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Abstract

One of the major benefits of cloud computing is the ability for users to access resources on a pay-as-you go basis,

thereby potentially reducing their costs and enabling them to scale applications rapidly. However, this approach

does not necessarily benefit the provider. Providers have the responsibility of ensuring that they have the physical

infrastructure to meet their users’ demand and that their performance meets agreed service level agreements.

Without an accurate view of future demand, planning for variable costs such as staff, replacement servers or

coolers, and electricity supplies, can all be very difficult, and optimising the distribution of virtual machines presents

a major challenge.

Here, we explore an extension of an approach first proposed in a theoretical study by Wu, Zhang, & Huberman

which we refer to as the WZH model. The WZH model utilises a third-party intermediary, the Coordinator, who uses

a variety of cloud assets to deliver resources to clients at a reduced price, while making a profit and assisting the

provider(s) in resource forecasting. The Coordinator acts as a broker.

Users purchase resources in advance from the broker using a form of financial derivative contract called an option.

The broker uses the uptake of these options contracts to decide if it should invest in buying resource access for an

extended period; the resources can then subsequently be provided to clients who demand it.

We implement an extension of the WZH model in an agent-based simulation, using asset classes and price-levels

directly modelled on currently available real-world data from markets relevant to cloud computing, for both

service-providers provisioning and customers’ demand patterns. We show that the broker profits in all market

conditions simulated, and can increase her profit by up to 36% by considering past performance when deciding to

invest in reserved instances. Furthermore, we show that the broker can increase profits by up to 33% by investing

in 36-month instances over 12-month. By considering past performance and investing in longer term reserved

instances, the broker can increase her profit by up to 44% for the same market conditions.

Keywords: Utility computing, Brokerage, Market-orientated computing, Cloud federation, Financial derivatives,

Options, Markets

Background
It is generally accepted that on-demand pricing for

cloud computing resources offers benefits to consumers

[1,2]. They have full operational control of costs by

being able to start and stop resources on demand, and

they do not have to engage in the capital expenditure of

building their own infrastructure, hiring IT systems sup-

port staff, or investing in maintenance of physical

machinery. Furthermore, if different providers of cloud

computing resources could interoperate, a federated

cloud would in principle allow units of cloud-computing

resources to be traded as commodities on an open

marketplace, thereby allowing for the price of resources

to smoothly vary while the market mechanism enables

matching of consumer demand to provider supply [3].

But would open on-demand trading of cloud-comput-

ing resources with variable pricing actually benefit a

cloud service provider? Purchasing goods and services in

advance of delivery allows the provider to plan and pre-

pare for the future. How can the provider ensure they

are maximising profit and reducing cost if they must

provide resources without knowledge of future demand?

Such knowledge offers benefits to providers in multi-

ple ways. The provider must ensure that there is a phy-

sical capability for demanded resources, but when

consumers engage in on-demand pricing the providers

must predict what usage is required, and ensure that the

infrastructure is there.
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When do they invest in new infrastructure? As manu-

facturing processes improve and economies of scale

increase, the real cost of infrastructure decreases while

its technological capability increases. So it is better for

the provider to wait for as long as possible before

investing in additional capability so they get the best

value for money [4]. But how do they know when is the

best time?

As for any business, the provider has variable costs,

which are related to the output being generated. How

can these be planned? Running a thousand servers

instead of just one will require many more support staff

and engineers: if too few are employed, failures can

mount up and cause service outages or downtime. This

downtime is not only costly in terms of SLA (Service

Level Agreement) penalty fees and refunds, but also in

terms of reputational risk; yet if too many are employed,

expenditure is wasted on staff that are surplus to

requirements [5].

Electrical power consumption is another key variable

cost [6]. If the provider has a good view of future energy

demand, they may gain a discount by forecasting their

requirements and supplying this to their energy supplier.

It is also difficult to schedule customer instances to

servers efficiently, without advance notification of usage

[7,8]. Most cloud computing providers require no dura-

tion of execution to be stipulated when the instance is

started. So efficiently scheduling instances such that the

number of powered servers is reduced is a very tough

challenge.

A simple method of capacity planning is simply to

track trends in demand, and ensure there is enough

capacity (with an additional margin) to meet the maxi-

mum previously experienced. However, enterprise cloud

computing resources have only been available to consu-

mers for a relatively short amount of time, and it is

likely that demand information is too variable and

incomplete to build a reliable forecast without the con-

sidering users own predictions.

