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Abstract—Recently, stochastic geometry has been applied to
provide tractable performance analysis for low earth orbit (LEO)
satellite networks. However, existing works mainly focus on
analyzing the “coverage probability”, which provides limited
information. To provide more insights, this paper provides a
more fine grained analysis on LEO satellite networks modeled
by a homogeneous Poisson point process (HPPP). Specifically, the
distribution and moments of the conditional coverage probability
given the point process are studied. The developed analytical
results can provide characterizations on LEO satellite networks,
which are not available in existing literature, such as “user
fairness” and “what fraction of users can achieve a given
transmission reliability ”. Simulation results are provided to
verify the developed analysis. Numerical results show that, in
a dense satellite network, it is beneficial to deploy satellites at
low altitude, for the sake of both coverage probability and user
fairness.

Index Terms—low earth orbit (LEO) satellite, stochastic geom-
etry, user fairness, meta distribution

I. INTRODUCTION

Recently, deploying low earth orbit (LEO) satellite constel-

lations to provide ubiquitous global connectivity is becoming

an important enabling technique for 6G wireless communi-

cations [1]. Because LEO satellite constellations require a

dense deployment of satellites, performance evaluation using

computer simulations can be time-consuming but yeild limited

insight. To address this challenge, emerging research is explor-

ing the use of tools from stochastic geometry [2] to evaluate

the performance of LEO satellite networks theoretically and

provide a better understanding of their properties [3]–[7]. It

is worth noting that existing research in this area typically

focuses on metrics that reveal the average performance of

the entire network, such as “the coverage probability”. How-

ever, many important properties of satellite communication

networks remain unclear. For example, we may ask: i) how

does a satellite network perform in terms of user fairness? ii)

what fraction of users in the network can achieve certain link

reliability?

To answer the above questions, this letter aims to provide

a more fine grained stochastic geometric performance anal-

ysis for downlink LEO satellite networks. Specifically, LEO

satellites, which provide service to ground users, are modeled

as a homogeneous Poisson point process (HPPP) denoted by

Φ. The conditional coverage probability given Φ with respect
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Fig. 1: Illustration of the system model.

to a signal-to-interference-ratio (SIR) threshold θ, denoted by

Ps(θ), is first evaluated. Note that Ps(θ) itself is a random

variable driven by Φ. Different from existing work which only

studies the mean value of Ps(θ), this paper investigates the

moments and distribution of Ps(θ). The developed analytical

results can provide characterization on “user fairness” and

“what fraction of users can achieve a given transmission

reliability ”. Numerical results show that, for a dense satellite,

it is better to deploy satellites at low altitude, by jointly

considering users’ average performance and user fairness.

While for a sparser network, a high altitude is more favorable

for deploying satellites.

II. SYSTEM MODEL

Consider a downlink satellite communication scenario as

shown in Fig. 1. The earth is modeled as a sphere with

radius RE . The LEO satellites are flying around the earth

with circular orbit at the same altitude Rmin above the mean

sea level. For a given short time slot, the locations of the

satellite can be assumed to be fixed, and the focus of this

paper is to evaluate the performance achieved by the ground

users served by satellites in such a short time slot. For a given

short time slot, it is reasonable to assume that the locations of

the LEO satellites form a homogeneous Poisson Point Process

(HPPP) on the surface of the sphere (denoted by S
2
S) centered

at the geocentric with radius RS = RE + Rmin, denoted by

Φ = {xi}, where xi is the coordinate of the i-th satellite. The

intensity of Φ is denoted by λ, which indicates the density of

the satellites.

Ground users can also be modeled as a HPPP with intensity

λu on the surface of the earth. Due to the stationarity of

HPPP, it is sufficient to consider a typical ground user U0

located at (0, 0, RE). It is assumed that each ground user is

served by its nearest satellite1, and all other satellites which

are within the horizon of the user play the role of interference

sources. For the ease of exposition, define a spherical cap

A which is the portion of sphere surface S
2
S cut off by a

1The nearest satellite has to be within the horizon of the user, otherwise
there is no satellite serving the user.
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tangent plane to the earth surface at (0, 0, RE). According to

the previous discussion, only the satellites located on A affect

the performance of U0.

In the rest of this paper, the satellites are ordered according

to their distances to U0, i.e., x1 is nearest satellite’s coordinate.

