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Text Classification problem has been thoroughly studied in information retrieval problems and data mining tasks. It is beneficial in
multiple tasks including medical diagnose health and care department, targeted marketing, entertainment industry, and group
filtering processes. A recent innovation in both data mining and natural language processing gained the attention of researchers from
all over the world to develop automated systems for text classification. NLP allows categorizing documents containing different texts.
A huge amount of data is generated on social media sites through social media users..ree datasets have been used for experimental
purposes including the COVID-19 fake news dataset, COVID-19 English tweet dataset, and extremist-non-extremist dataset which
contain news blogs, posts, and tweets related to coronavirus and hate speech. Transfer learning approaches do not experiment on
COVID-19 fake news and extremist-non-extremist datasets. .erefore, the proposed work applied transfer learning classification
models on both these datasets to check the performance of transfer learning models. Models are trained and evaluated on the
accuracy, precision, recall, and F1-score. Heat maps are also generated for every model. In the end, future directions are proposed.

1. Introduction

Natural language processing is a scientific process to train a
computer to understand and process human language. NLP
gained a lot of importance in recent years because of the
researchers and processing powers of machines. Researchers
are doing their best to generate interesting facts and figures
from human language and implement those results in every
field of life from educations to hospitals, industry to
shopping malls, etc. In past, NLP problems were solved
using rule-based systems. However, due to the different
nature of text in the world, machine learning is applied to
NLP and it has gained a strong ground using SVM andNäıve
Bayes. Natural language processing and text mining refer to
the process of human-generated text that came from mul-
tiple social media networks using different algorithms,

programs, and techniques. It is an important field of AI.
With continued research on text mining and NLP using data
mining algorithms, machine learning, and deep learning,
data mining techniques have gained the best results in the
fields of automatic question answering machines, anaphora
resolution, automatic abstraction, bioinformatics, and web
relation network analysis [1]. Researches show that NLP,
data mining, and text classification can be very helpful in
every prospect of life. .ere are also many other researchers
who have used NLP in hate speech, sentiment analysis [2],
detection of controversial Urdu speeches [3], movie reviews
[4], stock market [5], online reviews [6], and restaurant
reviews [7].

In recent decades, social media has gained huge im-
portance because of its usage for different purposes. If people
use social media often, then it is obvious they will generate a
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huge amount of data. Because of this huge data generated by
social media users, hate speech is also increased. For ex-
ample, if a movie is released, the audience will have good or
bad or neutral reviews or comments about it. Researchers
had also done plenty of work in the area of hate speech as
well and it is increasing day by day. .e paper [8] had
explained how NLP is involved in hate speech tasks and how
it is able to automate the process to capture and detect hatred
social media content. .ese researches involve NLP as they
are using human-generated natural content. Social media
content generated by social media platform users is an
important source of data for hospitals, industry, scientists,
policy-making, and much more. UGC (User Generated
Content) on different review platforms or sites holds diverse
information in the form of text that is extracted after ap-
plying opinion extraction algorithms and sentiment analysis
techniques [9] .ese algorithms provide better performance
in the feature extraction phase of text classification as well
[10–24].

A group of researchers had worked and highlighted the
limitations and gaps in the field of hate speech [25]. A
solution to reduce these limitations was also proposed.
.ey had elaborated that a large amount of sufficient data to
train an automated approach. Insufficient labeled data
related to hate speech is a big problem in the detection of
hate speeches on social media. .eir proposed approach
was pretrained on BERT. One of the important tasks in hate
speech detection is to categorize portions of text based on
their context and make developers capable of text classi-
fication tasks in NLP [26]. .eir trained model on the
Italian hate speech dataset is named as ALBERTo. .is
model is highly sensitive regarding the temporal distances
of datasets. But its main advantage is as follows: after a time,
its performance increases, and it required less training data
than previous classifiers. Hate speech and offensive lan-
guages are two different things. Separating hate speech
from offensive language is a difficult task [27]. .eir re-
search uses a crowdsourced lexicon of hate speech to collect
tweets and then label them as offensive, hateful, and neutral
metaheuristic algorithms which are used for text and data
classification tasks [80, 82, 90].

