
A Final Frontier in
Environment-Genome Interactions?
Integrated, Multi-Omic Approaches to
Predictions of Non-Communicable
Disease Risk
Alexandra J. Noble1, Rachel V. Purcell 2, Alex T. Adams1, Ying K. Lam1, Paulina M. Ring3,
Jessica R. Anderson3 and Amy J. Osborne3*

1Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford,
United Kingdom, 2Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand, 3School of Biological
Sciences, University of Canterbury, Christchurch, New Zealand

Epidemiological and associative research from humans and animals identifies correlations
between the environment and health impacts. The environment—health inter-relationship
is effected through an individual’s underlying genetic variation and mediated by
mechanisms that include the changes to gene regulation that are associated with the
diversity of phenotypes we exhibit. However, the causal relationships have yet to be
established, in part because the associations are reduced to individual interactions and the
combinatorial effects are rarely studied. This problem is exacerbated by the fact that our
genomes are highly dynamic; they integrate information across multiple levels (from linear
sequence, to structural organisation, to temporal variation) each of which is open to and
responds to environmental influence. To unravel the complexities of the genomic basis of
human disease, and in particular non-communicable diseases that are also influenced by
the environment (e.g., obesity, type II diabetes, cancer, multiple sclerosis, some
neurodegenerative diseases, inflammatory bowel disease, rheumatoid arthritis) it is
imperative that we fully integrate multiple layers of genomic data. Here we review
current progress in integrated genomic data analysis, and discuss cases where data
integration would lead to significant advances in our ability to predict how the environment
may impact on our health. We also outline limitations which should form the basis of future
research questions. In so doing, this review will lay the foundations for future research into
the impact of the environment on our health.
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INTRODUCTION

Genomics is revolutionising our understanding of the biological basis of disease, and it is undisputed
that our individual genotypes, in combination with lifetime exposures (our environments), are
critical determinants of non-communicable disease (NCD) risk. For example, it is well established
that the prenatal and early life environments strongly influence the risk of non-communicable
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disease in later life [the Developmental Origins of Health and
Disease, DOHaD (Barouki et al., 2012)], This is exemplified in a
recent study into the role of genetics, early life nutrition and their
interaction on adult health, which demonstrated that high genetic
risk for non-communicable disease can be mitigated by an
environmental intervention [i.e., longer duration of
breastfeeding (Wang et al., 2021)]. However, definitively
connecting environmental exposures to specific health
outcomes remains stubbornly challenging, and it is generally
unclear whether the associations we see are causal, partly causal,
or simply correlative. While techniques such as causal inference
and Mendelian randomisation have improved our ability to
determine putative causal relationships between risk factors
and disease [e.g., (Timpson et al., 2005; Pingault et al., 2018)],
there is currently no way to predict whether, or how, a particular
environmental exposure may help or harm human health, in a
way that gives us the ability to assign cause and effect. Thus,
mitigating the impacts of the environment on our health largely
remains an elusive goal.

One factor that contributes to our lack of power to detect cause
and effect for environment-phenotype interactions, is that the
impact of our environment on our genome is governed by much
more than our genotypes (Manolio et al., 2009). For example,
there are complex layers of information embedded in the
structure of the genome and epigenome that impact gene
expression. Due to the complex nature of the interactions
between these information levels and the other nuclear and
cellular processes that emerge within the complex system, we
still do not fully understand what happens at the genomic level to
translate environmental signals into phenotypes, and very rarely
do we have the power to draw conclusions, because, while the
genetic code is largely static, the multiple, dynamic, and
interacting layers of genome structure and organisation are
open to environmental influence. Thus, while it is clear that
there is a distinct sequence of events that must happen in order to
translate environment into phenotype, exploration of these
events, and any attempt to predict the effects of the
environment on our health, will require integration of
information from across multiple biological and information
levels. For example, quantifying DNA methylation in response
to a particular environmental variable will only provide an
indication that something biologically meaningful might be
happening at a few loci in the genome—it may well mark
biologically relevant pathways, but it cannot tell us the impact
that methylation has on gene expression. Therefore, we struggle
to predict the phenotypic impact of DNA methylation alone.
Many complex biological questions, such as understanding the
biological basis of environment-driven health inequalities, have
not been addressable with one-dimensional reductionist
approaches, and advances in our ability to predict the impact
of our environment on our health therefore will require
integration of multi-layered genomic data in a way that
accounts for interactions between and across the biological layers.

Developments in ‘omics techniques and technologies, and
environmental electronic data (e.g., from wearables) means
that we are at a point in our endeavours where we can explore
an integrated, multi-omics approach to health and wellbeing.

Here, we first describe the major and most well studied layers of
genome regulation, and focus on the application of these to NCDs
and complex disease, reviewing current efforts to integrate multi-
omic data in disease. We describe new and emerging technologies
that will improve our ability to assign a phenotypic impact to an
environmental exposure. In doing so, we argue that progress in
this field will be dependent on our ability to undertake integrated,
multi-omic approaches that fully explore the environmental and
molecular basis of complex disease.

How Our Genomes are
Regulated—Potential Areas for
Environmental Influence
Perhaps one of the most well-defined epigenetic signals for gene/
genome regulation is DNA methylation. DNA methylation is a
common form of epigenetic genome regulation, wherein methyl
groups are added to the 5’ positions of cytosines in cytosine-
guanine dinucleotides (CpGs), which further correlates with
histone modifications and chromatin accessibility. Importantly,
patterns of DNA methylation can be altered by environmental
exposures (Jaenisch and Bird, 2003) and we know that they can be
influenced by early-life environment (in utero and early post-
natal), which, itself, is associated with variation in later-life
disease susceptibility (Gluckman et al., 2008; Barouki et al.,
2012; Lillycrop and Burdge, 2012). However, while changes in
DNA methylation are often identified in response to a changing
environment (Feil and Fraga, 2012), methylation by itself does
not explain the full complexity and diversity of the genomic
response to the environment (Freeman et al., 2016). That is
because DNA methylation is just one type of epigenetic signal
that can work to regulate gene expression (Jaenisch and Bird,
2003; Jirtle and Skinner, 2007; Bonev and Cavalli, 2016). Other
mechanisms include non-coding RNA (ncRNA) transcription
(Jaenisch and Bird, 2003; Weber et al., 2007) and modification of
histone protein tails within nucleosomes, both of which directly
affect 3-dimensional (3D) genome organisation and, ultimately,
nuclear functions (Risca and Greenleaf, 2015; Bonev and Cavalli,
2016).