Currently, most providers offer fixed price models for

immediate delivery. Market-leader Amazon Web Ser-

vices (AWS) also offer a spot price model, where the

price varies depending on current supply and demand,

and winning bidders gain access to the resource until

the spot price moves above their maximum bid. These

schemes do not aid in capacity planning.

There are a number of alternative schemes that could

be used. Users could instead purchase derivatives con-

tracts, which give the user contractual rights to a

resource at some specified later date [9]. Futures con-

tracts are a type of derivative that give buyers guaran-

teed access to the resource in advance of when it is

delivered, usually in return for an upfront payment on

signing the contract followed by a final settlement when

the resource is delivered: the user is obliged to take

ownership of the resource on the delivery date that the

contract specified. Alternatively, options contracts give

buyers the legal right (but not an obligation) to purchase

a resource for an agreed strike-price on (or sometimes

on-or-before) some later delivery date [10]. Derivatives

such as futures and options are commonly used in a

number of commodity markets for industrial inputs

such as wheat, oil, natural gas, and metals, and various

types of financial derivatives have also in recent decades

become notoriously commonplace in the global financial

markets for equities, currencies, and bonds.

In a limited sense, current commercial cloud-comput-

ing vendors are already offering both spot and forward

contracts. Amazon Web Services (AWS) is a major sup-

plier of cloud infrastructure services, and in the AWS

terminology a remotely-hosted virtual machine and its

associated software is known as an Amazon Machine

Instance, often abbreviated to AMI or simply referred to

as an instance. AWS offer two types of fixed price asset

classes: On-Demand Instances and Reserved Instances.

AWS on-demand instances are fixed-price resources

that are delivered as soon as they are purchased, and

the purchase price is set by AWS. AWS reserved

instances allow users to pay a reduced price per unit

time for a resource, by paying an upfront fee. This fee

guarantees them a reduced on-demand charge for a spe-

cified period, either 12 or 36 months.

The key question that we explore in this paper is this:

is it possible for a cloud-computing services broker to

use these derivative contracts in combination to reliably

provide cheaper resources to the consumer and also aid

in predicting future usage?

Cloud brokerage
A broker makes a profit by matching buyer’s demands

with seller’s supplies: the broker uses a variety of meth-

ods to achieve a best price between these parties, and

typically makes a profit either by taking a commission

fee from any completed deal, or by varying the broker’s

spread, or some combination of fees and spread. The

spread is the difference between the price at which a

broker buys from sellers and the price at which it sells

to buyers.

In a commodity market where goods cannot be differ-

entiated between suppliers on any basis other than

price, all that matters to the buyers is that they pay a

price they are comfortable with, and all that matters to

the sellers is that they receive a price they are also com-

fortable with [11]; typically the broker’s fee and/or

spread are tolerated by the buyers and sellers because

the broker acts as a provider of liquidity: the buyers and

sellers do not have to spend time finding potential

counterparties to their transactions and then negotiating

Rogers and Cliff Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:2

http://www.cloud-casa.com/content/1/1/2

Page 2 of 12



with them, and they do not have to worry about there

ever being no counterparties to trade with.

The broker aims to satisfy these parties’ requirements

while ensuring that he or she makes a profit. In this

work, we focus on a simple way of achieving this by

purchasing advance rights or obligations on resources,

via derivative contracts. When the derivatives contract

matures and the corresponding resources are delivered,

the broker can then sell the resources to clients who

need to use them: in this context, the broker is using

the derivatives as a mechanism for hedging risk in the

uncertainty over future demand and supply.

The broker’s skill lies in forecasting when to purchase

the resources in advance and when to simply provide

their clients with resources purchased directly from the

spot market or from the broker’s own private stock of

resources.

A simple broker model consists of two stages. In the

first stage, the broker plans what to buy. The broker

will make a forecast of demand, determine what and

when to buy and then will make any advanced pur-

chases from the provider.

In the second stage, clients approach the broker for a

resource. If the broker has previously purchased a

resource, they can sell it to the client for a profit if the

cost is less than the client wants to pay. If not, the bro-

ker must purchase an on-demand instance and provide

it to the client.

But how can the broker effectively predict usage? Wu,

Zhang, and Huberman suggested a two-period model

(which we refer to hereafter as the WZH model) for

resource reservation in which in the first period the user

knows her probability of using the resource in the sec-

ond period, and purchases a reservation whose price

depends on that probability [12].

Consider N users who live for two discrete periods.