Transfer learning is a phenomenon or task in which the
information gained from unlabeled data can be used in
relative tasks with a small labeled dataset. And that small
labeled dataset achieves high accuracy with the help of
previous information. NLP transformers have gained
promising accuracy in every practice as compared toML and
DL techniques. .ey have written in their research that the
key idea behind TL is to grab information from related areas
to help systems based on machine learning to obtain higher
accuracy in the area of interest. .us, we can also say that
transfer learning can also be used to achieve high perfor-
mance with less human supervision as compared to active
learning and supervised learning. .ere are many examples
in our real life which we can relate to transfer learning. For
example, if a system is already trained to recognize apples,
then it may be also used with little fine-tuning to recognize
pear as well. .is will need less data and less training time.
.e key idea behind transformers is attention.

Social media has a great empowerment impact. Every
user can post based on their thoughts. .ey trained already
existing models to predict the posts or news related to
coronavirus as real or fake. Among all trained models,
transformers showed the best results. News is a great source
and holds great importance as they keep everybody updated.
Fake news took birth in the 18th century [28]. .e Internet
makes it easier to spread fake news through the excessive use
of social media. It is also very tough to distinguish between
real and fake news. Already existing approaches have de-
ficiencies which they tried to overcome by developing a
hybrid approach.

.e rest of the paper is organized as follows. Section 2
discusses the literature review. Section 3 discusses the types
of classification algorithms. Section 4 overviews method-
ology. Experimental results are discussed in Section 5. .e
conclusion and future prospects of our work are discussed in
Section 6.

2. Literature Review

Transfer learning nowadays holds spectacular importance in
the research area. Researchers are trying hard to achieve
higher accuracies in every research by applying different
versions of transformers. A team of researchers [29] per-
formed a comprehensive survey of sentiment analysis in
finance in which they have evaluated recent researches and
advancements regarding finance. .ey have evaluated
techniques including lexicon-based approaches for text
classification, statistical methods, sentence encoders, word
encoders, and transformers. .eir evaluation of the finance
dataset clearly shows that transformers outperformed
among all existing methods and techniques with the highest
accuracy. .ey have applied different models of trans-
formers including BERT, FinBERT, XLNet, XLM, ALBERT,
RoBERTa, DistlBERT, XLM-RoBERTa, and BART. All these
transformers gained a high F1 score among all. Between
these NLP transformers, BART launched by Facebook
achieved the highest f1 score of 0.85.

Researchers performed an evaluation of sentiment
analysis approaches based on transfer learning for the
Japanese dataset [30]. .ey have performed binary senti-
ment classification and multisentiment classification on
product reviews and movie reviews. After their research,
they have stated that transfer learning approaches perform
way better than models that are generated for task-specific
purposes on 3 times greater data..ey have stated that better
systems exist for the English language but there is much
deficiency for the Japanese data. So, they tried 3 transfer
learning models including BERT, ELMo, and ULMFit. All
these models have achieved less error percentages compared
to other models using datasets including the Rakuten dataset
and Yahoo movie review dataset. BERT-base gained the
lowest rate of 8.42 on the Yahoo movie review dataset and
4.68 on the Rakuten dataset.

.ese researchers performed a study on the most recent
advancements of transfer learning in the field of natural
language processing [31]. Firstly, they have checked recent
machine learning and deep learning approaches and then
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also checked recent TL approaches. .ey have noticed that
transfer learning approaches have brought new dimensions
for different NLP tasks. Transfer learning can be happily and
effectively used in the areas where we have less data to train.
We can use a pretrain model and then fine-tune it..ey have
experienced that transfer learning models can perform
better than other state-of-the-art methods in NLP. BERT is
trained on BookCorpus, text corpus, and Wikipedia which
can give overwhelming results in some areas of natural
language processing but it still needs to be improved [32]. It
somewhere lacks domain-related and task-related knowl-
edge. It is where improvement is required. .ey have pre-
sented a new version of BERTcalled BERT4TC BERTfor text
classification. .eir model is rich in sense of domain- and
task-related knowledge. .ey have evaluated their proposed
model on publicly available datasets. Results showed that the
model they have proposed with compatible auxiliary sen-
tences outperforms compared to both feature-based typical
methods and some fine-tuned methods and achieved new
state-of-the-art results in multiclass classification.