The 3D organisation of the genome emerges from the sum of
the functions that are occurring within the nucleus, and is widely
considered to have a role in the regulation of gene expression
(Cremer and Cremer, 2001; Lieberman-Aiden et al., 2009). For
example, DNA looping brings distant gene enhancers and
promoters together, which promotes the recruitment of RNA
polymerase and ultimately gene transcription. Chromosomes are
organised into highly conserved territories (Dixon et al., 2012;
Sexton et al., 2012) and at a finer scale, precise domains, termed
topologically associating domains (TAD). Genes located in the
same domain are often co-expressed and are insulated from genes
in neighbouring domains by domain boundaries (Nora et al.,
2012). Perturbations of domain boundaries can disrupt both
short- and long-range genomic interactions, sometimes with
pathological outcomes (Franke et al., 2016). 3D genome
organisation and chromatin accessibility can be studied using
techniques such as ATAC-seq [Assay for Transposase-Accessible
Chromatin with high-throughput sequencing (Buenrostro et al.,
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2015)] and proximity ligation experiments such as Hi-C
(Bickmore and van Steensel, 2013; Stevens et al., 2017).
Understanding 3D genome structure is important because
chromatin remodelling is a dynamic and often adaptive
response to the environment (De Nadal et al., 2011;
Matilainen et al., 2017). For example, exposure to inhaled
industrial chemicals (Fang et al., 2014) or heat stress (Petesch
and Lis, 2008) results in alterations to chromatin structure,
changing chromatin accessibility, with associated downstream
effects on gene expression. 3D genome organisation has recently
been implicated in the pathogenesis of obesity and diabetes
(Fadason et al., 2017), highlighting the importance of
integrating spatial information into interrogations of the
genetic basis of complex disease.

Non-coding RNAs (ncRNAs) are transcribed from DNA but
not translated into protein. Despite this, ncRNAs have broad
roles in genomic regulation. For example, microRNAs (miRNAs)
guide argonaute proteins to degrade mRNAs containing sequence
targeted by the seed region of the miRNA, culminating in
transcriptional silencing (Peters and Meister, 2007). ncRNA
transcription can be altered by environmental factors (Saxena
and Carninci, 2011; Tani et al., 2014) to directly influence gene
expression patterns (Guttman and Rinn, 2012; Engreitz et al.,
2016). Further, DNA methylation can influence ncRNA
transcription to produce health-related phenotypic effects
(Lujambio et al., 2010), suggesting the two processes can work
together. Importantly, ncRNA interacts with chromatin and can
alter the accessibility of genomic regions for transcription (Castel
and Martienssen, 2013), and can remodel 3D genome structure
(Cubeñas-Potts and Corces, 2015; Dekker and Misteli, 2015;
Engreitz et al., 2016; Rowley and Corces, 2016).

Histone protein tails can be modified by post-translational
modifications that include the addition of either acetyl groups or
methyl groups (Bannister and Kouzarides, 2011), which can affect
chromatin accessibility and alter transcription profiles. Patterns
of histone modification can be explored by techniques such as
mass spectrometry (MS) and chromatin immunoprecipitation
and sequencing (ChIP-seq) (Esteller, 2007). Histone
modifications can interact with DNA methylation, and this
interaction has been associated with disease phenotypes [e.g.,
cancer (Vaissière et al., 2008)], as both are sensitive to the
environment (Jirtle and Skinner, 2007; Dai and Wang, 2014).
Therefore, histone modifications, and chromatin accessibly, are
strong determinants of gene expression profiles.

In addition to the more traditionally recognised records of
environmental impact on the genome, there are other sources of
information that reflect and respond to the interactions between
the host genome and environment. For example, the microbiome,
proteome and metabolome each emerge from the complex web of
environment, genetic, structural and epigenomic interactions. It
is clear that perturbations of these systems can indicate an effect
on health, which can be interrogated under an ‘omics platform,
and integrated into subsequent analyses:

The human microbiome is generally defined as the
‘complete set of genes and genomes of the microbiota
(bacteria, archaea, eukaryotes, and viruses) that reside in
and on a person’. More extensive definitions also include

aspects of the surrounding environmental conditions in
their definition (Marchesi and Ravel, 2015). Microbiomes
can be analysed at different levels, be that their
metagenome (DNA) to assess community composition and
functional capacity, or at the metatranscriptome (RNA) level;
at this level, RNA is used to define community composition as
well as characterise the activity of the organisms at the time of
sampling. The microbiome, and by extension, the metagenome
and metatranscriptome, is variable, depending on many
environmental factors, such as anti- and probiotic use, age,
diet, environment and physical activity levels. Despite few
causal examples, it is widely recognized that changes in the
gut microbiota are associated with the onset and progression of
non-communicable diseases [reviewed in (Noce et al., 2019)],
including autoimmune diseases such as multiple sclerosis (MS)
and rheumatoid arthritis [RA, (Tsai et al., 2021)].
Comprehensive investigations of the microbiome are, by
their nature, integrative requiring analyses of the
metagenome and metatranscriptome; direct and indirect
interactions between the microbiome and the host, and
environment-microbe-metabolism interactions (Kurilshikov
et al., 2019).