Each user can purchase a unit of resource from a service

provider to use in the second period, either at a dis-

counted rate of 1 in Period 1, or at higher price C, where

C > 1, in Period 2. In Period 1, each user only knows the

probability that they will need the resource in Period 2–it

is not known for certain until the next period.

A third agent, the Coordinator, is introduced who

makes a profit by aggregating the users’ probabilities

and absorbing risk through a two period game described

below:

1. Period 1: Each user i submits to the Coordinator a

probability, qi, which does not have to be the real

probability, pi, that they will require a unit of

resource in Period 2.

2. Period 1: The Coordinator reserves qini units of

resource from the resource provider at the discount

price for use in Period 2, where ni is the number of

units of resource required by each user. For simpli-

city in this simulation, ni = 1 for all users.

3. Period 2: The Coordinator delivers the reserved

resources to users who claim them. If the amount

reserved by the Coordinator is not enough to

cover the demand, the Coordinator purchases

more from the resource provider at the higher

unit price C.

4. Period 2: User i pays:

f(qi) if resource is required

g(qi) if resource is not required

The contract can be regarded as an option if g(qi) is

paid in Period 1 (i.e. as a premium), and f(qi)-g(qi) is

paid in Period 2 (i.e. as a price) should the resource be

required. In Period 1, the resource is reserved, but the

user is not under any obligation to purchase.

Wu et al. showed that if the following conditions

could be met, the Coordinator would make a profit:

• Condition A: Each user prefers to use the service

provided by the Coordinator, rather than to deal

with the resource provider (for example, by achiev-

ing cost-reduction)

• Condition B: The Coordinator can make a profit

by providing the service.

The following truth-telling conditions are not comple-

tely necessary, but are useful, for conditions A and B to

hold:

• Condition T1 (truth-telling): Each user submits his

true probability in Period 1 so that he expects to pay

the lowest amount later.

• Condition T2 (truth-telling): When a user does not

need a resource in Period 2, it is reported to the

Coordinator in the same period.

The following specific case was proved to meet these

conditions, where k, a constant chosen to alter the price

paid by the customer, is set to 1.5 and C is set to 2:

g(pi) =
kp2

i

2

f (pi) = 1 +
k

2
− kpi +

kp2
i

2

In previous work [13], we validated Wu et al.’s claims

though simulation experiments and showed that a sim-

ple evolutionary optimization process operating on an

initially maximally dishonest pool of users results in the
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pool of users becoming more honest over time when

interacting with the WZH system.

The WZH model can be used to forecast demand as it

encourages users to submit an honest estimate of future

usage by rewarding them with a reduction in cost over

time, compared to buying direct from the provider at

the higher rate C.

In our model, we refer to the Coordinator as the bro-

ker, as the Coordinator performs a role traditionally per-

formed by a financial broker. In the first period, the

broker asks each user i to submit a probability pi in

advance that they will use a resource, and pays a pre-

mium g(qi).

The broker sums these probabilities, which is the fore-

cast of how many resources will be required in the next

period.

Once a forecast has been made, the broker must

make a decision on whether to hedge the risk and

invest in a reserved instance, or to wait until the next

period and buy an on-demand instance. The broker

does this by comparing the performance of a reserved

instance over the past instance term and comparing it

to the amount of capacity it currently has available

through reserved instances over the same period in the

future. It considers whether another purchased reserved

instance will be suitably utilised such that it gives better

returns than delaying the purchase and buying on-

demand later. The broker does this by using a variable

called the threshold–if the resource is likely to be used

more than the threshold it invests; if not, it does not. In

the rest of this paper we denote the threshold by θ.

The margin resource utilisation (i.e. the likely utilisa-

tion of an additional reserved instance) is calculated as

follows:

Previous demand profile A = [dt-36........dt ]

Future capacity profile B = [ct........ct+36 ]

Deficit profile C = A - B

For each resource required, the

Marginal Resource Utilisation (MRU) is the ratio of

items in C > 0, and the key decision is then:

If MRU > θ: Buy reserved instance and therefore

increase current capacity profile;

If MRU < = θ: Do not invest, “wait and see”.

In the second period, users choose if they should exe-

cute their right to use the resource. If they wish to, they

pay f(qi)-g(qi) to use the resource.

The broker gives the user access to one of their pre-

viously purchased reserved instances for the full calen-

dar month. If the broker has not purchased enough, it

buys an on-demand resource from the provider. Poten-

tially, the broker could also offer fractions of months for

a reduced price, but in our model here, we only offer

full-month resources.