.is research proposes a political sentence-level text
classifier using human experts’ annotated corpus for political
manifestos [33] and then applied to press briefings of
COVID-19..ey have manually annotated the manifestos as
training data on a classifier and then applied that to press
briefings to automatically classify existing sentences in press
briefings. .ey have combined CNN with BERT trans-
former, and it showed that CNN combined with BERT
gained the highest accuracy among other models compared
with CNN. .ey have done four experiments named M1,
M2, M3, and M4. M4 performed better among all as it is
CNN+BERT. It contained high accuracy and an F1 score.
Fine-tuning of desired pretrained models is an efficient
transfer mechanism. However, fine-tuning may be ineffi-
cient in some tasks and need to build entire new techniques
for solvingmultinature problems [34]. As an alternative to it,
they have proposed an adapter module with the transfer.
.ese modules generate an extensible model. We only need
to add a few parameters which are trainable on every task,
and we can add a new task without revision of the previous
one. Parameters that are from the original model remain
fixed with high parameter sharing. .ey have evaluated
BERTon 26 different classification tasks. And they have used
GLUE as a benchmark. GLUE achieved high performance
with full fine-tuning of parameters by adding only 3.6%
parameters per task. Fine-tuning trains 100% of the
parameters.

Evaluation of deep learning approaches and transfer
learning approaches for fake news detection using COVID-
19 fake news detection dataset (consisting of 10,700 social
posts and articles) was performed by [35]. .ey used clas-
sification algorithms bi-LSTM+Attention, HAN (hierarchal
attention network) BERT-base, and DistilBERT..eir aim is
to classify the news as fake or real. .e fake news detection
task is formulated as a text classification problem. .ey rely
on the content of the news and ignore other important
features like user characteristics, social circle, etc. which
might not always be available. .e BERT and DistilBERT
models pretrained on the COVID-19 tweets corpus perform

better than the ones which are only fine-tuned on the
dataset. .e BERT-cased model which was trained man-
ually on the COVID-19 tweets corpus gives the best results
followed by the COVID-Twitter-BERT model. Reference
[36] elaborated the impact of social media in our daily lives.
.ey also highlighted the misleading information on social
media and its effect on our lives. .ey proposed an ap-
proach to detect the fake and real news about COVID-19.
.e model achieves high F1 score and occupied the second
position on the leaderboard. .ey used the dataset con-
taining posts and tweets collected from Facebook, Twitter,
and Instagram. .ey have split the dataset into train test
and validation parts. .ey tried different baseline models
on this dataset and also used different transformer models.
And results clearly show that their RoBERTa model ach-
ieves a 0.9864 F1-score and their Electra model achieves a
0.9827 F1-score on the official test set.

.is research highlights the impact of fake news related
to coronavirus [37]. .ey stated that most social media posts
are not trustworthy as they lead the readers toward wrong
information that can cause panic situations among people.
.ey presented their results on COVID-19 Fake News
Detection in English and achieved the first position in the
leaderboard among 166 submitted results. .eir proposed
model uses CT-BERT (COVID-Twitter-BERT) and achieves
a 98.69 F1-score. .eir research developed a method to
check the reliability of social media posts that belong to
COVID-19 [38]. .ey ensemble three transfer learning
models (BERT, ALBERT, and XLNET) for classifying
COVID-19 news into real and fake. .ey have used the
COVID-19 Fake News Detection in English dataset. .eir
proposed methodology achieves a 0.9855 F1-score on the
test set and among 160 teams getting the 5th rank. .ey split
the dataset into training, validation, and testing parts for the
experimental setup.