Given that there is at least one satellite on A, the SIR at U0

is given by:

SIR =
|h1|

2

∑

xi∈Φ\{x1}∩A |hi|2
∆
=

|h1|
2

I
, (1)

where hi = gir
−α/2
i is the channel between U0 and the i-th

satellite [8]–[10], gi is the small scale fading, which is mod-

eled as Nakagami fading with parameter M . Consequently,

|gi|
2 is a normalized Gamma random variable with parameter

M , whose cumulative density function (CDF) is given by:

F|gi|2(x) = γ(M,Mx)/Γ(M) = 1−

M
∑

i=0

(Mx)i

i!
e−Mx, (2)

where Γ(M) = (M − 1)! and γ(s, x) is the lower incomplete

gamma function, given by γ(s, x) =
∫ x

0
ts−1e−t dt. ri is

the distance between U0 and the i-th satellite. Note that

for any satellite within area A, ri is upper bounded by

Rmax =
√

R2
S −R2

E . And α is the large scale path loss

exponent. It is assumed that each ground user knows perfect

channel state information (CSI) to its serving satellite.

And I =
∑

xi∈Φ\{x1}∩A |hi|
2 is the sum of the interfer-

ences.

In the following, we would like to characterize the distri-

bution of SIR. Note that there are two kinds of randomness

which impact SIR, one is the small scale fading, and the other

is Φ. Given Φ, the conditional coverage probability that the

SIR is beyond a threshold θ is given by:

Ps(θ)
∆
= Pr (SIR > θ,Φ(A) > 0|Φ) (3)

= Pr (SIR > θ|Φ,Φ(A) > 0)1(Φ(A) > 0|Φ),

where 1(·) is the indicator function. Note that Ps(θ) is a

random variable whose distribution depends on the distribution

of Φ. In the existing literature, only the mean value of Ps(θ),
i.e., the coverage probability of the typical link, is studied.

The “coverage probability” can only reflect the average per-

formance of all users, which is just a rough characterization

of the system performance. This paper will give a more fine

grained characterization of Ps(θ), to provide more statistical

insights, in the next section.

III. PERFORMANCE ANALYSIS

In this section, the moments of Ps(θ) are first evaluated,

then the meta distribution, i.e., the complementary cumula-

tive distribution function (CCDF) of Ps(θ), is approximated

via beta approximation by using the first and second order

moments of Ps(θ).

Lemma 1. Given Φ and Φ(A) > 0, the conditional coverage

probability that the SIR is larger than the threshold θ can be

approximated as:

Pr (SIR > θ|Φ,Φ(A) > 0) (4)

≈

M
∑

m=1

Cm
M (−1)m+1

∏

xi∈Φ\{x1}∩A

1
(

1 +
mηθrα1
Mrαi

)M
.

Proof: The conditional coverage probability can be cal-

culated as follows:

Pr (SIR > θ|Φ,Φ(A) > 0) (5)

= Pr
(

|g1|
2 > θrα1 I|Φ,Φ(A) > 0

)

= 1− Pr
(

|g1|
2 < θrα1 I|Φ,Φ(A) > 0

)

(a)
≈ 1− Egi

{

(

1− e−ηθrα1 I
)M

|Φ,Φ(A) > 0

}

(b)
= Egi

{

M
∑

m=1

Cm
M (−1)m+1e−mηθrα1 I |Φ,Φ(A) > 0

}

= Egi







M
∑

m=1

Cm
M (−1)m+1

∏

xi∈Φ\{x1}∩A

e
−

−mηθrα1 |gi|
2

rα
i

∣

∣

∣

∣

∣

Φ,Φ(A) > 0

}

(c)
=

M
∑

m=1

Cm
M (−1)m+1

∏

xi∈Φ\{x1}∩A

1
(

1 +
mηθrα1
Mrαi

)M
,

where step (a) follows from the fact that the CDF of the

normalized gamma random variable |g1|
2 can be tightly lower

bounded by [11]:

F|g1|2(x) ≥
(

1− e−ηx
)M

, (6)

where η = M(M !)−
1
M , and the lower bound is used to

approximate the probability; step (b) follows from applying

binomial expansion; and step (c) follows from taking average

with respect to the small scale fadings of the interfering links,

which are independently and identically distributed (i.i.d)

normalized gamma random variables with parameter M .

Remark 1. Note that when M = 1, the small scale

fading degrades to Rayleigh fading, and equality holds for

(6), resulting in no approximation error in (4).