Simulation
We now present results from our computer simulation

experiments that explore the performance of the WZH

system. The simulation, which was programmed in

Python [14], was developed to explore the dynamics of

the WZH model in situations where supply and demand

fluctuate in patterns directly inspired by historical

records of economic activity in a number of distinct

real-world market sectors. For each sector, simulations

were implemented with a pool of 1000 user agents sub-

mitting probabilities, and each simulation was run 100

times with systematic changes in threshold θ, between 0

and 1, in increments of 0.01. These simulations were

run for reserved instance contract lengths of both 12

and 36 months. Further details of the simulation are as

follows:

Market demand data

We are not aware of any public-domain real-world data-

sets showing historical demand data for cloud comput-

ing resources, aggregated over a large number of users,

over the kind of timescales that a broker such as the

Coordinator in the WZH model would need to operate

on. Nevertheless, intuitively, we can expect there to be

periodic fluctuations in demand from any one user, and

yet we can also expect that in some market sectors

there will be significant correlations in demand from the

population of users (or “user-base”) within that sector. If

demand across all sectors is sufficiently decorrelated,

then aggregate demand would be a constant “white

noise” and provisioning for that demand would be rela-

tively straightforward.

However, although such an aggregate white-noise

steady-state of demand would be desirable, it is unli-

kely to be achieved in practice for sustained periods. It

is the presence of difficult-to-predict peaks and

troughs in aggregate demand from real-world markets

that makes the problem of adequately provisioning for

that demand a deep and challenging research issue–

the research issue that is addressed here. For this rea-

son, we have used public domain data on real-world

market activity that can plausibly be argued to serve as

a good proxy for real-world demand for cloud comput-

ing in certain market sectors, and where there are

known to be peaks and troughs. Our belief is that by

demonstrating success on this real-world proxy data,

we can plausibly claim that success of our system

would also be likely for any other similarly fluctuating

pattern of demand.

We assume that demand for computing resources by

an e-commerce application will be related to sales

being executed by the application (for example, an

increase in on-line sales will result in an increase in
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web server and credit card processing). Following this

assumption, datasets were obtained from the UK

National Statistics Office on the Non-Seasonally

Adjusted Index of Sales at Current Prices from 1988

(earliest available) to 2011 for four different market

sectors. These four sectors were chosen as they have a

strong relationship to IT usage and they vary differ-

ently over the period, therefore allowing the new

model to be evaluated in a number of market condi-

tions. The duration over which these statistics were

gathered represents a typical period of modern times

where demand has changed frequently, with times of

both recession and growth. As such, it is a plausible

model of market variance. The demand patterns were

normalised between 0, where none of the N users sub-

mit a resource request, and 1, where all N users sub-

mit a resource request. This allows the model to be

assessed between the extremities of low and high

demand.

All of the demand profiles showed regular annual pat-

terns (such as large increases around Christmas), but to

aid evaluation each profile is assigned a name appropri-

ate to its market behaviour over the entire period:

Rapid growth market

(Figure 1)–Data on Non-Store Retailing: All Businesses–

Little annual growth followed by rapid growth over

smaller period.

Steady growth market

(Figure 2)–Data on Non-Store Retailing: Large Busi-

nesses–Steady annual growth throughout.

Recession and recovery market

(Figure 3)–Data on Non-Store Retailing: Small Busi-

nesses–Shrinkage in annual demand followed by period

of recovery.

Steady market

(Figure 4)–Retail of Computer and Telecoms Equip-

ment–Some peaks and troughs but fairly steady

throughout.

User agents

Each user records when it has previously needed a

resource during the simulation. When asked to submit a

probability to the broker, the user will aggregate all the

data from the same month in previous years to deter-

mine the probability it will need a resource again.

In the second period, the number of users who exe-

cute is determined from the market demand for that

month. The users who execute their right to use a

resource are chosen at random.

The approach means that users are submitting a true

probability based on their previous performance, but

may not execute at this probability due to changes in

market demand.

Service provider pricing

The unit of resource being purchased is an Amazon

Web Services EC2 Standard Small Instance (US East).

At the date of simulation (July 2011), these were being

advertised at a cost of Dh = $0.085/hour (approximately

$60 for a whole month of usage) for an on-demand

instance. For reserved instances, the same type instance

Figure 1 Non-store retailing: all business (rapid growth) market

profile.

Figure 2 Non-store retailing: large business (steady growth)

market profile.