A multimodal approach for fake news detection was
developed by [39]. Because in past years, posting wrong,
hateful, abusive, offensive, and hateful content on social
media tools has increased in exponential format, people
spread their inner negativity related to any situation on
social media..is may lead other people toward a wrong and
hateful path. .at is why it is the need of the hour to detect
those profiles and people who do this sinful act. Researchers
used different strategies to accomplish this purpose. .e
authors of this research work propose a multimodal ap-
proach based on multi-image. In specific, their system uses
textual, semantic, and visual data or information. .ey had
used BERT for textual data to extract the semantic and
contextual meaning of the text. .ey further used the VGG-
16 model for visual representation and tag extraction. And
the rest of the semantic information is calculated using
cosine similarity. .ey had used GossipCop, a part of the
FakeNewNet dataset. .is multimodal multi-image ap-
proach achieved a 0.7955 F1 score on testing. .is approach
had also increased the performance of baseline models.

With the rapid growth of social media in past years, it has
become more convenient for people to access news fast than
ever. .ey said that it is also happening that people are
spreading fake news over social platforms for their own
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purposes. Many researches using supervised learning had
been proposed to detect fake news. .ese approaches focus
on different features to make the classificationmore accurate
like news content, social context, user profile, and messages
context. .ese approaches showed accuracy but face limi-
tations as they need a reliable accurate dataset [40]. .eir
proposed work was an unsupervised framework called the
Unsupervised Fake News Detection Technique (UFD) to
minimize this problem..ey mainly focused on two aspects:
user’s reliability and truth of news to filter the fake news
among real news. .ey had tested their framework on
datasets which are LIAR containing 12,800 short news
statements, and BuzzFeed has 1,627 news articles related to
U.S. elections. But they used 332 and 144 after filtering
datasets. UFD achieved the highest accuracy, precision,
recall, and F1-score on both datasets. .e model achieved
0.759 and 0.679 of accuracy on LIAR and BuzzFeed,
respectively.

Nowadays, society is more and more connected and
attracted to the Internet. People around the globe make it a
necessary part of their lives. Information we retrieve and
gather from Internet has become an essential part of our
lives [41]. .ey had described that this extra dependence on
Internet has led us to its wrong impacts as well, as it is
leading us toward hatred, abusive, offensive, and toxic
language. Machine learning is doing great in the field of
NLP. .ey had developed the DeepHate model for text
analysis which is trained on several small datasets to make it
more accurate. .eir model can learn a single hate speech
pattern from unrelated and diverse data sources. .e model
works on transfer learning and can generate both word
representation and sentence representation. .ey used an
English tweets dataset containing 37,520 tweets. Another
dataset is also used containing 22,304 tweets including of-
fensive, hateful and harmless tweets.

3. Types of Classification Algorithm

.is research work uses machine learning and transfer
learning classification algorithms. .ese models are appli-
cable to many natural processing tasks and work efficiently
on these tasks. .e following mentioned models are used in
this research procedure.

3.1. BERT-Base. Bidirectional Encoder Representation
from Transformers (BERT) was proposed by [42]..emain
purpose of BERT is to train bidirectional representations
from an unlabeled dataset. It works on collaborative left
and right context phenomena in all layers. BERT is simple
yet powerful. It generates promising results in several
machine learning tasks. A fine-tune model of BERT only
needs to add one more layer for each newmodel to perform
a variety of tasks. It uses a masked language model. MLM
works on the phenomena of masking random words from
input and then it predicts the ID of that word by utilizing its
context. MLM uses both left and right contexts which
enables training of the bidirectional model. .ey joint
MLM with next sentence prediction (NSP) as well. BERT-

base is comparatively smaller in its size, it takes less time for
computation and processing, and also it is affordable. It is
not applicable to ambiguous data mining or text mining
tasks. Reference [43] used it in the detection of fake news.
.e paper [44] used it for content enhancement and it
proves its promising results in content enhancement field.
It was also used by [45] for distilling its knowledge. Ref-
erence [46] performed sentiment analysis using BERT and
it has done a great job there as well.