The proteome is the complete set of proteins expressed by
an organism, tissue or cell at a particular point in time.
Naturally, the proteome shares components of its dynamism
with the transcriptome and the epigenome as a result of the
process of gene expression. However, the proteome is widely
recognized as not having a 1:1 relationship with the
transcriptome, due to factors affecting translation and post-
translational modifications [e.g., (Ghazalpour et al., 2011;
Wang et al., 2019)]. Therefore, a complete picture of
cellular activity cannot be determined from the
transcriptome alone. Recent studies connect the proteome
to immune dysregulation and obesity (Garrison et al., 2017)
and traits relevant to the DOHaD hypothesis (Sarli et al.,
2021). Moreover, the proteome is known to respond to
environmental stimuli (Koga et al., 2011; Calamini and
Morimoto, 2012) including diet (Vileigas et al., 2019),
chemical exposure (Lee et al., 2018) and smoking (Sinha
et al., 2021). Therefore, given the often imperfect
correlation between the transcriptome and the proteome,
proteomic data is one layer of omic information that adds
value to integrated, multi-omic approaches; it allows for the
refinement of the number of target genes deemed necessary to
investigate further, since gene expression changes that are not
correlated with a coordinated change in protein expression can
be discounted from downstream analyses.

The metabolome comprises all current low molecular weight
cellular metabolites, indicating current cellular activity levels. The
metabolome essentially denotes the end product of cellular
processes, allowing a functional readout of an organism
(Wang et al., 2020). Altered metabolomes have been identified
in many NCDs, including Type II diabetes and obesity (Fiehn
et al., 2010; Zhang et al., 2014; Merino et al., 2018). Furthermore,
hormones and other metabolites can be programmed in utero
through epigenetic mechanisms (Rauschert et al., 2017), such that
a child’s metabolism can be influenced by its environmental
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exposures (Cottrell and Ozanne, 2008). This means that the
metabolome may contribute to our understanding of the
developmental basis of disease by refining our ability to assign
functional changes to environmental exposures. Recent studies
also demonstrate the value of integrating metabolome with
microbiome data to profile disease pathogenesis, for example,
a recent review of autoimmune disease describes how the
microbiome and associated metabolic profile are altered by
‘modern’ lifestyles, which is impacting on inflammatory
responses (Tsai et al., 2021). Given that the metabolome itself
is the end product of cellular processes, it stands to reason that,
like the proteome, it can be indirectly altered by environmentally-
induced genomic, epigenetic, structural and microbiotic changes.
This means that integration of the microbiome in multi-omics
studies will provide indications of the functional significance of
observed genomic and epigenetic changes, which may highlight
mechanistic pathways that are important for the aetiology of
disease.

Lastly, it is important to also consider the implication of an
individual’s underlying genetic variation, and its interaction with
environmental factors, when assessing the impact of the
environment on genome regulation. For instance, we know
that GWAS explain only a portion of the heritability of NCDs
such as obesity and MS (Silventoinen et al., 2016; International
Multiple Sclerosis Genetics Consortium, 2019) and that GWAS
cannot explain all the variability of traits; many causative loci
exist in intergenic regions of the genome (Manolio et al., 2009),
and further, disease heritability has been observed to interact with
an individual’s environment [e.g., (Hüls et al., 2021; Jacobs et al.,
2021; Ye et al., 2021)]. Therefore, since underlying genetic
variation may influence, e.g., methylation patterns if that
variation is at a modifiable cytosine residue, genetic variation
cannot be discounted when attempting to predict the phenotypic
effects of our environments.

How do the layers of complexity interact to influence
phenotypes? Reductionist approaches that do not integrate
these different levels of information may miss many of the
crucial interactions that determine how our genomes
orchestrate a biological response to our environments. In so
doing, we will lessen our ability to investigate the effects of
our environmental exposures and lose our power to predict
how they might be influencing our health.

How Research is Exploring Integrated
Approaches to Understanding the Impact of
the Environment on Disease
Non-communicable diseases are diseases that are non-infectious
in nature, but nevertheless cause severe and debilitating disease,
and are a major public health burden and cause of morbidity and
mortality (W.H. Organization, 2019). Perhaps due to our
‘transition to modernity’ (Corbett et al., 2018) such diseases
are increasing in prevalence globally, making them the focus
of intense research. Here, we focus on examples of the application
of integrated, multi-omic approaches to several NCDs that are all
themselves a product of the interaction between environmental
exposures and genetic predisposition.

Obesity
Obesity is by far the most prevalent NCD for which data on
integrated, multi-omic approaches exist. This is because obesity is
a major public health burden, increasing in prevalence (Abarca-
Gómez et al., 2017) and is a risk factor for many other metabolic
diseases such as type II diabetes, cardiovascular disease, and some
cancers (Johnson et al., 2015; Weihrauch-Blüher et al., 2019).
Obesity is driven by a combination of an underlying genetic
predisposition, and environmental factors (Albuquerque et al.,
2017), including in utero exposures (Tounian, 2011). This means
that unpacking underlying genetics, maternal and individual
environmental effects to determine which environmental
impacts are causative, versus those that are correlational, is
difficult.

A handful of studies demonstrate an integrated approach, not
necessarily on the impact of the environment, but rather,
exploring multiple layers of genomic data to detect genomic
changes relevant to a phenotype. For example, a recent study
by van der Kolk et al. (van der Kolk et al., 2021) investigated the
link between obesity and metabolic complications through the
application of RNA sequencing, proteomics and metabolomics;
their study cohort contained 49 BMI-discordant monozygotic
twin pairs, meaning their shared genetic background enabled the
researchers to build a metabolic and genomic profile of acquired
(environmentally-dependent) obesity. The authors detected a
downregulation of mitochondrial pathways and an
upregulation of inflammatory pathways, along with alterations
to the metabolome that were specific to acquired obesity.
However, while this is a strong example of investigations of
multiple types of genomic data, these data are not strictly
integrated in their analyses. Rather, Kolk et al. present these
data side-by-side as independent profiles in a manner that
reinforces the biological interpretations without achieving true
integration as a means of tracing cause and effect.

Integration, has been attempted in other obesity studies. For
example, Chen et al. (Chen et al., 2021), citing a recent
epigenome-wide association study that linked individual CpG
sites with obesity traits (Sayols-Baixeras et al., 2017), explored the
correlation between DNA methylation and gene expression.
Their study reported associations between genes that were
differentially expressed and differentially methylated. They also
identified two novel genes, S100A8 and S100A9, expression of
which correlated negatively with methylation and were associated
with increased obesity. This study highlights the strength of
integrating DNA methylation and gene expression data to
deepen our understanding of the relationships between DNA
methylation and gene expression in complex phenotypes.

