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A Field Reconstruction Technique for Efficient
Modeling of the Fields and Forces Within

Induction Machines
Dezheng Wu, Steven D. Pekarek, Member, IEEE, and Babak Fahimi, Senior Member, IEEE

Abstract—Traditional analysis and design of induction machines
have been largely based upon lumped-parameter models. An alter-
native tool used for field-based evaluations of an induction machine
is the finite-element method. Although useful, its computational
complexity limits its use as a design tool. In this paper, a field re-
construction (FR) method for induction machine simulation is in-
troduced. The FR method utilizes a small number of finite-element
evaluations to establish basis functions of normal and tangential
flux densities. The basis functions are then used to estimate the
magnetic field under arbitrary stator excitation. Using such a tool,
evaluation of fields and forces produced by a machine under alter-
native excitation strategies can be explored efficiently. Moreover,
alternative field-based derivation of stator/rotor excitation control
can be explored.

Index Terms—Field reconstruction (FR), finite element (FE),
induction machine, Maxwell stress tensor, torque and radial force.

I. INTRODUCTION

H ISTORICALLY, the controls for induction-machine-
based drives (i.e., field oriented [1]–[4], maximum

torque/ampere [5]–[7], direct torque [8]–[12], volts/hertz, etc.)
have been derived based upon the so-called lumped-parameter
(LP) models of the machine. The LP models use inductance to
relate winding current to the winding magnetic flux linkage. An
energy-based approach is used to relate torque to the winding
current and the partial derivatives (with respect to rotor position)
of the stator–rotor mutual inductances. Although LP-based ap-
proaches have proven effective, they are based upon numerous
assumptions, including that the stator and rotor windings are si-
nusoidally distributed, stator excitation is sinusoidal, harmonics
due to stator and rotor slots are neglected, and that the magnetic
field within the air gap is unidirectional (radial). In reality, the
windings (particularly rotor windings) are rarely sinusoidally
distributed, harmonics are present, and the forces acting within
the machine are vectors (i.e., a normal and tangential compo-
nent). The effects of different control strategies on the normal
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component of the forces, which is important for bearing wear,
noise, etc., have been largely overlooked.

In this research, a fundamental question being raised is
whether alternative excitation schemes for the induction ma-
chine can be developed using a field (rather than energy) based
approach. In theory, the tools required to answer this question
have been available for several years. Specifically, finite-element
analysis (FEA) is well known as a tool for field-based analysis of
electric machines. However, the computational effort required
to complete a finite-element (FE) evaluation is significant even
with modern processing power. This limits its usefulness as a
tool for searching alternative excitation schemes. Therefore, as
a first step, a new method for field-based evaluation of induction
machines is proposed. In this so-called field reconstruction (FR)
method, a small number of FE evaluations are used to determine
the radial and tangential components of magnetic flux density
within the air gap under single winding excitation. These results
are then used to establish a basis set of magnetic flux densities,
which are used to predict the fields and forces acting inside the
machine under arbitrary stator excitation and rotor speed. Using
the proposed approach, the computational effort to perform a
field-based evaluation of the magnetic fields and forces can be
reduced substantially. The proposed technique extends the FR
method developed in [13], where the evaluation of the fields
was within permanent magnet synchronous machines. The ex-
tension is nontrivial since the magnetic field produced by the
rotor is induced rather than created by fixed magnet sources.

II. BACKGROUND

A three-phase, 60 Hz, four-pole, 5-hp squirrel-cage induction
machine is studied as an example to demonstrate the process of
FR. The machine topology is shown in Fig. 1. The induction
machine contains 36 stator slots, 45 rotor slots, and 22 conduc-
tors per stator slot. The stator windings are wound at a full pitch.
The dimensions of the machine are listed in Table I. Detailed
dimensions of stator and rotor are also illustrated in Fig. 1. The
dimension unit in the figure is millimeter.