Figure 3 Non-store retailing: small business

(recession&recovery) market profile.
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for 12 months costs R = $227.50 plus Rh = $0.03/hour,

and costs R = $350 plus Rh = $0.03/hour for a 36

month reserved instance.

Broker pricing

Users are charged a price to access the instance for a

calendar month based on the values of f(pi) and g(pi)

suggested by Wu et al:

g(pi) =
kp2

i

2
if required

f (pi) = 1 +
k

2
− kpi +

kp2
i

2
if not required

To incentivize users to use the broker’s service, it

must save them money compared to going to the provi-

der direct.

If the user is submitting honestly (which was proven

by Wu et al. to benefit the user), they will expect to pay:

w(pi) = pif (pi) + (1 − pi)g(pi)

If they purchase resources directly from the provider,

they will expect to pay: w(pi) = Cpi where C is the on-

demand cost of a resource.

Figure 5 shows the pricing model for the simulation.

Wu et al.’s original pricing equations were based on an

on-demand price of $2. In our simulation, the cost of an

on-demand instance for the entire month is $60. Using

a simple iterative algorithm, it was found that increasing

Wu et al.’s original pricing equations by a factor of 35

maximises the brokers profit, while remaining cheaper

for the user than using the providers service directly.

Although the broker in our model is only offering

monthly options, in a practical implementation users

would be free to purchase additional on-demand cap-

ability from the provider or broker for smaller units of

time during periods where demand is above their

current quota of options. Where the application has

been built to rapidly scale automatically on a cloud

infrastructure, this allows a user to make cost reductions

through forecasting, without being confined to a limited

amount of resources.

Results
Our approach determines the total profit made by the

broker for different values of the threshold, for a num-

ber of market demand profiles and both 12- and 36-

month contract lengths. Figures 6 and 7 show the total

profits obtained for the various levels of thresholds

tested, for 12- and 36-month contract terms

respectively.

The broker is profitable

From Figures 6 and 7, it can be seen that the broker

always profits, regardless of the market profile, contract

length of the reserved instance, or the threshold (apart

Figure 4 IT equipment (steady) market profile.

Figure 5 Resource pricing comparison.

Figure 6 Total profit achieved for different thresholds using 12

month reserved instances.
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from the trivial case when the threshold is 1 and

reserved instances are never purchased).

In our experiments, the worst performing case was

when the broker purchases 12 month instances when

the market grows rapidly and reserved instances were

always purchased by broker. However, even in this sce-

nario the broker still manages to make a total profit of

$0.8 M.

By considering past performance through the use of

the optimum threshold, and purchasing 36 month

instances instead of 12-month ones, the broker can

increase its profit by 44% in the same market conditions.

If these conditions were to change to that of a steady

market, this profit increases by 164%. This was the best

performing case in our simulations.

Considering past performance benefits the broker

Generally, the broker benefits by setting a threshold so

that reserved instances are purchased based on pre-

vious performance, instead of being purchased as stan-

dard practice. Setting the optimum threshold can

increase profits by up to 21% when purchasing 36

month reserved instances, and 36% when purchasing

12 month reserved instances (Table 1); this is illu-

strated in Figure 8.

Using Figure 8 as an example, we can see why the

broker profits when past performance is considered.

When 36 month instances are always purchased, profits

cycle every 36 months. The broker does not consider

past performance, so large investments are made in

reserved instances at these intervals which subsequently

decreases profit. These reserved instances are subse-

quently not fully utilised by user demand, as shown in

Figure 9.

When the threshold is set to the previously deter-

mined optimum threshold, we see that the cost of large

investments made every 36 months decreases and the

profit is smoothed. The broker now only buys resources

when it believes they are required. Investments are

made throughout the simulation, as and when are

required, rather than at regular intervals. From Figure 9,

it can be seen that over purchasing of resources is sig-

nificantly reduced and more closely matched to the

annual demand, hence the decrease in costs. The

amount of investment made is proportional to market

demand as shown in Figure 9 as users submit their

requirements and the broker buys up capability.

A similar pattern is seen for 12 month instances, illu-

strated in Figure 10, where more reserved instances are

available than required. By examining the broker’s

Figure 7 Total profit achieved for different thresholds using 36

month reserved instances.