Many genomic analyses are applied to human studies
retrospectively as part of post-hoc analyses, and many are also
limited in their scope, in terms of type of data available, tissue of
origin, and cohort size. Unsurprisingly, then, we can gain more
insight into integrated multi-omic approaches using models of
human disease. For example, Joslin et al. (Joslin et al., 2021)
recently attempted to functionally interpret genome-wide
association study data in obesity, by capturing information on
chromatin accessibility, gene expression, and long-range
enhancer-promoter interactions, in human-induced pluripotent
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stem cell (iPSC)-derived hypothalamic neurons. Their data
indicated that the genetic architecture at GWAS loci is
complex, but nevertheless they were able to detect putative
enhancer-modulating variants that have regulatory properties
in their cell line, at obesity-related loci. The strength of their
highly integrated approach, and the increase in scope offered by
using a cell line (therefore only a ‘single’ genome) has allowed
them to develop a pipeline to prioritize GWAS target genes for
functional follow up, potentially limiting the number of
functional loci that further studies may need to investigate in
human-based cohorts. Joslin et al.’s study highlights the potential
of integrating multiple layers of genomic complexity. The
expansion of their pipeline to include, e.g., DNA methylation
data, along with environmental variables that drive epigenetic
variation between individuals, could drive further discoveries in
this area, by facilitating a clearer understanding of how epigenetic
mechanisms contribute to the association between SNPs and
enhancer-promoter interactions.

These examples (Chen et al., 2021; Joslin et al., 2021)
demonstrate a role for integrated genomic analyses in the
relationship between the environment and a phenotype. As
more data is generated, and as techniques improve, finding a
way to integrate environmental variables into models of
integrated multi-omic approaches to obesity will be a key
driver of our ability to assign causation to both environmental
factors and genetic and epigenetic mechanisms in the
development of obesity. This is because an individual’s specific
environment can tell us something meaningful about the
exposures that may be driving differences at the cellular level,
that may be impacting on, e.g., gene expression, the microbiome,
and the proteome. Current computational capabilities and
research methodologies suggest that the further integration of
3D genome structure, to aid in the linking of risk variants to target
genes (Krijger and De Laat, 2016), and the unequivocal role of the
microbiome in obesity, (Hartstra et al., 2015; Jayasinghe et al.,
2016; Maruvada et al., 2017), is a natural focal point for future
research in this disease.

Type II Diabetes
Type II diabetes (T2D) is characterised by a resistance to insulin,
meaning that blood glucose levels in the body are not able to be
controlled properly, often leading to hyperglycemia, obesity,
hypertension and hyperlipidemia, and eventually severe
complications such as blindness and kidney failure (W.H.
Organization, 2016; Khawandanah, 2019). T2D is becoming a
global epidemic (Kaiser et al., 2018), thus, understanding
environmental drivers of T2D, and how they may interact
with an individual’s underlying genetics to cause disease, will
be fundamental to a global approach to mitigate its rise in
prevalence.

In a meta-analysis of diabetes GWAS, Schierding et al.
(Schierding and O’Sullivan, 2015) integrated SNP data, 3D
genome and eQTL data, to identify ‘spatial hubs’, or
connections between loci in genes that contribute to disease.
Additionally, Xue et al. (Xue et al., 2018) combined data from
gene expression studies of human blood with GWAS and
identified a suite of putative functional genes for T2D, linking

GWAS data with a potential functional (gene expression) output.
Further, Xue’s research integrated of DNA methylation data with
epigenome annotation data and identified three genes (CAMK1D,
TP53INP1, ATP5G1) as having a plausible regulatory mechanism
in T2D. In the context of this review, these findings are
instrumental for their ability to refine large (e.g., GWAS)
datasets and improve their predictive power, by associating
disease-associated SNPs with downstream and integrated
layers of genomic regulation (Schierding and O’Sullivan,
2015), and by the integration of SNPs with gene expression
and epigenome annotation data (Xue et al., 2018). These
approaches could be readily applied to other NCDs, with
environmental covariables included where studies allow, for
example, integrating lifestyle and family data; accounting for
heritable genetic variation and lifestyle risk factors will to
strengthen the ability to assign causation to a particular risk
factor (environment/lifestyle or genetic).

There are multiple examples of GWAS to determine
susceptibility loci for T2D. However, the large majority of the
loci identified fall in non-coding regions of the genome, meaning
that it can be highly challenging to determine which genes and
transcripts their variation is relevant to, and which molecular
pathway they may influence. Integrated multi-omic approaches
are valuable to attempt to predict which disease-associated loci
are functionally relevant, in the context of the phenotype of
interest. This is important when considering environmental
drivers of complex disease, because if individual variation at a
particular locus is associated with an environmentally-influenced
disease, determination of the functional impact of that locus may
help us predict whether that locus may be causative for disease, or
simply correlated. For instance, that locus may mark an
underlying CpG site, or be located within a ncRNA sequence,
which we know are sensitive to environmental influence, and
therefore may influence the expression of genes that may be
phenotypically relevant. To this end, efforts have been made to
develop analytical pipelines that integrate genetic, genomic and
biological data to produce networks that indicate connectivity
between GWAS loci and candidate causal genes. For example,
Nyaga et al. (Nyaga et al., 2021) used integrated genomics to ask
whether there were any shared genetic features of type I diabetes
(T1D) and T2D; their functional approach integrated Hi-C and
eQTL data to characterise the functional impacts of disease-
associated SNPs, identifying genetic regulatory regions that
alter regulation of genes common to both T1D and T2D, that
are associated with disease development. Additionally,
Fernández-Tajes et al. (Fernández-Tajes et al., 2019) present
an analytical pipeline to define the transcriptional activity of
T2D-associated SNPs, integrating genomic data to reveal
connectivity between candidate genes at T2D GWAS loci.
These approaches, while distinct, can be applied to other
diseases, using other types of genomic data, thereby providing
insights into the diseases that are identifying new means of
stratification, prevention and treatment, which collectively
prove the importance of these types of approaches.