In Fig. 1, the angular position along the stator circumference
is denoted by φsm and φrm along the rotor circumference. The
mechanical rotor position is denoted by θrm and the mechanical
angular velocity of the rotor is ωrm . Based on the coordinate
definitions, the following relationship is obtained:

φsm = φrm + θrm . (1)

The calculation of forces used throughout the present paper
is based upon the Maxwell stress tensor (MST) method. Using

0885-8969/$25.00 © 2009 IEEE
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Fig. 1. Three-phase four-pole squirrel-cage induction machine. (a) Cross-
section view of the induction machine and coordinate system. (b) Stator slot
dimension. (c) Rotor slot dimension.

the MST method, the amplitude of the tangential and normal
force densities in the air gap can be expressed as [14]

ft =
BnBt

µ0
(2)

fn =

(
B2

n − B2
t

)
2µ0

(3)

where Bn and Bt are normal and tangential components of the
magnetic flux density, respectively, and µ0 is the permeability
of air. The positive current, normal, and tangential directions are
defined in Fig. 2.

Therefore, the electromagnetic torque is obtained by

Te = FtR lz =
R lz
µ0

∮
Γ

BnBt t̂ · d�l (4)

where R is the radius of the integration contour, t̂ is the unit
vector of tangential direction, and lz is the effective stack length.
The contour Γ is the circular integration contour in the air gap.
In this paper, the contour is established in the middle of the air
gap to minimize numerical error of the MST method [15]. Here,
a similar integral is defined to represent radial force over an
electric cycle. Specifically,

Fn =
∫ 2π

0
fnR dφs =

R

2µ0

∫ 2π

0

(
B2

n − B2
t

)
dφs (5)

TABLE I
INDUCTION MACHINE PARAMETERS

Fig. 2. Normal and tangential direction.

where φs = φsmP/2 is the so-called electric angle and P is the
number of poles. The radial force defined in (5) is the integration
of stress. In practice, Bn is greater than Bt , and therefore, this
stress is always positive, which means the radial force density
is in the normal direction from rotor to stator over the contour.
The nonzero value of Fn in (5) does not mean that there is a net
force acting to push/pull the stator and rotor. Actually, the net
radial force acting on the rotor is zero for a balanced excitation
and uniform machine structure.

The following assumptions have been made for the analysis
in this paper. The stator teeth and rotor teeth are assumed to be
rigid, i.e., no deformation due to radial and tangential force oc-
curs in these parts. The flux density in the axial direction is zero,
which means no end effect exists. Hysteresis and eddy currents
in the stator and rotor iron are neglected. The operating tem-
perature is assumed to be constant (or the effect of temperature
variation to machine parameters is neglected).

III. FIELD CHARACTERIZATION

To develop the FR method for an induction machine, it is
assumed that the machine operates in the linear magnetic region
(which is consistent with assumptions used in the derivation
of many LP models). Under the assumption of linearity, the
superposition rule can be applied. Therefore, the FR begins
by considering the normal and tangential components of flux
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Fig. 3. Basis function kns (φsm ).

Fig. 4. Basis function kts (φsm ).

density in terms of stator and rotor quantities, i.e.,

Bn (φsm ) = Bns(φsm ) + Bnr(φsm , θrm ) (6)

Bt(φsm ) = Bts(φsm ) + Btr(φsm , θrm ). (7)

In (6) and (7), Bns and Bts are normal and tangential com-
ponents of the flux density directly generated by stator current.
Bnr and Btr are normal and tangential components of the flux
density generated by rotor currents. The current in the rotor bars
is induced by the variations of the magnetic field, which results
from stator current excitation and rotor motion. The basis of the
FR method is to create models for each of the components in
(6) and (7) using only a few FEA evaluations. This is achieved
by a two-step procedure consisting of “stator” and “rotor” basis
function derivation.

A. Stator Basis Function Derivation

As the first step, a magnetostatic FEA program (which is rel-
atively time-efficient) is used to derive the stator basis function.
In the FEA program, the rotor is fixed at an arbitrary position
and the phase current is set such that ias = 1 A with phase-b
and phase-c open. The normal and tangential components of
the flux density in the air gap are calculated and stored as the
basis functions kns(φsm ) and kts(φsm ), respectively. In order
to store the basis functions, the air gap contour Γ is discretized
into n equally distributed points. Hence, kns(φsm ) and kts(φsm )
are represented as two n × 1 vectors in the computer. The sta-
tor basis functions for the given machine are shown in Figs. 3
and 4, respectively.