3.2. BERT-Large. BERT-large is a type of BERT model. It
works similarly as BERT-base does but it has a larger size
than BERT-base. It is more expensive than BERT-base as it
takes more time for computation and is applicable to large
datasets. .e article [47] used BERT-large in his research
work to process the COVID-19 related content on Twitter.
BERT-large performed well on his dataset but his proposed
approach performed better. .e paper [48] used BERT-large
in offensive tweet classification, and among all evaluated
approaches, BERT-large stands the second on a scale with a
0.781 F1 score. .e authors of [49] performed multiple
experiments on deep learning and transfer learning ap-
proaches to access syntactic abilities and they have seen that
between all approaches BERT-based transformers per-
formed extremely well.

3.3. RoBERTa-Base. .e authors of [50] proposed RoBERTa
model with slight advancements in BERT which are as
follows: training their model withmore data and larger batch
size, eliminating the next sentence prediction factor, having
larger sequences, and making changes in masking pattern.
.eir proposed model performs well in many experimental
setups. .ey have also noticed that the linguistic bias of
RoBERTa-base is stronger. Roberta uses BookCorpus,
OpenWebText, English Wikipedia, STORIES, and CC-
News. .e authors of [51] did research on learning features
that are also important. .ey explained that RoBERTa ob-
tains linguistic generalization as preferences. Reference [52]
compared three methods including LSTM, BERT, and
RoBERTa for detecting and classifying mental illness on
multiple social media platforms. And RoBERTa outperforms
among these three approaches. Reference [53] used RoB-
ERTa to classify informative tweets related to COVID-19
and their approach showed the best results.

3.4. RoBERTa-Large. Reference [54] applied RoBERTa-large
with dialog history attention to select the responses based on
a randomly wired network. Research has shown that the
RoBERTa-large model needs more computer resources than
RoBERTa-base. .at is why it is not widely used by re-
searchers. .e article [55] used RoBERTa to highlight and
detect medications on Twitter. .ey used an unbalanced
dataset and their proposed model achieved a 0.8 F1 score.
.e paper [56] used RoBERTa for a Dutch language model.
.eir experimentation showed that training a BERT model
on the Dutch language shows a lot of variety in multiple
tasks for the Dutch language. .e authors of [57] used
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RoBERTa-large for eye-tracking prediction. And their
technique showed promising results with a 3.929 MAE score
and stands in 3rd position among 13 teams.

3.5. DistilBERT. DistilBERTwas introduced in 2019 by [58].
It was a lighter, fast, smaller, and cheap version of BERTwith
a size reduction of 40% with 60% more speed and 97%
understanding of language capabilities. .is lighter and
useful version was used by many researchers. .e authors of
[59] used this lighter version of BERTfor sociopolitical news
classification. DistilBERT showed promising results in their
experiments. .e authors of [60] combined linguistic
knowledge with different transfer learning models to en-
hance their performance. And their methodology worked
really well in this perspective. Ensemble models boosted the
performance of used models by many points. .e authors of
[61] used this version of BERT for detecting health infor-
mation along with named entity recognition tasks. And the
detection was improved by half which was promising. .e
authors of [62] worked with DistilBERT and proposed a
mechanism for answer selection and picking up important
words. .e performance was improved by 0.6% which is not
bad at all. .e authors of [63] retrained DistilBERT on
universal dependencies for the purpose of a voice shopping
assistant. .e performance of these downstream tasks is
raised by 1.31%.

3.6. ALBERT-Base-v2. With the collaboration of Toyota
Technologies and Google Research, they jointly released the
scalable and smaller successor of BERT in 2019 which they
named ALBERT [64]. It mainly involved reduction in two
parameters: increase in training speed of BERT and lower
memory consumption. ALBERTperforms better in multiple
classification tasks. It also uses a very low number of pa-
rameters while doing sentiment analysis. .e authors of [65]
used the ALBERT transformer approach for contextualized
sarcasm-based detection on Twitter..ey have applied other
transformer approaches as well. .e authors of [66] also
evaluated this model for fake news detection and addi-
tionally checked the facts for these fake news which worked
really well and lead among all models. .e authors of [67]
checked this approach for question answers on COVID-19.
ALBERT gained the highest exact match score of 13.04. .e
authors of [68] used ALBERT for medication prescriptions
used on social media.