Mens and colleagues (Mens et al., 2020) used large-scale
GWAS data to detect variants associated with T2D traits, and
integration of DNA methylation and miRNA expression data
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confirmed that several of these miRNAs were associated with
T2D traits. The data used by Mens et al. was obtained from
human peripheral blood, therefore their identified miRNAs could
be considered as biomarkers for T2D. Their study highlights yet
another strength of integrated analyses; the computational
reduction of a huge study into practical targets by assigning a
more likely function to those targets, prioritising areas for
follow up.

Multiple Sclerosis
Multiple sclerosis (MS) is an autoimmune disorder that affects
the central nervous system (CNS). It leads to the destruction of
myelin in the CNS, blocking the transport of signals along the
nerves to the brain, meaning that movement, sensation and body
functions are impacted. MS is characterised by periods of
recovery and relapse over a number of years, before ending in
disability, with no treatment available at the progressive
disease stage.

The International Multiple Sclerosis Genetics Consortium,
and others, have published numerous GWAS to identify
genetic factors that contribute to MS [e.g., (Consortium et al.,
2007; International Multiple Sclerosis Genetics Consortium,
2019; Mo et al., 2019)], however, there are also multiple
known environmental risk factors for MS development, most
prominently, lack of vitamin D exposure, smoking, and exposure
to Epstein-Barr virus (EBV) (O’Gorman et al., 2012). For
example, a recent longitudinal study in military veterans
demonstrated a strong link between EBV and MS (Bjornevik
et al., 2022). Despite these known associations, and the complex
interplay between genetics and the environment, most studies of
MS focus only on GWAS, or are conducted at the candidate-gene
level, for example, correlations between promoter methylation
and gene expression levels (Hosseini et al., 2020). A small number
of studies have started to integrate genomic information across
multiple genome technologies and layers of regulation. For
example, Gokuladhas and colleagues (Gokuladhas et al., 2020)
integrated SNPs from (amongst other neuromuscular disorders)
MS patients with Hi-C and eQTL data, to identify target genes to
prioritise for therapy and treatment of MS. Their approach,
essentially determining SNP-mediated gene regulation,
highlights the potential for the integration of SNP and spatial
data for more precisely identifying the molecular mechanisms of
complex disease, as well as providing evidence of disease-related
SNP functionality, particularly given that most SNPs are in
intergenic regions of the genome. Gokuladhas et al. have since
expanded the approach to include protein-protein interaction
data, and applied it more widely to autoimmune diseases to reveal
shared biological processes across autoimmune diseases
(Gokuladhas et al., 2021).

Mo et al. (Mo et al., 2019) employedMendelian randomisation
to explore GWAS, gene expression (eQTL) and epigenome-wide
association study (mQTL) data, to determine whether e- and
mQTL data, in combination with GWAS, was a viable way to
prioritise relevant GWAS loci for further investigation. While not
integrated in the strict sense (the authors explored overlap and
validation in the individual datasets) this technique was highly
successful in identifying potentially causal SNPs and DNA

methylation differences, demonstrating the strength of this
methodology to identify genomic features that may participate
in the pathogenesis of MS.

Rather than interrogating genomic loci such as SNPs,
Cervantes-Gracia and others (Cervantes-Gracia and Husi,
2018) used publicly available expression datasets to identify
the most common molecules relevant to MS. Their approach
was to generate interaction networks to identify molecular
pathways/conserved networks that are deregulated across MS.
They integrated mRNA and miRNA expression profile datasets,
and impressively, combined these with differentially expressed
genes identified through studies of, e.g., EBV infection, allergies
and other autoimmune diseases. Their research uncovered a suite
of molecules (mRNAs, miRNAs) that were correlated and
deregulated in their datasets, that they could use to infer novel
findings about the primary cause of the molecular changes seen in
MS blood samples.

Based on evidence gathered from research into other NCDs,
namely, that an integrated, multi-omic approach is valuable and
insightful, together with the paucity of such approaches being
applied to MS, highlights how much MS research will benefit
from the integration of multiple layers of genomic data,
particularly in light of the strong and well-identified
environmental factors [e.g., (Bjornevik et al., 2022)]; this
approach will allow us to interrogate the impact of the
environment and the genome on MS progression, providing
novel insights into the biological basis of disease development
and progression.

Alzheimer’s Disease
Alzheimer’s disease (AD) is the most common type of dementia, a
form of brain degeneration that ablates memory and cognitive
functions. AD is increasing in prevalence, most likely due to
longer life expectancies globally, and it is estimated that 100
million people will have AD or dementia by the year 2050
(Palmqvist et al., 2020). There is currently no treatment to
prevent the progression of dementia (Mehta et al., 2017),
although some drugs can help to manage symptoms, if
detected early. However, because AD is usually only diagnosed
at an advanced age, early diagnosis and rapid treatment is
challenging.

Alzheimer’s disease has been the focus of multiple GWAS over
recent years, with over 20 independent loci associated with the
disease (Van Cauwenberghe et al., 2016). Further, there are
known environmental risk factors that associate with a
diagnosis of AD, such as obesity, hypertension and tobacco
smoking (Østergaard et al., 2015). Because AD is currently
incurable, understanding the environmental and genetic
determinants of AD is paramount if we wish to be able to
both prolong life via early diagnosis, and develop effective and
additional therapies, and integrated, multi-omic studies are the
clear pathway to achieving this. Currently, genomics,
transcriptomics, proteomics and metabolomics are offering a
more comprehensive view of molecular pathways underlying
the development of neurodegenerative diseases. For example,
they are helping to differentiate subtypes of patients based on
their specific molecular signatures, to aid individual treatment
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plans for patients (La Cognata et al., 2021). Additionally, genomic
technologies are profiling the transcriptome of the brain with
neurodegenerative diseases (Neff et al., 2021), and while studies
explore the ‘omics’ of AD, few have done so in an integrated
manner, to improve the power of their associations.