Using these basis functions, the flux density generated by
arbitrary stator phase-a current can be expressed as

Bnas (φsm ) = iaskns (φsm ) (8)

Btas (φsm ) = iaskts (φsm ) . (9)

Due to symmetry, the flux densities generated by phase-b
and phase-c current are obtained using a phase shift of the
respective basis functions. Thus, the total normal and tangential
components of the flux density directly generated by the stator
current are obtained by

Bns (φsm ) = iaskns (φsm ) + ibskns

(
φsm − 2

P

2π

3

)
+ icskns

(
φsm − 2

P

4π

3

)
(10)

Bts (φsm ) = iaskts (φsm ) + ibskts

(
φsm − 2

P

2π

3

)
+ icskts

(
φsm − 2

P

4π

3

)
. (11)

B. Rotor Basis Function Derivation

Unlike Bns and Bts , the flux density components generated
by rotor currents are not only determined by the instantaneous
stator current, but they are also determined due to the change
in the stator current. In other words, Bnr and Btr are the flux
densities generated by the rotor current, which results from the
stator current and rotor motion. To identify and store rotor basis
functions, the air gap contour Γ is discretized into n equally
distributed points as in the stator basis function derivation. The
rotor basis functions (knr and ktr), which represent the relation-
ship between Bnr , Btr , and the stator current, are characterized
in time domain. To identify the rotor basis functions, the rotor
speed is set at ωrm = 0. Using a transient FEA solver, a dis-
crete impulse is used as the phase-a current input signal. The
impulse input signal has a value of I0 at tj and 0 elsewhere,
i.e.,

ias (tk ) =
{

I0 , k = j
0, k �= j.

(12)

In this research, the software Ansoft Maxwell 2-D is used
for FEA computation. The impulse current signal is defined in
Maxwell 2-D. When setting the impulse input, an “IF” com-
mand that defines I0 at a time step and 0 elsewhere is used.
The command in the Maxwell 2-D is “if(T = 0.001,20,0).” The
characterization of rotor basis function requires the FEA model
to run over a period of time in order to capture sufficient data
for subsequent studies. During the calculation time, all the nor-
mal and tangential components of the air gap flux density at
t ≥ tj are recorded as Bnid(τ) and Btid(τ), where τ = t − tj .
Since the derivation of the rotor basis functions is the eventual
desired knowledge, the flux directly contributed by the stator
current (iaskns and iaskts) is subtracted. Specifically, using the
previously established stator basis functions, the normal and
tangential components of the flux density generated by the rotor
currents Bnr and Btr are represented by

Bnr = Bnid − iaskns (13)

Btr = Btid − iaskts . (14)
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Fig. 5. Two-step procedure of basis function identification.

Bnr and Btr are then divided by I0 to get the unit rotor impulse
response knr and ktr as

knr =
Bnr

I0
(15)

ktr =
Btr

I0
. (16)

The unit impulse response is then defined as the rotor basis
functions and stored in the computer. Using this approach, the
rotor basis functions knr and ktr are expressed as two matrices.
The rows of the matrices represent the n points along the contour,
and the columns of the matrices describe the impulse response of
these points in the discrete-time domain. The two-step procedure
for identification of the basis functions based upon phase-a stator
excitation is shown in Fig. 5.

The rotor model is assumed to be linear, so the output is
regarded as the sum of responses to a sequence of discrete-time
impulse input. This is evaluated using convolution in the time
domain. The obtained rotor basis function can also be used in
phase-b and phase-c by using a phase shift similar as in (10) and
(11). Therefore, with arbitrary stator current, the flux density
generated by the rotor is obtained from the rotor basis functions

Bnr (φrm , t) = ias (t) ∗ knr (φrm , t)

+ ibs (t) ∗ knr

(
φrm − 2

P

2π

3
, t

)
+ ics (t) ∗ knr

(
φrm − 2

P

4π

3
, t

)
(17)

Fig. 6. Step response of rotor basis function knr (φsm = 0) produced by the
FEA program and the FR rotor basis function.