The b-th moment of Ps(θ) is defined as:

Mb(θ) = EΦ{P
b
s (θ)} (7)

In the next, we would like to provide expressions for Mb(θ).
To this end, it is necessary to obtain the probability density

function (PDF) of r1 given that Φ(A) > 0, denoted by

fr1|Φ(A)>0(r). According to [5], the conditional PDF can be

expressed as:

fr1|Φ(A)>0(r) = υ(λ,RS)re
−λπ

RS
RE

r2
, Rmin ≤ r ≤ Rmax,

(8)

where υ(λ,RS) = 2πλRS

RE

e
λπ

RS
RE

(R2
S

−R2
E

)

e2πλRS (RS−RE)−1
.

Lemma 2. For a positive integer b, the b-th moment of Ps(θ)
can be expressed as follows:

Mb(θ) ≈ G(θ) (1− exp (−2πλRminRS)) , (9)
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where

G(θ) ≈
∑

b1,··· ,bM

(

b

b1, · · · , bM

) M
∏

m=1

(

Cm
M (−1)m+1

)bm
(10)

(Rmax−Rmin)π

2N

K
∑

k=1

√

1−ψ2
k exp (−Q(dk, θ)) fr1|Φ(A)>0(dk),

K is the Gaussian-Chebyshev approximation [12] parameter,

ψk = cos (2k−1)π
2K , dk = Rmax−Rmin

2 ψk +
Rmax+Rmin

2 , and

Q(r1, θ) ≈
π2λRS(Rmax − r1)

NRE

N
∑

n=1

√

1− φ2ncn (11)

×

(

1−

M
∏

m=1

(

1 +
mηθrα1
Mcαn

)−Mbm
)

where N is the Gaussian-Chebyshev approximation parameter,

φn = cos (2n−1)π
2N , cn = Rmax−r1

2 φn + Rmax+r1
2 .

Proof: According to the definition of Mb(θ), it can be

expressed as follows:

Mb(θ) = EΦ|Φ(A)>0{P
b
s (θ)}Pr(Φ(A) > 0). (12)

Note that Pr(Φ(A) > 0) is the probability that there is at

least one satellite on the spherical cap A, which can be easily

obtained according to the properties of HPPP, as follows [5]:

Pr(Φ(A) > 0) = 1− exp (−2πλRminRS) . (13)

The remaining task is to evaluate EΦ|Φ(A)>0{P
b
s (θ)}

∆
= G(θ).

By applying Lemma 1, G(θ) can be expressed as:

G(θ) =EΦ|Φ(A)>0

{(

M
∑

m=1

Cm
M (−1)m+1 (14)

∏

xi∈Φ\{x1}∩A

1
(

1 +
mηθrα1
Mrαi

)M







b














,

By applying polynomial expansion, G(θ) can be further ex-

pressed as:

G(θ) = EΦ|Φ(A)>0







∑

b1,··· ,bM

(

b

b1, · · · , bM

) M
∏

m=1

(15)

(

Cm
M (−1)m+1

)bm
∏

xi∈Φ\{x1}∩A

M
∏

m=1

1
(

1 +
mηθrα1
Mrαi

)Mbm











.

Then, by applying the probability generating functional

(PGFL) of HPPP [2], it is obtained that

G(θ) = Er1|Φ(A)>0







∑

b1,··· ,bM

(

b

b1, · · · , bM

)

(16)

M
∏

m=1

(

Cm
M (−1)m+1

)bm
exp

(

− 2πλ
RS

RE

∫ Rmax

r1






1−

M
∏

m=1

1
(

1 +
mηθrα1
Mrα

)Mbm






r dr

)











≈ Er1|Φ(A)>0







∑

b1,··· ,bM

(

b

b1, · · · , bM

)

M
∏

m=1

(

Cm
M (−1)m+1

)bm
exp (−Q(r1, θ))

}

,

where the last step is obtained by applying Gaussian-

Chebyshev approximation to the integration of the exponent.

Finally, by taking expectation with respect to r1 given

Φ(A) > 0, and applying the Gaussian-Chebyshev approxi-

mation, the proof is complete.

Remark 2. Note that when b = 1, M1(θ) is the mean value

of Ps(θ), which is the so called “coverage probability”. The

coverage probability can only reflect the average performance

of all users in the considered scenario. The variance of Ps(θ)
can be obtained as var(Ps(θ)) =M2(θ)−M2

1 (θ). Note that,

according to the ergodicity of Φ, the larger the variance is,

the larger the difference of the users’ obtained QoS becomes.