Table 1 Profits (and increase) achieved for threshold of 0 and optimum threshold

(θ = Threshold) 36 Months 12 Months

Profit $M Profit $M

θ = 0 θ = θopt Change θopt θ = 0 θ = θopt Change θopt

Rapid Growth 1.15 1.27 10.4% 0.72 0.88 1.00 13.6% 0.50

Steady Growth 1.85 1.85 N/A 0.00 1.39 1.41 1.4% 0.38

Recession & Recovery 1.48 1.80 21.6% 0.80 1.21 1.65 36.4% 0.92

Steady 2.22 2.45 10.4% 0.82 1.82 1.89 3.8% 0.80

Figure 8 Annualised profit for broker in recession and recovery

market profile, using 36 month reserved instances.
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capacity and profit in Figures 10 and 11 when the

threshold is set to be optimum, we see that more profit

is achieved due to the predicted demand closely match-

ing that available in reserved instances. This pattern is

repeated for the other market profiles.

However, we can see that for the steady growth mar-

ket where the broker uses 36 month reserved instances,

the optimum threshold is at 0, meaning that the broker

should always buy a reserved instance. Reserved

instances purchased for sale in the steady growth market

are likely to be fully utilised due to the increased

demand experienced in subsequent periods. A similar

pattern is seen when 12 month reserved instances are

used.

It is more profitable for the broker to purchase longer-

term contracts

Table 2 show increases in profit by choosing 36 month

contract terms over 12 months. It was found that it is

always worth paying the higher upfront cost for 36

month reserved instance contract terms. When longer-

term instances are purchased, total profit is increased by

22- 33% when the threshold is 0, depending on the mar-

ket conditions. When the threshold is set to its opti-

mum, this profit is increased by 9-31%. Although the

upfront cost is larger, longer contracts allow the broker

to maximise profit by being able to provider instances at

a lower cost per unit.

Further market observations

In the rapid growth market, the optimum threshold is

0.5 for 12 month instances and 0.72 for 36 months. In

this market, for most of the time, past performance will

be a fair indicator of future performance due to steady

annual demand, hence the moderate threshold level.

However, when rapid growth hits, the reserved instances

will be better utilised and become more profitable–

when this happens, the 36 month instances reap the

benefits by being available for times of boom, hence the

higher threshold.

In the recession and recovery market, high optimum

threshold values of 0.8 for 36 month reserved instances

Figure 9 Annualised resource usage for broker in recession

and recovery market profile, using 36 month reserved

instances.

Figure 10 Annualised resource usage for broker in recession

and recovery market profile, using 36 month reserved

instances.

Figure 11 Annualised profit for broker in recession and

recovery market profile, using 12 month reserved instances.

Table 2 Increase in profits achieved by using 36-month

reserved instances over 12-month reserved instances

(θ = Threshold) θ = 0 θ = θopt

Rapid Growth 30.7% 27.0%

Steady Growth 33.1% 31.2%

Recession & Recovery 22.3% 9.1%

Steady 22.0% 29.6%
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and 0.92 for 12 month were identified. A higher thresh-

old protects the broker from investing in a reserved

instance that is subsequently not used when demand

decreases due to recession. Investing in a 36 month

reserved instance before a period of recession is likely to

result in a loss, as demand for these will decrease and

the upfront cost not repaid–this explains the high

threshold.

In the steady market, again, it is most profitable to use

a fairly high threshold. As there are few large changes in

market demand, reserved instances will not always make

a good return because they are not being regularly fully

utilised by periods of growth. In this case, the broker

must be cautious in investing.

Discussion
Benefits

The approach discussed in this paper has a number of

benefits. The broker translates user’s on-demand beha-

viour into reserved instance requirements by incentivis-

ing them to accurately predict their own usage. In turn,

providers have a better view of future demand across

the entire user-base rather than just the customers who

are resource intensive enough to purchase a reserved

instance of their own. This also means that in our sys-

tem presented here, providers have a 12- or 36-month

indication of market demand, rather than just the one

month that was the case in Wu et al.’s original formula-

tion of the WZH model, or no indication (as per the

case of an on-demand instance). This information can

be used to plan future staffing levels, to schedule work-

loads more effectively, or to reduce costs by purchasing

swing options for electricity.

For the user, costs can be reduced by forecasting

some, or all, of their resource requirements, and pur-

chasing options to match these predictions. Options

provide cost-saving potential to the user without locking

them into higher prices or obligating them to purchase

a resource.

Application

On-demand pricing is regarded as one of the key attri-

butes and benefits of cloud computing. Does an

options-market for cloud computing, which requires an

element of forecasting by the consumer, negate this

major benefit?