Fig. 7. Step response of rotor basis function ktr (φsm = 0) produced by the
FEA program and the FR rotor basis function.

Btr (φrm , t) = ias (t) ∗ ktr (φrm , t)

+ ibs (t) ∗ ktr

(
φrm − 2

P

2π

3
, t

)
+ ics (t) ∗ ktr

(
φrm − 2

P

4π

3
, t

)
(18)

where “∗” denotes the operation of convolution.
To verify the accuracy of the rotor basis functions, the step

responses of Bnr and Btr are obtained using the FEA pro-
gram and the FR method. For simplicity, it is assumed that
phase-b and phase-c stator current are kept zero. The rotor speed
is also assumed to be zero. At t = 0.01 s, the phase-a current
ias has a step change from 0 to 10 A, and it is set to be 10 A
thereafter. The flux density contributed by the rotor current at
position φsm = 0 is selected to be investigated. Fig. 6 shows
the step responses of Bnr(φsm = 0) versus time, while the step
responses of Btr(φsm = 0) versus time are compared in Fig. 7.
It is observed that the outputs of FR rotor basis function are
visually indistinguishable from FEA program results.

IV. FIELD RECONSTRUCTION

Having stator and rotor basis functions, the overall flux den-
sities are obtained by (6) and (7) with arbitrary stator current
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excitation and motor speed. Radial and tangential forces are
also determined from the reconstruction result of the air gap
flux density. In (17) and (18), Bnr and Btr are obtained in terms
of the rotor coordinate φrm . Therefore, in order to evaluate the
overall flux density in terms of stator coordinate φsm , a substi-
tution is applied to Bnr and Btr using φrm = φsm − θrm . Then,
by substituting (10) and (11) and (17) and (18) into (6) and (7),
we have

Bn (φsm , t) = ias (t) kns (φsm ) + ias (t) ∗ knr (φsm − θrm , t)

+ ibs (t) kns

(
φsm − 2

P

2π

3

)
+ ibs (t) ∗ knr

(
φsm − θrm − 2

P

2π

3
, t

)
+ ics (t) kns

(
φsm − 2

P

4π

3

)
+ ics (t) ∗ knr

(
φsm − θrm − 2

P

4π

3
, t

)
(19)

Bt (φsm , t) = ias (t) kts (φsm ) + ias (t) ∗ ktr (φsm − θrm , t)

+ ibs (t) kts

(
φsm − 2

P

2π

3

)
+ ibs (t) ∗ ktr

(
φsm − θrm − 2

P

2π

3
, t

)
+ ics (t) kts

(
φsm − 2

P

4π

3

)
+ ics (t) ∗ ktr

(
φsm − θrm − 2

P

4π

3
, t

)
. (20)

Care must be exercised in evaluating (19) and (20) as it can
be seen that θrm changes with time when ωrm �= 0. The physical
meaning of the substitution φrm = φsm − θrm is to include the
rotation of the rotor magnet field. Since the rotor flux is gen-
erated by the rotor current in cage bars, it also rotates with the
rotor. Since the rotor basis functions knr and ktr are character-
ized in the discrete-time form, it is more convenient to evaluate
the convolution in (19) and (20) in discrete-time domain. It is
important to remember that we are assuming that the relation-
ship between the stator current and rotor magnetic system is
linear. In addition, for the studies conducted herein, it is also
assumed that the rotor basis functions are independent of rotor
position. Using rotor basis functions that are position dependent
is discussed in Section VI.

