
201
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202 ind = new char [ l en ] ;
203

204 System . arraycopy ( bu f f e r , 0 , ind , 0 , l en ) ;
205 return ( ind ) ;
206 }
207

208 char [ ] [ ] create random pop ( int n , int depth , double [ ]
f i t n e s s ) {

209 char [ ] [ ] pop = new char [ n ] [ ] ;
210 int i ;
211

212 for ( i = 0 ; i < n ; i ++ ) {
213 pop [ i ] = create random ind iv ( depth ) ;
214 f i t n e s s [ i ] = f i t n e s s f u n c t i o n ( pop [ i ] ) ;
215 }
216 return ( pop ) ;
217 }
218

219

220 void s t a t s ( double [ ] f i t n e s s , char [ ] [ ] pop , int gen ) {
221 int i , bes t = rd . next Int (POPSIZE) ;
222 int node count = 0 ;
223 fbes tpop = f i t n e s s [ bes t ] ;
224 favgpop = 0 . 0 ;
225

226 for ( i = 0 ; i < POPSIZE ; i ++ ) {
227 node count += t r a v e r s e ( pop [ i ] , 0 ) ;
228 favgpop += f i t n e s s [ i ] ;
229 i f ( f i t n e s s [ i ] > fbes tpop ) {
230 best = i ;
231 fbes tpop = f i t n e s s [ i ] ;
232 }
233 }
234 avg l en = (double ) node count / POPSIZE ;
235 favgpop /= POPSIZE ;
236 System . out . p r i n t ( ” Generation=”+gen+” Avg F i tne s s=”+(−favgpop

)+
237 ” Best F i tne s s=”+(− fbes tpop )+” Avg S i z e=”+

avg l en+
238 ”\nBest I n d i v i d u a l : ” ) ;
239 p r i n t i n d i v ( pop [ bes t ] , 0 ) ;
240 System . out . p r i n t ( ”\n” ) ;
241 System . out . f l u s h ( ) ;
242 }
243

244 int tournament ( double [ ] f i t n e s s , int t s i z e ) {
245 int best = rd . next Int (POPSIZE) , i , compet i tor ;
246 double f b e s t = −1.0 e34 ;
247

248 for ( i = 0 ; i < t s i z e ; i ++ ) {
249 compet i tor = rd . next Int (POPSIZE) ;
250 i f ( f i t n e s s [ compet i tor ] > f b e s t ) {
251 f b e s t = f i t n e s s [ compet i tor ] ;
252 best = compet i tor ;
253 }
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254 }
255 return ( bes t ) ;
256 }
257

258 int negat ive tournament ( double [ ] f i t n e s s , int t s i z e ) {
259 int worst = rd . next Int (POPSIZE) , i , compet i tor ;
260 double fwor s t = 1 e34 ;
261

262 for ( i = 0 ; i < t s i z e ; i ++ ) {
263 compet i tor = rd . next Int (POPSIZE) ;
264 i f ( f i t n e s s [ compet i tor ] < fwor s t ) {
265 fwor s t = f i t n e s s [ compet i tor ] ;
266 worst = compet i tor ;
267 }
268 }
269 return ( worst ) ;
270 }
271

272 char [ ] c r o s s o v e r ( char [ ] parent1 , char [ ] parent2 ) {
273 int xo1start , xo1end , xo2start , xo2end ;
274 char [ ] o f f s p r i n g ;
275 int l en1 = t r a v e r s e ( parent1 , 0 ) ;
276 int l en2 = t r a v e r s e ( parent2 , 0 ) ;
277 int l e n o f f ;
278

279 xo1s ta r t = rd . next Int ( l en1 ) ;
280 xo1end = t r a v e r s e ( parent1 , xo1 s ta r t ) ;
281

282 xo2s ta r t = rd . next Int ( l en2 ) ;
283 xo2end = t r a v e r s e ( parent2 , xo2 s ta r t ) ;
284

285 l e n o f f = xo1s ta r t + ( xo2end − xo2s ta r t ) + ( len1−xo1end ) ;
286

287 o f f s p r i n g = new char [ l e n o f f ] ;
288

289 System . arraycopy ( parent1 , 0 , o f f s p r i n g , 0 , xo1 s ta r t ) ;
290 System . arraycopy ( parent2 , xo2start , o f f s p r i n g , xo1star t ,
291 ( xo2end − xo2s ta r t ) ) ;
292 System . arraycopy ( parent1 , xo1end , o f f s p r i n g ,
293 xo1s ta r t + ( xo2end − xo2s ta r t ) ,
294 ( len1−xo1end ) ) ;
295

296 return ( o f f s p r i n g ) ;
297 }
298

299 char [ ] mutation ( char [ ] parent , double pmut ) {
300 int l en = t r a v e r s e ( parent , 0 ) , i ;
301 int muts i te ;
302 char [ ] parentcopy = new char [ l en ] ;
303