Hence, the variance of Ps(θ) can be used to indicate user

fairness of the considered scenario [13].

The meta distribution of SIR is defined as:

F̄Ps
(θ, x)

∆
= Pr (Ps(θ) > x) , x ∈ [0, 1], (17)

which is actually the CCDF of Ps(θ). An exact integral

expression for F̄Ps
(θ, x) can be formulated by applying Gil-

Pelaez inversion theorem [14]. However, it is very challenging

to evaluate numerically and provide insights. Thus, in practice,

F̄Ps
(θ, x) is usually approximated as a beta distribution, by

matching the mean and variance of the beta distribution with

M1(θ) and M2(θ) [14].

Note that, the PDF of a beta distributed random variable Z ,

can be uniquely characterized by two parameters κ and β, as

follows:

fZ(z) =
zκ−1(1− z)β−1

B(κ, β)
, (18)

where B(κ, β) is the beta function, and

E{Z} =
κ

κ+ β
, E{Z2} =

κ(κ+ 1)

κ+ β(κ+ β + 1)
. (19)

Let E{Z} = M1(θ) and E{Z2} = M2(θ), it can be

obtained that:

κ =
M1M2 −M2

1

M2
1 −M2

, β =
(1−M1)(M2 −M1)

M2
1 −M2

, (20)

and the CCDF of Ps(θ) can be approximated as:

F̄Ps
(θ, x) ≈ 1− Ix(κ, β), (21)

where Ix(κ, β) is the regularized incomplete beta function,

given by Ix(κ, β) =
∫

x

0
tκ−1(1−t)β−1 dt

B(κ,β) .

IV. SIMULATION RESULTS

In this section, numerical results are presented to demon-

strate performance of the considered LEO satellite communi-

cation system. The parameters are set as: RE = 6371 km,

α = 3.5. The simulations are obtained by taking average over

10000 realizations of HPPP on the satellite sphere surface.
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Fig. 2: Mean and variance of Ps(θ). λ = 10−12, θ = 0.1.
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Fig. 3: Mean and variance of Ps(θ). λ = 10−13, θ = 0.1.
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Fig. 4: CCDF of Ps(θ). λ = 10−12, M = 1, θ = 1.

Figs. 2 and 3 show the mean and variance of Ps(θ). As

shown in Fig. 2, when λ = 10−12, M1(θ) decreases with

the LEO altitude, while the variance first increases and then

decreases. Thus, it can be easily concluded from Fig. 2 that:

for λ = 10−12, it is beneficial to deploy satellites at low

attitudes, in terms of both coverage probability and user

fairness. Differently, for a lower satellite density λ = 10−13,

opposite trends are observed: the mean value first increases

and then slightly decreases with the LEO altitude, while the

variance decreases with the LEO altitude, and hence it is better

to deploy satellites at middle and high altitudes.

Figs. 4 and 5 demonstrate the meta distribution of SIR.

Exact values of M1 and M2 are obtained via Monte Carlo

simulations. From the figures, it is shown that, analytical

results perfectly match simulation results when M = 1.

However, when M = 3, analytical results cannot perfectly

match simulation results, because M1(θ) and M2(θ) cannot

be accurately evaluated as shown in Fig. 2. In addition, it can

be observed from Figs. 4 and 5, when λ = 10−12, it is better to

deploy the satellite at LEO altitude Rmin = 200 km compared

to higher altitudes 400 km and 800 km, because for a given

0 < x < 1, the CCDF of Ps(θ) at Rmin = 200 km is larger

than those at Rmin = 400 km and Rmin = 800 km. Note that
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Fig. 5: CCDF of Ps(θ). λ = 10−12, M = 3, θ = 1.

the observation here is consistent with that shown in Fig. 2,

as stated in the previous paragraph.

V. CONCLUSION

This paper has provided a fine grained stochastic geom-

etry based performance analysis on downlink LEO satellite

communication networks. HPPP has been applied to model

the locations of satellites. The moments and distribution of

the conditional coverage probability given the point process

have been investigated. It has been shown that, for a dense

satellite constellation, it is better to deploy satellites at low

altitude, by jointly considering users’ average performance and

user fairness, while for a sparse constellation, high altitude is

favorable for satellite deployment.
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