As a reminder, the output of any discrete-time linear system
can be expressed in terms of the input as

y (k) = u (k) ∗ h (k) (21)

where u(k) is the input and h(k) is the discrete-time impulse re-
sponse [16]. The discrete-time impulse response can be obtained
by providing a discrete-time delta function as the system input.
The resulting calculated output is the impulse response [16].
Note that the convolution of two signals u(k) and h(k) is defined

as [16]

u (k) ∗ h (k) =
k∑

m=1

u (m)h (k − m) . (22)

In the proposed modeling approach, the rotor basis functions
knr and ktr are expressed as unit impulse responses. As a result,
the rotor flux density is equal to the convolution of stator current
and the rotor basis function, and (19) and (20) are expressed as

Bn (φsm , tk )

= ias (tk ) kns (φsm ) + ibs (tk ) kns

(
φsm − 2

P

2π

3

)
+ ics (tk ) kns

(
φsm − 2

P

4π

3

)

+
k∑

m=1

ias (tm ) knr (φsm − θrm (tk ) + θrm (tm ), tk − tm )

+
k∑

m=1

ibs (tm ) knr

(
φsm − θrm (tk ) + θrm (tm )

− 2
P

2π

3
, tk − tm

)

+
k∑

m=1

ics (tm ) knr

(
φsm − θrm (tk ) + θrm (tm )

− 2
P

4π

3
, tk − tm

)
(23)

Bt (φsm , tk )

= ias (tk ) kts (φsm ) + ibs (tk ) kts

(
φsm − 2

P

2π

3

)
+ ics (tk ) kts

(
φsm − 2

P

4π

3

)

+
k∑

m=1

ias (tm ) ktr (φsm − θrm (tk ) + θrm (tm ), tk − tm )

+
k∑

m=1

ibs (tm ) ktr

(
φsm − θrm (tk ) + θrm (tm )

− 2
P

2π

3
, tk − tm

)

+
k∑

m=1

ics (tm ) ktr

(
φsm − θrm (tk ) + θrm (tm )

− 2
P

4π

3
, tk − tm

)
. (24)

As an example to illustrate how this is performed, it is conve-
nient to assume that the stator current ias = 10 cos(377t), ibs =
0, ics = 0, and the rotor speed ωrm = 17.45 rad/s = 1000◦/s.
The step size is 0.001 s, which means that the rotor angle θrm has
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Fig. 8. FR process.

an incremental of 1◦/step. Bn at φsm = 60◦, time tk is calculated
using (23) as

Bn (60◦, tk )

= kns (60◦) ias (tk ) + knr
(
600 , 0 s

)
ias (tk )

+ knr (59◦, 0.001 s) ias (tk − 0.001 s)

+ knr (58◦, 0.002 s) ias (tk − 0.002 s) + · · · . (25)

In (25), the second term on the right-hand side is the rotor
flux due to ias(tk ), and the third term is rotor flux due to the
input at previous step ias(tk − 0.001 s).

The reconstruction process is illustrated in Fig. 8, wherein
based upon the respective stator phase current inputs, the FR
model calculates normal and tangential components of the mag-
netic flux and force densities under arbitrary stator excitation.

V. RESULTS

To validate the effectiveness of the proposed FR technique,
two common induction motor drive cases are simulated. In or-
der to derive machine basis functions and compare simulation
results, Ansoft Maxwell is used to implement an FEA-based
model of the induction machine [17]. The FR program was im-
plemented in MATLAB. A 3.19 GHz P4 PC is used to perform
the FEA and the FR programs. In selecting the step size, one
is effectively adjusting the sampling frequency, and therefore,
adjusting the bandwidth over which the FR model will match.
The choice of the step size depends accordingly upon the dy-
namic of the respective input waveform. In this paper, the input
current has the frequency up to 60 Hz; therefore, the step size
of 1 ms is taken.

A. Constant-Speed Operation

Simulation of constant-speed operation is helpful to evalu-
ate the steady-state performance of the induction motor drive.
In this case, it is assumed that the motor is operated at a con-
stant speed of 1333.3 r/min. At t = 0 s, the commanded three-
phase currents has a step change from 0 to ias = 20 sin(100πt),
ibs = 20 sin(100πt − 2π/3), ics = 20 sin(100πt + 2π/3). The
step sizes for both methods are 0.001 s. To characterize the ma-
chine behavior, it requires an FEA program 220 min to simulate
the induction machine dynamics from 0 to 1.5 s, while the FR
method needs 40 s. The flux density results generated by FEA
and FR programs at t = 0.255 s are compared in the Figs. 9
and 10. The normal component of the flux density in the air

Fig. 9. Normal component of the flux density in the air gap. (a) FEA result.
(b) FR result.