Thus, as with many complex diseases, truly integrated, multi-
omic studies are scant. However, a recent comprehensive study by
Nativio and colleagues (Nativio et al., 2020) used transcriptome
profiling of human brain samples to inform proteomic analysis
and ChIP-seq, followed by an exploration of the overlap of their
identified genes, with GWAS and eQTL data. This powerful study
identified upregulation of transcription- and chromatin-related
genes (including the histone acetyltransferase genes for H3K27ac
and H3K9ac) in AD, culminating in the new knowledge that the
histone modifications H3K27ac and H3K9ac and genome
reconfiguration are potentially important AD. Further, multi-
omic atlases of AD from human brain tissue are currently being
constructed (De Jager et al., 2018), that include genotypes, whole
genome sequencing, DNA methylation, chromatin
immunoprecipitation, RNA and miRNA profiles, with the
focus of understanding the molecular mechanisms of AD in
the target organ, rather than a cell line or animal model.
Nativio’s study suggests that we can use integrated data to
explore genomic mechanisms associated with AD, and genome
atlases will allow us to integrate data across multiple levels. This is
important in an uncurable disease such as AD, where the
identification of targets and the development of new therapies
is imperative.

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a chronic inflammatory
autoimmune disease that affects joints. It is characterised by
increased inflammation in the synovial membrane, which causes
swelling and damages the joint via bone erosion. Like other
autoimmune diseases, RA is characterised by periods of flare/
exacerbation and of remission, and, again like other autoimmune
diseases, its aetiology is a complex mix of underlying genetic risk
factors (e.g., particular HLA class II genotypes (Raychaudhuri
et al., 2012) and environmental risk factors [age, in utero exposure
to tobacco, personal tobacco use, obesity, and a high sodium diet
(Deane et al., 2017)]. There is no cure for RA, but joint
destruction can be delayed by prompt and aggressive anti-
inflammatory treatment.

Thus, because of the known genetic determinants of RA that
lead to increased susceptibility, which is further enhanced by the
multiple environmental risk factors, that are themselves all able to
modify the epigenome [e.g., (Joubert et al., 2012; Besingi and
Johansson, 2014; Florath et al., 2014; Jaffe and Irizarry, 2014;
Ivorra et al., 2015; Sayols-Baixeras et al., 2017; Noble et al., 2021)],
researchers are applying multi-omics approaches to identify
networks that drive disease progression, and to prioritise
candidate genes for study, all of which may aid in the
identification of targets for novel therapeutics. For example,
Whitaker et al. (Whitaker et al., 2015) used an unbiased
approach to integration (i.e., they did not assume a
relationship between DNA methylation and gene expression)
to prioritise candidate genes; they devised a strategy to identify

‘multi-evidence genes’ (MEGs) to identify triple-evidence genes
that overlap between epigenome, transcriptome and sequence
data, to collate sets of genes that were implicated in RA. Their
approach identified seven triple-evidence genes, validating some
as candidates for new RA therapies. Further, an assessment of RA
pathogenesis was undertaken via an integrated DNAmethylation
and gene expression approach by Li Yim and colleagues (Li Yim
et al., 2021); they identified a suite of 59 genes with coordinated
changes at the gene transcript and DNAmethylation level, which
were associated with immune response pathways. Their research
provided more evidence for molecular changes associated with
RA pathogenesis, and their approach, like that of Whitaker et al.,
will be useful in aiding in the prioritisation of targets for new
therapeutics, via the identification of potential new drug targets.
Another benefit of a multi-omic approach is that it provides the
power to interrogate disease-relevant tissue in a dynamic way,
allowing a fuller understanding of the variants that shape disease.
A relevant example of this is that of Ha et al. (Ha et al., 2021), who
explore GWAS, gene expression and DNA methylation in CD4+
T cells in patients with RA; CD4+ T cells are the most disease-
relevant tissue in RA. Their research identified a larger number
(2575) of RA-specific differentially expressed genes that
correlated with RA-specific differentially methylated regions of
the genome, and that were enriched in T cell differentiation and
activation pathways. They were also able to show, through their
multidimensional approach, that many of the differentially
expressed genes were explained by eQTLS (771, for
transcripts) and mQTLs (83, for differentially methylated
regions). This comprehensive study clearly demonstrates that
integrating SNP, gene expression and DNA methylation data can
aid in the dissection of genome regulation in a complex disease
state, and Han’s methodology has the potential to be applied
readily to other complex diseases.

Inflammatory Bowel Disease
Inflammatory bowel disease (IBD) includes Ulcerative colitis
(UC) and Crohn’s disease (CD), both of which are
characterised by chronic inflammation in the gastrointestinal
tract, are debilitating, and can lead to severe and life-
threatening complications. Like MS and RA, IBD patients
experience remission and relapse of symptoms. IBD is thought
to arise from activation of the intestinal mucosa immune system,
and the disease has been subject to extensive genetic and
epigenetic examination in patients. This is largely driven via
the collaborative effort from groups in the International IBD
Genetics Consortium (Ventham et al., 2013) and currently, over
200 susceptibility loci have been identified as playing a role in IBD
(Liu et al., 2015), with methylation sites in genes linked to
inflammation detected in whole blood of IBD patients (Adams
et al., 2014; Somineni et al., 2019). In addition to genetic risk loci,
several environmental factors have been associated with the
development of IBD, for example, geographic location,
cigarette smoking, diet and gastrointestinal infection
(Baumgart and Carding, 2007). Thus, given the complexity of
IBD, an approach that integrates multi-omic data, including that
of the microbiome, metabolome and proteome, will enable the
identification of genomic loci that are more likely to mediate
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disease risk, and those which may be modified or influenced by
the environment. Work in this area has begun, with a study by
Ventham et al. (Ventham et al., 2016) which related genomic and
gene expression data to cell methylation profile; Ventham’s study
identified five differentially methylation regions and 439
differentially methylated positions that were IBD-specific, and
further, by using paired genetic and epigenetic data, showed how
site-specific DNA methylation changes correlate with underlying
genotype differences. Therefore, since their methodology enables
the relation of site-specific DNA methylation changes to
underlying genotype, it provides a platform for future studies
in this area, via the ability of this pipeline to identify biomarkers
that can be used for early diagnosis and treatment.