We believe that options contracts are one of a poten-

tial armoury of financial instruments in cloud comput-

ing that can benefit the consumer. Options could be

used in conjunction with pay-as-you-go pricing, and

other instruments to obtain best value for the consumer.

An application could be designed such that it takes

advantage of long term options contracts should it

believe that they will be adequately utilised. If a surge in

demand was experienced by an application and it was

likely an additional resource would be required for the

whole month, an option could be executed automatically

to provide whole-month access. Should further increases

in demand be seen, additional on-demand resources

could be started and integrated with the already opera-

tional option resource. These on-demand resources

could start and stop to suit smaller periods of additional

demand over the capacity provided by the option. Cloud

computing is vital to the operation of the model, as it

allows resources from a number of providers, purchased

through a number of instruments and lasting for a vari-

ety of time periods to be aggregated together to provide

rapid and automatic scalability, while aiding in capacity

planning and reducing costs for the consumer. Figure

12 shows a fictional example of resource requirements

for an application over a four year period by month.

By considering performance of the application for

each month of the three year period, the consumer can

save money in the fourth year. In January, a minimum

of two resources were used by the application for each

year. If we consider previous performance, the likelihood

these resources will be used is very probable, so we can

purchase two resource options with p = 1. This is the

essentially a futures contract as the consumer will defi-

nitely require the resource in the next period. In the

same month, four additional resources were required for

two of the three years. As such, these four resources are

purchased as options with p = 0.66. In the final year,

two more resources were required, so two options

where p = 0.33 are purchased.

If the actual demand experienced in the fourth year is

9 units, the consumer will execute their right to buy the

resource for all eight contracts. The consumer will also

purchase another on-demand resource at the going rate.

The total cost for their monthly resource usage is $375.

If these were purchased on-demand, this would cost

$540 for a whole month’s utilisation. The use of options

in this case saves the consumer 30%. We believe many

Figure 12 Example web application resource requirements.
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websites and web applications would show at least some

predictability in resource requirements. For example, in

the run up to Christmas, it is likely many e-commerce

websites will experience a surge in traffic and that the

probable minimum size of this increase can be predicted

using historical data. Retailers can purchase the

resources they are likely to utilise thereby reducing

costs, but retain the benefit of being able to take extra

on-demand resources should they need to scale quickly

due to increased traffic. These extra resources could be

purchased for the hour or longer depending on require-

ments. The period of the options can be changed

depending on the application. For some websites, a

minimum number of users might be accessing the site

at all times of day in a particular month. The website

can purchase an option which entitles them to use the

minimum number of resources for that day. Should this

be exceeded at any point through the course of their

options contract they can purchase on-demand

instances for those hours that are busier.

Offering American options

Wu et al. suggested that the probability-based options

they originally proposed could be combined to allow

users to pay for the right to use a resource at any point

in an agreed period. We propose that the broker could

offer these combined contracts as a separate pricing

model in a manner similar to an American Option.

The options contracts that we have discussed thus far

are known as European options, which allow delivery of

the resource at a specific date in the future. An alterna-

tive contract is an American option. This gives the

holder the right to use a resource at any time until the

expiry of the contract.

At the beginning of a year, a customer may know they

will need to use a resource for an entire month during

that year. However, it may not know which month it

will need it. The broker can offer the customer a con-

tract that allows them to execute their right during any

point in the year, but saves them money compared to

purchasing on-demand instances. In a period of one

year, all other things being equal, there is a 1/12 chance

that the holder of the contract will need to use their

resource in a particular month. So the cost of the con-

tract w is the cost of utilising a resource with that prob-

ability in one month, plus the cost of reserving the

resource for the remaining eleven months.

w(pi) = Cpi

This comes to around $59, $1 cheaper than if on-

demand instances were used. This also aids the broker,

as the probability of 1/12 for each month contributes to

the forecast calculation.

If the consumer has an application with a high prob-

ability of execution over 12- or 36-month period, they

may choose to buy a reserved instance themselves and

use it as and when is required–this can be save the con-

sumer money (see Figure 5). However, for smaller prob-

abilities the user is better off using options. The

consumer could, of course, aggregate reserved instances,

on-demand instance and options together to achieve

best value.

These American options would most suit industries

where demand over larger periods is fairly predictable,

but where exact details of when demand will peak are

not known. This could be where the contract holder’s

customer demand is based on externalities which are

unpredictable or otherwise out of the holder’s direct

control.