3.7. XLM- RoBERTa-Base. .e authors of [50] proposed
this model and trained it on hundred languages with two
TB of data which was filtered. .eir model which was
combined with XLM-R outperforms with 23% accuracy
compared to many transformers. .e authors of [69]
identified offensive language using this ensemble tech-
nique. .ey joint XLM-RoBERTa with DPCNN, and this
model showed amazing results. .ese two also used this
approach for hope speech detection attention, and this
shows promising results in this task. .ey achieved 0.59,
0.84, and 0.92 F1 scores for Tamil, Malayalam, and English

languages. .e authors of [70] used this and experiment
with it for multilanguage sentiment analysis. And the
model achieved a good F1 score. .e authors of [71]
performed another research work of classification using
neurons for the task at EVALITA 2020. .ey had used the
hate speech dataset and performed the experiment. .e
model achieved a 0.798 F1 score. .e authors of [72] used
XLM-RoBERTa for context disambiguation in words. .e
model outperforms all experimented methodologies.

3.8. Electra-Small. BERT uses Masked Language Modeling
and replaces some tokens with masks and then reconstructs
the model using these masks. But this requires a large
amount to compute, so the authors of [73] proposed Electra
and overcome this issue. .eir proposed approach replaces
tokens with alternative samples. And after that, they did not
train the model; they made sure that each token in input is
swapped with a sample generator or not. .e authors of [74]
used Electra for profiling fake news. .ey have created an
ensemble model considering 15 models. .en, they are fined
tuned according to the tasks and dataset. Electra achieved
0.70 and 0.69 F1 scores for English and Spanish datasets,
respectively. Electra was also trained with multiword se-
lection by [75].

3.9. BART-Large. Facebook researchers in October 2019
proposed BART [76]. .e formation of BART is similar to
BERT and GPT2. Tasks like question-answer and summa-
rization of any text are done accurately. .is model showed
promising results in these kinds of tasks. .is one takes
advantage that the encoder and decoder form BERT and
GPT AR, respectively. It considers the autoregressive
techniques to check dependencies whichmakes it better than
BERT. Its encoders and decoders are connected. .ey used
BART for an automated speech recognition system. .ey
had done the experimentation for 1000 hours on the speech
recognition dataset and they have reduced the error rate to
21.7% which is a huge success and way better than the
baseline model. .e authors of [77] used it for supervised
topic label generation. .eir model performs better than the
baseline model..e authors of [78] also evaluated this model
for query suggestions. .eir proposed approach has a better
understanding of noise and can handle and understand
complex queries. .e authors of [79] performed visual
common sense generation and called it Knowledge En-
hanced Multimodal BART. .e authors of [80] evaluated
BART for knowledge grounded conversation tasks and
achieved good results.

4. Methodology

Due to the complex nature of social media data on COVID-19
fake news and hate speech, it is quite obvious that the pro-
posed model must have different aspects to precisely and
accurately predict the fake and real news and similarly hateful
or nonhateful content. Figure 1 elaborates the steps and ar-
chitecture of the fine-tuned model.
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4.1. Data Sets. Two datasets are used in this research work.
.e first is named “COVID-19 fake news dataset” which was
originally generated in 2020 by Sumit Bank and was pub-
lished and made freely available on Coronavirus Disease
Research Community-COVID-19. It contains 10202 fake
news related to coronavirus which different users shared on
social media sites. Some of them are gathered from Face-
book, some belong to Instagram, and others belong to
websites and Twitter blogs. All of them are collected using
different keywords including COVID-19, pandemic, corona,
and coronavirus. .is dataset is basically assembled in two
columns. .e first contains text, special characters, and
attributes which is named as Title, and the second contains
binary values as 0 and 1 and named Outcome. Here, 1
presents real news while 0 presents fake news.