304 System . arraycopy ( parent , 0 , parentcopy , 0 , l en ) ;
305 for ( i = 0 ; i < l en ; i ++ ) {
306 i f ( rd . nextDouble ( ) < pmut ) {
307 muts i te = i ;
308 i f ( parentcopy [ muts i te ] < FSET START )
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309 parentcopy [ muts i te ] = (char ) rd . next Int ( varnumber ) ;
310 else
311 switch ( parentcopy [ muts i te ] ) {
312 case ADD:
313 case SUB:
314 case MUL:
315 case DIV :
316 parentcopy [ muts i te ] =
317 (char ) ( rd . next Int (FSET END − FSET START + 1)
318 + FSET START) ;
319 }
320 }
321 }
322 return ( parentcopy ) ;
323 }
324

325 void pr int parms ( ) {
326 System . out . p r i n t ( ”−− TINY GP ( Java ve r s i on ) −−\n” ) ;
327 System . out . p r i n t ( ”SEED=”+seed+”\nMAX LEN=”+MAX LEN+
328 ”\nPOPSIZE=”+POPSIZE+”\nDEPTH=”+DEPTH+
329 ”\nCROSSOVER PROB=”+CROSSOVER PROB+
330 ”\nPMUT PER NODE=”+PMUT PER NODE+
331 ”\nMIN RANDOM=”+minrandom+
332 ”\nMAXRANDOM=”+maxrandom+
333 ”\nGENERATIONS=”+GENERATIONS+
334 ”\nTSIZE=”+TSIZE+
335 ”\n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n” ) ;
336 }
337

338 public t iny gp ( St r ing fname , long s ) {
339 f i t n e s s = new double [ POPSIZE ] ;
340 seed = s ;
341 i f ( seed >= 0 )
342 rd . se tSeed ( seed ) ;
343 s e t u p f i t n e s s ( fname ) ;
344 pop = create random pop (POPSIZE, DEPTH, f i t n e s s ) ;
345 for ( int i = 0 ; i < FSET START; i ++ )
346 x [ i ]= (maxrandom−minrandom ) ∗ rd . nextDouble ( )+minrandom ;
347 }
348

349 void evo lve ( ) {
350 int gen = 0 , ind ivs , o f f s p r i n g , parent1 , parent2 , parent ;
351 double newf i t ;
352 char [ ] newind ;
353 pr int parms ( ) ;
354 s t a t s ( f i t n e s s , pop , 0 ) ;
355 for ( gen = 1 ; gen < GENERATIONS; gen ++ ) {
356 i f ( fbes tpop > −1e−5 ) {
357 System . out . p r i n t ( ”PROBLEM SOLVED\n” ) ;
358 System . e x i t ( 0 ) ;
359 }
360 for ( i n d i v s = 0 ; i n d i v s < POPSIZE ; i n d i v s ++ ) {
361 i f ( rd . nextDouble ( ) > CROSSOVER PROB ) {
362 parent1 = tournament ( f i t n e s s , TSIZE ) ;
363 parent2 = tournament ( f i t n e s s , TSIZE ) ;
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364 newind = c r o s s o v e r ( pop [ parent1 ] , pop [ parent2 ] ) ;
365 }
366 else {
367 parent = tournament ( f i t n e s s , TSIZE ) ;
368 newind = mutation ( pop [ parent ] , PMUT PER NODE ) ;
369 }
370 newf i t = f i t n e s s f u n c t i o n ( newind ) ;
371 o f f s p r i n g = negat ive tournament ( f i t n e s s , TSIZE ) ;
372 pop [ o f f s p r i n g ] = newind ;
373 f i t n e s s [ o f f s p r i n g ] = newf i t ;
374 }
375 s t a t s ( f i t n e s s , pop , gen ) ;
376 }
377 System . out . p r i n t ( ”PROBLEM ∗NOT∗ SOLVED\n” ) ;
378 System . e x i t ( 1 ) ;
379 }
380

381 public stat ic void main ( St r ing [ ] a rgs ) {
382 St r ing fname = ”problem . dat ” ;
383 long s = −1;
384

385 i f ( args . l ength == 2 ) {
386 s = I n t e g e r . valueOf ( args [ 0 ] ) . intValue ( ) ;
387 fname = args [ 1 ] ;
388 }
389 i f ( args . l ength == 1 ) {
390 fname = args [ 0 ] ;
391 }
392

393 t iny gp gp = new t iny gp ( fname , s ) ;
394 gp . evo lve ( ) ;
395 }
396 } ;

B.4 Compiling and Running TinyGP

It is very common, nowadays, for people to write and execute code within
some development environment. Each has its own way of doing these oper-
ations, but the process is typically very straightforward.

If one wants to compile TinyGP from the operating system’s shell, this
can be done by issuing the command javac -O tiny gp.java. This applies
to both Unix and Windows users. Windows users will have to click on
Start→Run and then issue the command cmd to launch a shell. Of course,
if the javac Java compiler and/or the tiny gp.java source file are not in
the current directory/folder, then full path names must be provided when
issuing the compilation command.