As well as biomarkers for early diagnosis, multi-omic
approaches have been used to identify patients at risk from
IBD relapse. IBD is an inflammatory disease which is located
in the gut, therefore many studies of the disease focus on non-
genetic omics, as exemplified in a study by Borren et al. (Borren
et al., 2020), who employed proteomic andmetabolomic profiling
of patient blood samples, with the addition of fecal metagenome
sampling, to determine whether they could identify biomarkers
that suggest relapse. Their data was used to generate a combined
risk score of relapse from the proteomic and metabolomic profile,
which was correlated with fecal microbiome composition, to
indicate a correlation between particular gut microbes and risk
scores, which was predictive of future risk of relapse in patients.
The strength of this method is in the integration of ‘omic data
from a non-invasive source (blood samples), leading to the
development of a risk profile that will go some way to
improving the ability to predict relapse, helping patients with
the uncertainty of the future path of their condition.

The gut microbiome experiences alterations during periods of
active IBD, termed functional dysbiosis, and work by Lloyd-Price
and colleagues (Lloyd-Price et al., 2019) set out to understand
these changes comprehensively, at the system level. As part of the
Integrative Human Microbiome Project, they characterised the
gut microbial ecosystem gathering multiple microbial profiles
(metagenome, metatranscriptome, proteome, metabolome, and
virome). Their research demonstrated characteristic changes in
microbe composition, and changes to microbe transcription and
metabolite pools, that were disease-specific, indicating that their
integrated approach had identified relationships between multi-
omic features that were potentially central to periods of IBD
activity.

Can Integrated Genomics Shed Light on the
Aetiology of Multimorbidities?
Two or more NCDs often co-exist in the same individual
(multimorbidity), which can further complicate the dissecting
of the gene-environment interactions that are important for
disease progression. Coupled with the fact that many disease-
associated SNPs are in non-coding regions of the genome
(Hindorff et al., 2009), and that gene regulatory elements can
strongly impact distant genes strongly, limiting our capacity to
make assumptions of regulatory function based on gene
proximity alone (Schierding et al., 2016), a non-integrated

approach that does not take into account the spatial landscape
of the genome, and the interactions therein, will limit our ability
to understand the aetiology of multimorbid traits. Research is
currently underway to address this question, challenging our
understanding of the functional impact of SNPs; specifically,
Fadason et al. (Fadason et al., 2018) integrated spatial data
across multiple human traits from the GWAS catalogue,
identifying eQTL-eGene pairs (phenotype-associated SNP-gene
pairs with confirmatory interaction data), that were missed by
proximity GWAS association, as well as inter-chromosomal
eQTL associations. The highlight of this approach was the
ability of the research methodology to identify phenotype-
associated genetic components relative to multimorbidity and
individual disorders, demonstrating the strength of this approach
in understanding the aetiology of complex disease, and providing
a platform for the future integration of other multi-omic and
environmental data.

Current Computational and Bioinformatic
Challenges/Limitations
Exploration of the highly interactive and dynamic layers of
genome regulation in an integrated and informed way will
enable us to begin to understand the biological basis of human
diseases that are not ‘Mendelian’ (one gene, one disease) in
nature. By doing so, we can improve our power to understand
more about the aetiology of diseases that have a large
environmental component. However, there are series of
specific limitations that need to be addressed before progress
can be made in this area. For example, the inclusion of additional
omic data types in a study will increase the cost of that study,
meaning that if budgets remain the same, sample sizes will be
smaller and our power to detect associations will be reduced.
Moreover, epistatic interactions are frequently ignored in
analyses of genetics, and the sample sizes required to properly
assess epistatic interactions are larger than those required to test
single measurements against some outcome variable. This means
that the addition of multiple omics further increases the
complexity.

Complexity is compounded by the need for statistical
power—single data sets are becoming larger as more
simultaneous measurements are performed (e.g., arrays,
transcriptomes, single-cell omics) and correction for multiple
testing already makes discovery more difficult - combining omics
increases the number of tested relationships exponentially,
reducing power and increasing computational load. The
difficulty is not just a matter of the availability of sufficient
computational resources; development of new statistical
techniques is required, and datasets must be of a sufficient size
to discover underlying effects.

Thus, producing sufficiently sized datasets for multi-omic
analysis will require a combination of multiple analysis runs,
and either combining cohorts from multiple centres, or meta-
analysis of previously produced datasets. This necessity means
that dealing effectively with batch effects is highly important
(Leek et al., 2010; Lazar et al., 2013; Price and Robinson, 2018).
Another complication is capturing each multi-omic variable
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which is on its own trajectory. For instance, the timing of the
process for addition of a methyl group to a cytosine will differ
from the timeframe over which a difference in mRNA or protein
levels are detected, or when proteins are activated by post-
translational modification and localised to a particular cellular
subcompartment, or the timeframe over which biological effect is
observed. Analysing these events can lead to very different results
purely based upon when samples are collected.

Another paradox is that DNA methylation, predominantly
seen in promoter regions, is known to negatively correlate with
gene expression via silencing of genes (Herman and Baylin,
2003). However, methylation present in the gene body is less
well characterised for its involvement in gene expression (Jones,
1999). Thus, understanding this process is dependent on where
events are taking place within the genome.

A major limitation currently in our investigations of the
etiology of complex traits is the well-characterised bias in
genomic data in public data repositories. A large proportion of
genomic data is derived from populations of European ancestry,
which is a major limitation given the known differences in
genomic architecture between populations. This means that
calculated effect sizes and risk scores based on underlying
genetic variation cannot be assumed to be relevant to a global
population (Martin et al., 2017; Duncan et al., 2019), with recent
research clearly demonstrating the value of including diverse
populations in the discovery and replication phases of GWAS,
increasing the powers of discovery (Wojcik et al., 2019). The
generation of diverse, globally-representative datasets for multi-
omic studies is therefore a current limitation that will need to be
addressed to demonstrate the applicability of techniques and
research findings.