Fig. 10. Tangential component of the flux density in the air gap. (a) FEA
result. (b) FR result

gap is shown in Fig. 9. The tangential component of flux den-
sities is shown in Fig. 10. It is observed that FEA and FR
techniques produce almost identical flux density results in the
air gap.

In Fig. 11, the electromagnetic torque predicted by FEA
and FR programs is compared. The calculated radial forces
using these two methods are also shown. In the figure, the
solid lines are for the FEA result and the dashed lines are for
the FR result. The proposed FR method demonstrates satis-
factory accuracy at only a small fraction of the computation
effort.
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Fig. 11. Comparison of torque and radial force calculation.

B. Current-Regulated Field-Oriented Control

Proven to have wide bandwidth dynamic performance, the
indirect field-oriented control is commonly used in high-
performance induction motor drives. An indirect field-oriented
control method is implemented in the FEA and FR programs
as [18]

dθe

dt
= ωe =

P

2
ωrm +

ieqs

τr ieds
(26)


ias

ibs

ics

 =


cos θe sin θe

cos
(

θe −
2π

3

)
sin

(
θe −

2π

3

)
cos

(
θe +

2π

3

)
sin

(
θe +

2π

3

)


[
ieqs

ieds

]
(27)

where ieqs and ieds are the q- and d-axis stator currents and τr

is the rotor electrical time constant. The value of rotor time
constant is 0.21 s, which was obtained from the FEA model
using the characterization method suggested in [19]. By keeping
ieds constant, the field-oriented control is achieved. It is assumed
that the motor is initially deenergized and the initial motor speed
is zero. The load torque is assumed to be proportional to the
square of the rotor speed with rated torque produced at rated
speed. The moment of inertia of the rotor is J = 0.03 kg · m2 .
After t = 0, ieds = 10.1 A, and ieqs = 17.8 A. The step sizes for
both methods are 0.001 s. The simulation ends at t = 1.5 s.
For this study, the FEA program required about 220 min to
complete the simulation, while FR program requires 3 min.
The startup simulation results, which include electromagnetic
torque, radial force, and motor speed, are shown in Figs. 12
and 13, respectively. In the figures, the solid lines are for the
FEA result and the dashed lines are for the FR result. Using the

Fig. 12. Torque and radial force responses of field-oriented control startup.

Fig. 13. Field-oriented control startup speed response.

result of the FEA method as a reference, the torque estimation
error by the FR method is less than 3%, and it decays to zero in
steady state. The speed estimation error is less than 2% and it
converges to zero in steady state.

VI. DISCUSSIONS

The FR-based modeling approach represents an alternative
to using FEA to evaluate machine performance (vector flux
densities, torque, and radial force) under arbitrary stator current
input. It is recognized that a classic method of characterizing
machine performance is to use a qd model. Specifically, one can
use FEA calculations to obtain the machine response, and then,
characterize the machine using an equivalent qd circuit.

There are several differences of note between the qd and
FR models. First, the qd model is based on scalar quantities
(i.e., only tangential force is calculated). Moreover, the result-
ing qd model does not provide localized values of flux or force
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density. Backcalculating the flux densities in the stator/rotor
teeth is a nontrivial task. Although the FR only calculates the
flux densities in the air gap, these results can be used to ap-
proximate stator and rotor tooth flux densities, and thus, also
back-iron flux densities quite easily. In addition, obtaining the
q–d parameters requires several transient FEA evaluations, and
then, a characterization routine to fit the model to “measured”
data. In the FR technique, which uses the time-domain convo-
lution, the FEA evaluation and the characterization is one in the
same.