If the dataset is stored in a file problem.dat, the program can then
simply be launched with the command java tiny gp. Otherwise, the user
can specify a different datafile on the command line, by giving the command
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java tiny gp FILE, where FILE is the dataset file name (which can include
the full path to the file). Finally, the user can specify both the datafile and
a seed for the random number generator on the command line, by giving
the command java tiny gp SEED FILE, where SEED is an integer.

As an example, we ran TinyGP on the sin(x) dataset described in Sec-
tion B.2 (which is available at http://cswww.essex.ac.uk/staff/rpoli/
TinyGP/sin-data.txt). The output produced by the program was some-
thing like the following

−− TINY GP ( Java ve r s i on ) −−
SEED=−1
MAX LEN=10000
POPSIZE=100000
DEPTH=5
CROSSOVER PROB=0.9
PMUT PER NODE=0.05
MIN RANDOM=−5.0
MAXRANDOM=5.0
GENERATIONS=100
TSIZE=2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Generation=0 Avg F i tne s s =42.53760218120066 Best F i tne s s

=39.997953686554816 Avg S i z e =10.9804
Best I n d i v i d u a l : (1 .589816334458055 / −2.128280559500907)
Generat ion=1 Avg F i tne s s =1226.404415960088 Best F i tne s s

=24.441994244449372 Avg S i z e =10.97024
Best I n d i v i d u a l : ((( −0.3839867944222206 / −2.2796127162428403) +

(−1.8386812853617673 / −1.06553859601892) ) −
( ( (4 .984026635222818 ∗ (0 .17196413319878445 −
0.1294044215655923) ) + (X1 − −1.8956001614031734) ) ∗
0.3627020733460027) )

. . .

The flip-o-rama animation in the footer of the bibliography and index
include plots of the best and mean fitness, the mean program size and the
behaviour of the best-so-far individual at each generation. The animation
should be viewed by rapidly flipping the pages of the book from the begin-
ning of the bibliography onward. For convenience, the plots corresponding
to the final generation are also reported in Figure B.1.

As one can see, GP progressively evolves better and better approxima-
tions to the sine function. The best individual at the end of the run had an
error of 1.88. Its unsimplified version as produced by the system is

(X1 / (( −2.766097899954383 ∗ (X1 / ( ( ( X1 / ( ( ( ( X1 / (X1 ∗
−3.2001163763204445) ) ∗ X1 ) − −3.2001163763204445) ∗
−3.2001163763204445) ) + X1 ) + (X1 ∗ (X1 −
3.9532436938954376) ) ) ) ) − ( ( ( X1 ∗ X1 ) / ( ( ( X1 /
(3.9532436938954376 ∗ −3.2001163763204445) ) ∗ X1 ) −
−3.2001163763204445) ) / ( ( ( X1 + X1 ) / (X1 ∗ X1 ) ) + X1 ) )
) )

http://cswww.essex.ac.uk/staff/rpoli/TinyGP/sin-data.txt
http://cswww.essex.ac.uk/staff/rpoli/TinyGP/sin-data.txt


164 B TinyGP

 1

 10

 100

 1000

 0  20  40  60  80  100

F
it
n

e
s
s

Generations

Avg Fitness
Best Fitness

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100

A
v
e

ra
g

e
 S

iz
e

Generations

Avg Size

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6

x

sin(x)
GP (gen=99)

Figure B.1: Final generation of a TinyGP sample run: best and mean
fitness (top), mean program size (middle) and behaviour of the best-so-far
individual (bottom).
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which can be simplified to

x
−a×x

x

x−b
+x+x×(x−c) − x2

( 2

x
+x)×

“

d− x2

e

”

where

a = 2.76609789995

b = 10.240744822

c = 3.9532436939

d = 3.20011637632

e = 12.6508398844

Hardly an obvious approximation for the sine function, but still a very ac-
curate one, at least over the test range.
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natural video. In E. Cantú-Paz, editor, Late Breaking Papers at the Genetic and Evo-
lutionary Computation Conference (GECCO-2002), pages 301–307, New York, NY,
July 2002. AAAI. URL http://thomas.krantz.com/paper.pdf. GPBiB

N. Krasnogor. Self generating metaheuristics in bioinformatics: The proteins structure
comparison case. Genetic Programming and Evolvable Machines, 5(2):181–201, June
2004. ISSN 1389-2576.

K. Krawiec. Evolutionary Feature Programming: Cooperative learning for knowledge
discovery and computer vision. Number 385. Wydawnictwo Politechniki Poznanskiej,
Poznan University of Technology, Poznan, Poland, 2004. URL http://idss.cs.put.

poznan.pl/~krawiec/pubs/hab/krawiec_hab.pdf. GPBiB

W. B. Langdon. The evolution of size in variable length representations. In 1998 IEEE
International Conference on Evolutionary Computation, pages 633–638, Anchorage,
Alaska, USA, 5-9 May 1998. IEEE Press. URL http://www.cs.bham.ac.uk/~wbl/ftp/

papers/WBL.wcci98_bloat.pdf. GPBiB

W. B. Langdon. Size fair and homologous tree genetic programming crossovers. In
W. Banzhaf, et al., editors, Proceedings of the Genetic and Evolutionary Computation
Conference, volume 2, pages 1092–1097, Orlando, Florida, USA, 13-17 July 1999a.
Morgan Kaufmann. ISBN 1-55860-611-4. URL http://www.cs.ucl.ac.uk/staff/W.