Future Technologies
As well as improving our bioinformatics capacities to fully
integrate data and environmental variables as far as possible,
future strength in this area will be driven by new and emerging
genome sequencing technologies, which are not yet represented
in the research examples reviewed here. For example, Oxford
Nanopore Technology (ONT) sequencing devices utilise
nanopore channels through which DNA strands pass, each
nucleotide base causing a different ionic current, which can be
called. Nucleotide base calling allows for the differentiation
between all five different cytosine residues (cytosine C,
methylcytosine 5-mC, 5-hydroxymethlcytosine 5-hmC,
formylcytosine 5-fC and 5-carboxylcytoine 5-caC) (Laszlo
et al., 2013; Jain et al., 2016; Rand et al., 2017), potentially
serving as a powerful tool for the integration of these data, but
which is currently technically and computationally challenging
on a platform that sequences all of these factors individually. A
limiting factor of ONT is the currently high error rate, which has
discouraged some researcher. This, however, is continuing to be
addressed with the introduction of new chemistry and further
optimised computational corrections (Senol Cali et al., 2019).

Rapid progress has been made in the development of single-
cell omics, the profiling of single cells from a heterogenous cell
population. We now have the capability to profile the genome,
epigenome, transcriptome, and proteome at the single-cell level,

unlike bulk sequencing, which provides comprehensive data as a
single population of cells. For instance: single-cell RNA
sequencing is widely applied to profile transcriptome-wide
gene expression in individual cells (Tang et al., 2009); single-
cell epigenomic technologies, such as chromatin
immunoprecipitation sequencing (Rotem et al., 2015) and
assays for transposase-accessible chromatin using sequencing
(Cusanovich et al., 2015) are used to define epigenetic states of
individual cells, and; several advanced approaches, including
cellular indexing of transcriptomes and epitopes by sequencing
(Stoeckius et al., 2017) and RNA expression and protein
sequencing assay (Peterson et al., 2017) allow the simultaneous
investigation of both gene and protein expression. Thus, single-
cell omics is a powerful tool for elucidating cellular and
microenvironmental heterogeneity in order to characterise rare
cell types and explore genomic, epigenetic, transcriptomic, and
proteomic regulatory mechanisms at the cellular level.

The fundamental features of single-cell omics technologies are
isolating, barcoding, and sequencing individual cells to determine
their DNA, mRNA, or proteins which can all be carried out in
parallel. These integrative analyses allow molecules to be
deciphered for genotypic and phenotypic characteristics of
individual cells, and their underlying regulatory mechanisms
(Chappell et al., 2018). The first and most critical step in
performing single-cell omics is isolating viable single cells from
a population of interest (Wang and Navin, 2015), followed by the
challenge of identifying sequences from the same cells (Klein et al.,
2015). Despite the technical challenges, it is now possible to define
a landscape of intercellular heterogeneity and functions associated
with pathophysiological processes (Lee et al., 2020). The
advancement of single-cell omics and integrative analysis of the
genome, epigenome, transcriptome, and proteome at the single-cell
level will undoubtedly enable unprecedented levels of precision and
resolution in our understanding of complex cellular systems, while
also providing an unprecedented opportunity to uncover novel
biological processes. Furthermore, single-cell technologies have
been adapted to studies of the spatial and higher-order
chromatin structure of the genome, for example, ligation- and
non-ligation-based sequencing technologies [reviewed in (Zhou
et al., 2021)], as well as large-scale single-cell proteomic studies
[e.g., (Specht et al., 2021; Slavov, 2020)], both of which indicate the
depth to which the impact of the environment on genome
regulation can now be probed in a cell-specific manner. Of
importance to our ability to undertake advanced multi-omic
studies in single cells will be in the analysis of single-cell data,
particularly as such analyses will require the generation and
analysis of complex networks. Progress in this area will likely
require Deep Learning and Machine Learning approaches, which
are currently being developed (Ji et al., 2021) and are highlighting
the use of such approaches for identifying novel biological features
that has not been possible up to now. Single-cell omics will
therefore be a fundamental tool in studies of the impact of the
environment on genome regulation; genomic features that are
modified by the environment do so in a cell- and tissue-dependent
manner, meaning our ability to determine the mode of action of
particular environmental variables, with respect to disease, will be
greatly enhanced.
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Lastly, a major consideration for our future ability to assign
phenotypic impacts to environmental factors will be our power to
integrate an individual’s underlying genetic propensity with the
environmental risks associated with disease traits. Recent
advances in the development of polygenic risk scores (PRS)
for multifactorial diseases with a large degree of heritability
and genetic determinants, such as most NCDs, are enabling
new developments that have not been possible via traditional
GWAS. For instance, a recent study by Hüls et al. (Hüls et al.,
2021) demonstrated associations between high PRS for obesity,
and sociodemographic and lifestyle factors in obese children;
these associations were undetectable via traditional GWAS (due
to the lack of power associated with large cohorts and individual
loci). Further, a study of cardiovascular disease and T2D
combined GWAS datasets to calculate PRS, and identified an
association between high PRS and an improved disease status
upon adherence to a modified lifestyle (Ye et al., 2021). This
clearly highlights the potential that PRS has in capturing more of
the variance of polygenic traits, and the ability of PRS to be
associated with the environment. Integration of PRS may
drastically improve our ability to determine the phenotypic
impact of environmental factors.

CONCLUSION

Integrated, multi-omic approaches, in collaboration with
environmental data, will help us to robustly decipher the
complex relationship between the environment, genome

regulation, and associated phenotypes, to produce
confirmation of the genome regulatory impacts of
environmental exposures that we know are drivers of
health impacts. Working in an integrated, multi-layer
fashion will give us more power to predict how the
environment interacts with genome regulation and
influences health; however, there are challenges to develop
novel statistical methods, collect cohorts of sufficient size,
access sufficient computational resources to perform the
analysis, and interpret the results. Future research in this
area will transform our understanding of how our genomes
respond to and translate an environmental exposure into a
phenotype, providing new pathways for investigation into the
biological basis of disease.
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