Finally, in terms of accuracy, several have noted the deficiency
of the traditional qd model to accurately capture machine per-
formance over a wide range of operating conditions. The inac-
curacy is primarily due to the fact that the rotor circuit dynamics
are frequency-dependent (i.e., the rotor resistance is frequency-
dependent due to skin effect). Several authors have proposed
enhanced qd models to account the frequency-dependent dy-
namics [20]–[22]. However, these models require additional
FEA evaluations in order to accurately characterize the system.
In FR technique, the rotor basis functions are expressed as im-
pulse responses, so the frequency-dependent characteristic is
automatically incorporated.

As an example to illustrate the difference in accuracy, the
torque versus speed characteristic of the machine used in this
research was calculated using a traditional qd model and the FR
method and the FEA model. The qd model was characterized
using a parametric fit approach, where steady-state torque data
around the rated speed are fitted in a genetic algorithm program
[23].

The steady-state torque–speed characteristics of the qd, FR
models, and the FEA model are shown in Fig. 14, in which the
rated voltage is applied. Since the input of the FR technique is
stator current, the current values obtained from the FEA solution
are used as the input to the FR model. It is observed that the
FR technique performs well over the entire speed range. The
standard qd model yields accurate results in the region where it
is characterized. However, the torque prediction error becomes
large at low speeds because of the large slip frequency. In today’s
applications where power electronics are involved, one may
argue that such a torque versus speed curve is not relevant, since
stator excitation is adjusted to always keep the slip frequency
low. However, if the machine is connected to an inverter, where
high-frequency switching is introduced, a similar frequency-
dependence exists and leads to even larger error in the torque
predicted by the traditional qd model [20].

As mentioned in Section III, it is assumed that the machine is
operated in the linear magnet region. To investigate influence of
the magnetic saturation to the FR technique, several additional
studies were performed. Under these studies, all the constant-
speed described in Section V were repeated with the stator
current increased to 40, 60, and 80 A, respectively. With the
FEA results as the references, the maximum torque errors are
shown in Table II. In addition, the flux density magnitude in
the stator teeth and rotor teeth obtained from the FEA program
are shown in the table. As expected, it is observed that the
performance of the FR model degrades as one operates further
into saturation.

Fig. 14. Torque–speed characteristics of the FEA model, FR model, and stan-
dard qd model.

TABLE II
TORQUE ERROR OF THE FR TECHNIQUE VERSUS MAGNETIC LOADING

Finally, it is noted that the basis functions used in FR have
some dependence on the rotor position due to the difference
in material properties of the rotor bars and teeth. In this paper,
the position dependence was neglected and independent basis
functions [kns(φsm ), kts(φsm ), knr(φrm ), and ktr(φrm )] were
employed. In doing so, one loses the ability to accurately cal-
culate torque ripple due to slot–slot interaction. However, the
basis function identification and convolution have been applied
to time-varying systems [24]. Therefore, in order to achieve fur-
ther accuracy of the result and include the slot harmonics effect
in the electromagnetic torque, one could characterize a family of
basis functions at distinct rotor positions and use a time-varying
discrete-time convolution to estimate fields and forces within
the machine. This is the topic of ongoing research.

VII. CONCLUSION

In this paper, a field reconstruction method is proposed for
induction machine simulation. The stator and rotor basis func-
tions are identified and stored based upon results of a few FE
evaluations. Once basis functions are established, the normal
and tangential components of the flux density in the air gap and
associated normal and tangential forces are reconstructed under
arbitrary stator excitation. The FR results are almost identical
to those obtained by the FE method at a fraction of the compu-
tational effort.

Although in this paper only a current-source drive is provided,
the proposed FR model can be coupled with external circuits.
Therefore, the FR technique can be extended to a voltage control



374 IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 24, NO. 2, JUNE 2009

application. It can also be connected to power electronics circuits
to evaluate the system level performance of the induction motor
drive.

In the simulation results shown in the previous section, three-
phase balanced current sources are used as the input. From (19)
and (20), it can be seen that the influence of each phase to the flux
density in the air gap is independent. Therefore, the FR method
is also applicable to the case where the current or voltage source
is unbalanced without losing accuracy.
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