Langdon/ftp/papers/WBL.gecco99.fairxo.ps.gz. GPBiB

W. B. Langdon. Scaling of program tree fitness spaces. Evolutionary Computation, 7(4):
399–428, Winter 1999b. ISSN 1063-6560. URL http://www.mitpressjournals.org/

doi/pdf/10.1162/evco.1999.7.4.399. GPBiB

W. B. Langdon. Convergence rates for the distribution of program outputs. In W. B.
Langdon, et al., editors, GECCO 2002: Proceedings of the Genetic and Evolution-
ary Computation Conference, pages 812–819, New York, 9-13 July 2002a. Morgan
Kaufmann Publishers. ISBN 1-55860-878-8. URL http://www.cs.ucl.ac.uk/staff/

W.Langdon/ftp/papers/wbl_gecco2002.pdf. GPBiB

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6

x

sin(x)
GP (gen=15)

 1

 10

 100

 1000

 0  20  40  60  80  100

F
it
n

e
s
s

Generations

Avg Fitness
Best Fitness

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100

A
v
e

ra
g

e
 S

iz
e

Generations

Avg Size

Generation 15

(see Sec. B.4)

http://www.genetic-programming.org/gp96proceedings.html
http://www.genetic-programming.org/gp96proceedings.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_gp96.html
http://www.mkp.com/books_catalog/1-55860-483-9.asp
http://www.mkp.com/books_catalog/1-55860-483-9.asp
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_gp97.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_gp98.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kraft_1994_GPqir.html
http://thomas.krantz.com/paper.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/krantz_2002_gecco_lbp.html
http://idss.cs.put.poznan.pl/~krawiec/pubs/hab/krawiec_hab.pdf
http://idss.cs.put.poznan.pl/~krawiec/pubs/hab/krawiec_hab.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Krawiec_book.html
http://www.cs.bham.ac.uk/~wbl/ftp/papers/WBL.wcci98_bloat.pdf
http://www.cs.bham.ac.uk/~wbl/ftp/papers/WBL.wcci98_bloat.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_1997_pgSAHCP.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL.gecco99.fairxo.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL.gecco99.fairxo.ps.gz
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_1999_fairxo.html
http://www.mitpressjournals.org/doi/pdf/10.1162/evco.1999.7.4.399
http://www.mitpressjournals.org/doi/pdf/10.1162/evco.1999.7.4.399
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_1999_sptfs.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_gecco2002.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_gecco2002.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2002_crlp.html


194 BIBLIOGRAPHY

W. B. Langdon. How many good programs are there? How long are they? In K. A.
De Jong, et al., editors, Foundations of Genetic Algorithms VII, pages 183–202,
Torremolinos, Spain, 4-6 September 2002b. Morgan Kaufmann. ISBN 0-12-208155-
2. URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_foga2002.pdf.
Published 2003. GPBiB

W. B. Langdon. Convergence of program fitness landscapes. In E. Cantú-Paz, et al., edi-
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% protected division, 22
22 bit parity, sub-machine-code GP, 93

abstraction operator, 48
active code, 102
adaptive market hypothesis, 123
ADATE, 48
ADF

crossover, 49
recursion prevention, 49
troubleshooting, 134

agent
evolutionary, 122
image processing, 122
social simulation, 123

aggregate fitness function, 75–76
analogue circuit evolution, 119
ant colony optimisation (ACO), 74

PEEL, 74
ant programming, generalised (GAP), 74
ant-TAG, 74
anytime fitness, 85
applications

arbitrage, 123
architecture, 76
art, 127
bin packing, 127
bioinformatics, 125–126
biology, 125
bomb disposal, 124
cellular automata, 119
chemical engineering, 124
chemistry, 126
circuits, 119
classification, 121
control, 119
curve fitting, 113
data compression, 128
data mining, 85, 125
data modelling, 113
economics, 123

entertainment, 127
exchange rate, 123
film industry, 128
finance, 123
gambling, 123
games, 120, 127
guidelines, 111
heuristics, 126
human competitive, 117
hyper-heuristics, 126
image processing, 121, 122
industry, 124
infrared spectra, 125
jet engine optimisation, 125
mechanics, 120
medical, 122, 125
meta-heuristics, 126
music, 128
neural networks, 121
nuclear reactor control, 124
numerical control, 124
OCR, 122
patents, 119
population size, 116
process control, 124
QSAR, 78
quantum computing, 118
robotics, 118, 119
SAT, 127
side effects, 113
signal processing, 121
stock market, 123
symbolic regression, 113
teaching aids, 124
TSP, 127
video, 129
watermarking, 122

arbitrage, 123
architecture

evolution, 50
program, 50
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architecture altering operator, 48, 50
architecture design tool, 76
architecture-defining preparatory step, 50
arity

function, 11
node, 11

art, evolutionary, 127–128
artificial intelligence, 1

human competitive, 117–121
artificial neural network, 66, 121
auto parallelising code, 68
automatically defined function (ADF), 48

limitations, 49
primitive sets, 50

automatically defined iteration (ADI), 50
automatically defined loop (ADL), 50
automatically defined recursion (ADR), 50
automatically defined store (ADS), 50