The contract details could vary depending on the nat-

ure of the customer’s requirement. For example, a web-

site supplying garden equipment might know at the

start of the British summer that, at some point, they will

have a large surge in demand for barbeques and outdoor

recreational equipment. This demand usually is related

to high temperatures and sunshine. The owners of the

website know this period usually lasts for two months

(although the British public may be optimistic of

longer!). However, because the weather is unpredictable

they do not know exactly when it will happen. This con-

sumer can reduce costs by purchasing an American

option with an expiry date six months in advance,

which entitles them to use the resource for two months.

The cost of this is:

w = 2g

(

2

6

)

+ 4f

(

2

6

)

This comes to $105, $17 cheaper than if they used on-

demand resources.

A news and travel website is another example. It may

typically experience a number of periods of high

demand during a year–but when this demand will hap-

pen is difficult to predict as it might be related to acts-

of-god, traffic accidents or spikes in social media

activity.

Mobile-phone operators may have surges in visits to

their websites when new handsets are released. It may

be simple to predict how many new handsets the mobile

operator wishes to offer to customers. However, it might

be more difficult to determine when manufacturers will

make these available to the operator.

These American options could also be used to provide

redundancy for an IT infrastructure. If an IT Director

knows that an IT or telecommunications system is built

for 99.9% availability with a Mean Time to Repair

(MTTR) of four hours, she can estimate the amount of
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time in a particular period that the system will be down.

In this case, the system will be down for around 8 hours

a year. As the MTTR is 4 hours, it is likely two of these

incidents will occur annually. The director can buy two

options, each which entitles her to use four hours of

resource at any point during the year. This will cost

very little but will provide access to a resource should

the infrastructure fail for less cost than that of an on-

demand instance.

Conclusions
An extension of the WZH mechanism was proposed

and implemented in an agent-based simulation using

real-world economic demand data, using current costs

of an Amazon Web Service cloud instance, and where

users submit probabilities based on previous demand. It

was found that the broker profits in such a situation in

a number of market conditions thereby demonstrating

that a stable commercial implementation is feasible. It

was also found that the broker can increase profits by

considering past performance and purchasing longer-

term contracts.

In the worst case scenario discussed in this paper the

broker still makes nontrivial profit. Small changes to the

broker’s operating procedures such as purchasing longer

term reserved instance contracts can improve profits by

over 30%. Considering past performance can also reward

the broker with increased profits, by up to 36% in one

experiment discussed in this paper. In ideal market con-

ditions, where longer term contract terms are used and

an optimum threshold set, profit was seen to increase

by 165%.

The WZH mechanism provides a useful theoretical

foundation for an options-market in computing

resource. However, the service provider would have to

provide specific pricing to support the Coordinator, and

this might not always be profitable for the service provi-

der. Our extension to this model does not require new

pricing to be agreed, but contract restrictions on resel-

ling may be a barrier to commercial implementation.

Our work shows that financial brokering in computing

capability has potential as a viable commercial proposi-

tion, and that all parties can potentially benefit as a

result of such a system. The advantage of this approach

is that a forecast of future usage requirements is

obtained, which can be subsequently used to plan future

capacity requirements and so that targets on perfor-

mance as detailed in a Service Level Agreement can be

met.

The optimum threshold is the value at which market

demand is fully anticipated by the broker and which is

fully provisioned through reserved instances. Determin-

ing this threshold mathematically is likely to be challen-

ging due to difficultly in determining market dynamics

over a very long period. However, an empirical simula-

tion using actual market data could produce such a

threshold for commercial implementation. It may also

be possible for the broker to track performance, and

update its threshold in real-time.

Further work should be carried out to translate this

forecast information into tangible benefits for the provi-

der, which might include automatic purchasing of elec-

tricity swing options, staff scheduling, or more efficient

distribution of workloads to meet SLA’s.

We believe that the results we have presented here

clearly demonstrate that options and other financial

derivatives contracts, when appropriately applied and

developed for cloud computing, offer benefits to both

consumers and service-providers, and (crucially) the

brokerage function can also be a profitable business too.

Combining the forecasting benefits of both American

and European options and other derivatives with the

convenience of existing spot and on-demand pricing is

likely to benefit all participants in cloud-computing

markets: providers, users, and intermediaries.

By taking the results from this paper and extending

them with future research into the performance of the

extended WZH model under different conditions and in

different segments, a commercial offering that is profit-

able to the broker, beneficial to the user, and with a cal-

culated level of risk looks likely to be readily achievable.
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