Backgammon, 120, 127
backward chaining GP, 86
Bayesian automatic programming (BAP),

74
Bayesian optimisation algorithm (BOA), 70
Beagle, Open, C++ implementation, 148
beowulf cluster, 95
bias induced by constraints, 55
bibliography, GP, 148
bin packing problem, 127
bioinformatics, 125, 126
biological system, 125
bloat, 97, 101

control, 76
crossover bias theory, 104
definition, 101
executable model, 102
initialisation effects, 40
lexicographic control, 77
lexicographic parsimony, 77, 78, 80
MDL, 107
multi-objective, 77
mutation effects, 42
nature of program search spaces the-

ory, 102
Pareto control, 78
parsimony pressure, 106
practical effects, 101
removal bias theory, 102
replication accuracy theory, 102
size evolution equation, 103
Tarpeian method, 106
vs. growth, 101

boids, 128
bomb disposal, 124
books, GP, 146

branching factor, 15
bulletin board, 149

cache
data, 86

Cartesian GP, 67
GPU, 90
multi-objective, 81

CCNOT, distribution of circuits, 99
cellular automaton, 68

evolution, 119
cellular encoding, 57
check pointing, 85
Checkers, 127
chemical engineering, 124
chemistry, 78, 126
Chess, 120, 127
circuit design

multi-objective, 76
circuit, analogue

evolution, 119
classification, 132

cellular automaton, majority vote, 68
handwriting, 122
infrared images, 121
M25, 121
optical, 122
PADO, 67
SAR radar, 121
sonar, 122

closure, 21–22
cluster computing, 95
co-evolution, 46
code

active, 102
inactive, 102

communication topology
ring, 94
toroidal grid, 94

compiled vs. interpreted GP, 24
GPU, 90

compiling GP populations, 90
comprehensible programs, 51
compression

fractal, 129
image, 128
lossless, 129
lossy, 128, 129
sound, 128
video, 129
wavelet, 129

computational chemistry, 126
computer art, 127–128
computer game, 127
computer program, evolution, 2
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conference submission, 139
conferences, 145, 147
constant, ephemeral random, 20
constraints

bias, 55
enforced by crossover etc, 53
grammar-based, 53
on tree size or depth, 104

dynamic, 105
on tree structure, 52
reduction of search space, 55
semantic, 56
strong typing, 52
syntactic, 56

context-preserving crossover, 45
theory, 98

context-sensitive grammar, 55
control

proportional integrative and deriva-
tive (PID), 119

robot, 119
Core War, 120
covariant parsimony pressure, 107
crossover

between ADFs, 49
bias theory, 104
Cartesian GP, 68
constrained, 52
context-preserving, 45, 98
depth based, 45
example, 34
FPGA, 93
headless chicken, 16
homologous, 44, 98
linear GP, homologous, 64
one-point, 44
operator, 2
PDGP, 66
point, 15
rate, 17
size-fair, 45, 98, 105
subtree, 15
uniform, 44

curve fitting, 113–116

data cache, 86
data flow GP, 65
data mining, 85

many variables, 125
medical, 125

data modelling, 113–116
data visualisation, 135

virtual reality, 80
deme, 93

ring topology, 94

toroidal grid, 94
density of solutions, 57
depth

node, 12
tree, 12

depth limits, 104
derivation tree, 54
developmental GP, 23, 57
direct problem, 112
directed acyclic graph (DAG), 87
DirectX, 90
disassortative mating, 82
Discipulus, 63, 124
discussion group, 149
distributed

evolutionary algorithm, 88–95
GP, 93–95
populations

fine-grained, 94
geographically, 93–95
ring topology, 94
toroidal grid, 94

distribution
sampling, 69

diversity, 94
promotion, multi-objective GP, 78

Draughts, 127
dynamic fitness, 84
dynamic size or depth limits, 105
dynamic subset selection (DSS), 85

EA, 1
EC, 1
ECJ, Java implementation, 148
economic modelling, 123–124
editing operator, 46
efficient market hypothesis, 123
elitism, troubleshooting, 137
Elvis robot, 115
embarrassingly parallel, 89
engine monitoring and control, 121
entropy, 129
ephemeral random constant, 20

example, 29
estimation of distribution algorithms

(EDAs), 69
estimation of distribution programming

(EDP), 72
evaluation safety, 22
even parity, 78
evolutionary algorithm (EA), 1

distributed, 88–95
evolutionary art, 128
evolutionary computation (EC), 1
evolutionary music, 128
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evolutionary quantum computing, 120
evolutionary search, mathematical models,

98
evolving agents, 122
evolving designs, 23
example

crossover, 34
ephemeral random constant, 29
fitness, 30
function set, 30
mutation, 33
parameter, 30
terminal set, 29
termination, 31

exceptions
integer overflow, 22
problems caused by trapping, 22

exchange rate, 123
executable model, bloat, 102
expression simplification, 135
extended compact genetic algorithm

(eCGA), 70
extended compact GP (eCGP), 72

farming in parallel GP, 89
feature selection, 115
field programmable gate array (FPGA), 92
films, feature, 128
films, GP, 146
financial time series prediction, 123–124
fine-grained distributed GP, 94
finite state automata, 66
fitness, 2, 24–26

anytime, 85
case, 26

reduction, 83
combined objectives, 75–76
dynamic, 84
dynamic, multi-objective, 80–81
example, 30
fast

FPGA, 92
GPU, 90–92
sub-machine-code, 93

hits, 76
incremental, 58
multi-objective, 75–80

image processing, 122
RMS, 115
sharing, 77, 137
staged, 81, 85
static, problems with, 84
symbolic regression, 115

for, syntax constraint, 52
Fourier transform, quantum evolution, 120

FPGA, 92
GP implementation, 93

fractal compression, 129
freeware, 148

ECJ, 148
GPC++, 148
Lil-GP, 148
Open Beagle, 148
TinyGP, 151–162

frequency of primitives, 136
full random trees, 12–13
function arity, 11
function set, 19–23

evolving non-programs, 23
example, 30
modelling, 115
side effects, 24
sufficiency, 22–23

function-defining branch, 48

gambling, 123
game theory, 123
games, 127
generalisation-accuracy tradeoff, 107
generalised ant programming (GAP), 74
genetic operator, 2

rates, 26, 116
genetic program representation, 9
GENR8, 76
geographically distributed GP, 93–95
GP implementations, 147–148

TinyGP, 151–162
GP problem solver (GPPS), 51
GP-ZIP, 130
GPC++, implmentation, 148
GPU, 90

speedup factor, 92
grammar, 53

based constraint, 53
based GP, 53

initialisation, 57
operators, 57

context-sensitive, 55
tree adjoining, 55

grammar model based program evolution
(GMPE), 74

grammatical evolution
troubleshooting, 134

grammatical evolution, 55
graph, directed acyclic (DAG), 87
graph-based GP, 65–68
graphics processing unit (GPU), 90
grow random trees, 12–14

tree size bias, 13
growth vs. bloat, 101
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guidelines, applications, 111

halting probability, 100
halting program, Markov chain model, 100
Hamming distance, 71
hardware implementations of GP, 93
headless chicken crossover, 16
heuristic, 126
hierarchical structure, 47
higher-order type systems, 53
hill climbing, 46
hits, 76
hoist mutation, 43, 106
homologous crossover, 44

linear GP, 64
theory, 98

Huffman encoding, 129
human competitive

artificial intelligence, 117–121, 141
awards (Humies), 119

human readable programs, 51
hyper-heuristic, evolving, 126

image
compression, 128
processing, 121, 122
watermark, 122

implementations of GP, 147–148
FPGA, 93
GPU, 90–92
TinyGP, 151–162

inactive code, 102
incremental fitness, 58
indirect representation, 58
industrial modelling, multi-objective GP,

79
information content of population, 139
information theory, 46
infrared images, 121
infrared spectra, 125
initialisation

effects on bloat, 40
full method, 12–13
grammar-based GP, 57
grow method, 12–14

tree size bias, 13
Lagrange, 41
ramped half-and-half, 13
ramped uniform, 40
type system, 56
uniform, 40

integer overflow, 22
intelligence, artificial (AI), 1
interpreted GP, 24

linear, 62, 64

Java, 64
T7, 64

SIMD and GPU, 92
introns

troubleshooting, 136
useful with mutation, 64

invention, evolution of, 119
inverse kinematics, 115
inverse problem, 112
iterated functions system (IFS), 128

jet engine optimisation, 125
journals, 147

kinematics, 120

L-system, 74, 76
tree adjoining grammar, 58

Lagrange
distribution of the second kind, 104
initialisation, 41

large populations, 137
learning, machine (ML), 1
lexicographic

parsimony bloat control, 77, 80
preference, 77, 80

libraries, dynamic, 47, 48
Lil-GP, 148
limits, size and depth, 104
Lindenmayer grammar, see L-system
linear GP, 61–64

Cartesian GP, 67
crossover, 64

homologous, 64
instruction format, 62, 63
interpreted, 62, 64
introns, 64

removal, 64
Java, 64
mutation, 64
speed, 62
T7, 64

linear representation, 61–64
Cartesian GP, 67

linearised tree-based GP
prefix, 62
reverse polish, 92

logic network, evolution, 66
lossless compression, 129
lossy compression, 128

machine code GP, 62–64
Intel x86, 63
SPARC, 62, 63
Z80, 62, 63
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machine intelligence, 1
human-competitive, 141

machine learning (ML), 1
mailing list, GP, iii, 149
Markov chain model

evolutionary algorithms, 98
GP, 98
program execution, 100

master–slave GP, 89
max problem, 72
medical imaging, 122
message passing interface (MPI), 95
meta-heuristics, 126
meta-optimising semantic evolutionary

search (Moses), 72
migration rate, 94
MIMIC, 70
minimum description length (MDL), 46,

107
model car racing, 127
model, executable, 102
modular structure, 47
modules, 59
Moore’s Law, 90
MPI, 95
multi-level type systems, 53
multi-objective fitness, 75–76

image processing, 122
multi-objective GP (MO GP), 41, 75

jets, 125
operator pressure, 81
Pareto dominance, 76–80
small vs good, 81

multi-objective optimisation (MOO), 75
data visualisation, 80
preference information, 77

multiple typed programs, 21–22
music, evolutionary, 128
mutation, 2

constants, 43
dynamic libraries, 48
example, 33
hoist, 43, 106
local search, 43
node replacement, 43
permutation, 43
point, 16, 43
rate, 17
shrink, 43, 106
simulated annealing, 44
size-fair, 42, 105
subtree, 16
survey, 42–44
swap, 43

N-gram GP, 72
NAND, distribution of circuits, 99
nature of program search spaces theory, 102
neural network evolution, 121

with PDGP, 66
niching, 77
NLP

parsing and tagging, multi-objective
GP, 79

text retrieval, multi-objective GP, 79
node

arity, 11
depth, 12
replacement mutation, 43

non-terminal symbols, 53
non-Turing complete program, theory, 99
NSGA-II, extension to GP, 79
nuclear reactor control, 124
numeric regression, 30
numerical control, 124

Odin, 51
one-max, 72
one-point crossover, 44

theory, 98
OpenGL, 92
operator

architecture-altering, 50
composition, 17
constrained, 53
crossover, 2, 34
editing, 46
genetic, 2
grammar-based GP, 57
mutation, 2
rate, 17
reorganisation of subtrees, 46
repair, 81
reproduction, 17, 33

optical character recognition (OCR), 122
Oscar, 128
Othello, 127
over-fitting, 46, 139, 140

dynamic fitness function, 84
overflow, numeric, 22

Pac-Man, Ms, 127
PADO

anytime programming, 67
random access memory, 67

panmictic population, 137
Paragen, 68
parallel computing, 88
parallel distributed GP (PDGP), 65

ADF, 66
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link set, 66
no side effects, 67

parallel evolutionary algorithm, 88–95
parallel GP, 89, 94
parallel processing, 90
parallel virtual machine (PVM), 95
parameter

quadratic polynomial example, 30
values, 26–27, 116

Pareto
criterion, 106
dominance, 76–80

relaxation, 78
front, 77
preference, 80
tournament, 78

Parisian GP, 122
parsimony

coefficient, 106
difficulties, 107
dynamic, 106, 107

lexicographic, 77
pressure, 106

covariant, 107
particle swarm optimisation (PSO), 127
patentable invention, 119
penalty bloat control method, 107
permutation mutation, 43
point mutation, 16, 43
Poker, 127
polymorphic types, 53
population size, 26–27

applications, 116
troubleshooting, 134

population variety, 136
population-based incremental learning

(PBIL), 70
post fix notation, 92
precision vs. recall, multi-objective GP, 79
premature convergence, 84
preparatory step

architecture-defining, 50
fitness function, 24
function set, 20
parameters, 26
terminal set, 19
termination, 27

primitive set, 9, 19–23
evolving non-programs, 23
modelling, 115
side effects, 20, 24
vector-based, 51

primitives, number in population, 136
probabilistic incremental program evolu-

tion (PIPE), 71

probability distribution
sampling, 69

process control, 124–125
production rule, 53
program

architecture, 50
evolution, 50

evolution, 2
human understandability, 51

program evolution with explicit learning
(PEEL), 74

program execution, 24
programmatic compression, 128, 129
proportional integrative and derivative

(PID), controller, 119
proposals to funding agencies, 139
protected

MOVE AHEAD, 22
division, 22
other operations, 22

pruning neural networks, 82
PushGP, 59
PVM, 95
pygmies and civil servants, 81

QSAR, multi-objective, 78
quantum

algorithm evolution, 118
computing, 118, 120
Fourier transform evolution, 120

quantum programs, distribution of, 99

ramped half-and-half, 11, 13
problems with, 40

ramped uniform initialisation, 40
RapidMind, 92
rate

crossover, 17
mutation, 17
operator, 17

rational allocation of trials, 84
recurrent transition network, evolution, 66
recursion, 59
regression, 114

numeric, 30
symbolic, 30

applications, 113–116
removal bias theory, 102
reorganisation of subtrees, 46
repair operator, 81
replication accuracy theory, 102
representation

GP, 9
graph-based, 65–68
prefix notation, 10
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reverse polish, 92
syntax tree, 9
tree-based in GP, 10

reproduction operator, 17
in example, 33

result-producing branch, 48
reusable component, 48
reverse polish representation, 92
reversible computing, distribution of, 99
rewrite rule, 53
ring species, 88
RoboCup, 118
robot

control, 119
Elvis, 115
football, 127

run time errors, avoiding, 22
run time exceptions, problems, 22

sampling
probability distribution, 69

SAT, 127
schema theory, 98
search

evolutionary models, 98
stochastic, 97

search space, 24, 97, 99
seeding, 41
selection of parents

tournament, 14–15
backward chaining GP, 86

semantic constraints, 56
sensor, soft, 114
seti.home, 95
shrink mutation, 43, 106
side effects, 20, 24

applications, 113
signal processing, 121–122
SIMD, 90
simple generics, 53
simulated annealing, 44, 46
single typed programs, 21, 51
size

evolution equation, 103
Lagrange distribution, 104
limits, 104
tree, 12

size-fair
crossover, 45, 105

theory, 98
mutation, 42, 105

soft sensor, 114
solution density, 57
sound compression, 128
spatial separation, 94

SPEA2, 78
species

formation, 88
ring, 88

speedup factor, GPU, 92
speedup techniques, 83
staged fitness function, 81
static fitness, problems with, 84
stochastic computing, distribution of, 99
stochastic context-free grammar, 74
stochastic search, 97
stock market, 123
Stroganoff, 43
strongly typed GP, 52

theory, 98
sub-machine-code GP (SMCGP), 93
sub-population, 93
submitting to a journal, 139
subtree

crossover, 15
mutation, 16
reorganisation, 46

sufficiency, 22–23
supercomputer, 89, 95
swap mutation, 43
swarm, 122
symbolic regression, 30

applications, 113–116
syntactic constraints, 56
syntax tree, 9

T7 programming language, 64, 100
take over time, 84
Tarpeian bloat control, 106
teaching aids, 124
terminal set, 19–20

evolving non-programs, 23
example, 29
modelling, 115
side effects, 20, 24
sufficiency, 22–23

terminals of a grammar, 53
termination

criterion, 27
example, 31

theory, 97
bloat, 104
crossover

bias, 104
context-preserving, 98
homologous, 98
one-point, 98
size-fair, 98

non-Turing complete program, 99
schema, 98
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search spaces, 99
thesis write up, 139
time series, financial, 123–124
TinyGP, 151–162
Toffoli, distribution of circuits, 99
tournament selection, 14–15, 86
Transputer, 94
trap function, 72
travelling salesman problem (TSP), 127
tree

depth, 12
derivation, 54
editing, 46
size, 12

tree adjoining grammar (TAG), 55
tree-based representation, 10
Tron, 127
Turing complete GP, 64
Turing complete program, theory, 99
Turing test, 117, 142
type

consistency, 21–22, 51
conversion, 51
initialisation, 56
more understandable programs, 51
multiple, 52
single, 51
strong, 52
system

higher-order, 53
multi-level, 53

unexploded bombs, 124
uniform crossover, 44
uniform initialisation, 40
uniform multivariate distribution algorithm

(UMDA), 70

validating results, 132
variety, of population, 136
vector-based primitive, 51
VHDL, multi-objective GP, 79
video compression, 129
videos, GP, 146
virtual reality data visualisation, 80

watermark security
application, 122
multi-objective GP, 79

wavelet lossy compression, 129
world wide GP, 95
Wright’s geographic model of evolution, 88





Colophon

This book was primarily written using the LATEX document preparation
system, along with BibTEX, pdflatex and makeindex. Most of the editing
was done using the emacs and xemacs editors, along with extensions such
as RefTEX; some was done with TEXShop as well. Most of the data plots
were generated using gnuplot and the R statistics package. Diagrams were
generated with a variety of tools, including the Graphviz package, tgif and
xfig. A whole host of programming and scripting languages were used to
automate various processes in both the initial scientific research and in the
production of this book; they are too numerous to list here, but were crucial
nonetheless. The cover was created with Adobe Photoshop1 and gimp.

Coordinating the work of three busy, opinionated authors is not trivial,
and would have been much more difficult without the use of revision control
systems such as Subversion. Around 500 commits were made in a six month
period, averaging around 10 commits per day in the final weeks. The actual
files were hosted as a project at http://assembla.com; we didn’t realise
until several months into the project that Assembla’s president is in fact
Andy Singleton, who did some cool early work in GP in the mid-90’s.

The “reviews” and “summaries” on the back cover were generated
stochastically using the idea of N-grams from linguistics. For the “reviews”
we collected a number of reviews of previous books on GP and EAs, and
tabulated the frequency of different triples of adjacent words. These fre-
quencies of triples in the source text were then used to guide the choices of
words in the generated “reviews”. The only word following the pair “ad”
and “hoc” in our source reviews, for example, was “tweaks”; thus once “ad”
and “hoc” had been chosen, the next word had to be “tweaks”. The pair
“of the”, on the other hand, appears numerous times in our source text, fol-
lowed by words such as “field”, “body”, and “rapidly”. However, “theory”
is the most common successor, and, therefore, the most likely to be cho-
sen to follow “of the” in the generation of new text. The generation of the
“summaries” was similar, but based on the front matter of the book itself.
See (Poli and McPhee, 2008a) for an application of these ideas in genetic
programming.

1Adobe Photoshop is a registered trademark of Adobe Systems Incorporated

http://assembla.com
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