.e second dataset which is used in this research work is
named “extremist-non-extremist dataset” which was de-
veloped by [81]. .e dataset was generated using Twitter
streaming API, and tweets containing more than one ex-
tremist word like ISIS, suicide, bomb, etc. are collected. Each
review is compared with seed words present in a manually
built extremist lexicon and added to the dataset. .e final
data was stored in a .csv file. .e dataset consists of 21,186
tweets in total, of which 12,755 are labeled as extremist and
8,432 are labeled as nonextremist. Extremist tweets are
replaced with 1 and nonextremist tweets are replaced with 0.

.e third dataset which is used in this research work is
named “COVID-19 English tweets” developed by [82]. A
research had revealed that data which is shared on social
media sites is uninformative. .erefore, they thought that
informative data should be highlighted through a shared
automated task, where all the participants have to use their
developed dataset of COVID-19 English tweets. .ey col-
lected tweets using Twitter API with ten keywords including

“coronavirus”, “covid-19,” “covid_19,” “covid-2019,”
“covid19,” “covid2019,” “covid_2019,” “coronaVir-
usUpdate,” “coronavid19,” and “SARS-CoV-2.” Every tweet
in the corpus contains a minimum of one word from the
above-mentioned keywords. .ey collected tweets of four
months from March 2020 to June 2020. .en, they applied
different filters to tweets like removing tweets containing 9
words and also removing the tweet of a person who has less
than 5 followers and removing tweets that are retweeted.
.ey have also labeled them as Informative and Uninfor-
mative. Informative tweets must contain suspects, death,
affected cases, recovered cases, and a number of tests, etc.
Train file contains 4820 tweets, test file contains 1539 tweets,
and validation file contains 566 tweets.

4.2. Data Preprocessing. COVID-19 fake news, COVID-19
English tweets, and extremist-non-extremist datasets
which are used in the proposed research work need to be
cleaned in the very first step of natural language processing
which is called preprocessing step. In this step, cleaning
methods on both datasets are applied to remove URLs,
converting every word to lower case, and lemmatization
and punctuation removal are performed. .ese methods
will eliminate special characters, hyperlinks, empty spaces,
identifiers, and words that are very short. .is step will
clean both datasets.

4.3. Encoding. Many efficient and automatic learning
models do not accept input in text form. .erefore, the text
is converted into digital vectors which rely on the technique
of bag-of-words for transfer learning models. We have
counted every word’s score, and then, feature extraction was
also performed. .is research work uses the best, efficient,
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Figure 1: Research methodology.
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and appropriate classification algorithms based on results
from literature reviews and then builds our model
accordingly.

4.4. Model Evaluation and Testing. After the training model
was evaluated and its performance is measured using different
parameters including confusion matrix, accuracy, recall,
precision, and F1-score, we have tested our model on both
datasets which are unclassified on fake news, COVID-19
tweets, and hate speech.

Performance evaluation is performed using four pa-
rameters which are precision, recall, F1-score, and accuracy.
Confusion matrix and heat maps are also generated for
evaluation purposes. Precision is known as positive values
which are gained from prediction. So, it is the fraction of
relevant occurrences among gained occurrences. On the other
hand, recall is called sensitivity; it is the relevance of gained
occurrences. .e weighted average of precision and recall is
defined as F1-score. It takes false positives and false negatives
into account. .e total number of rightly predicted values is
called accuracy. Performance of any classification model is
measured using the N×N matrix which is known as the
confusion matrix. It contains true positive, true negative, false
positive, and false negative values in the matrix which is used
to evaluate the actual values with the values predicted by the
classifier. Heat maps are used to observe the data through
visualization. It presents different attributes. Visualization
helps to find patterns and also gives a perspective of depth. So,
heat map is used to explore and observe the data.

.is research work uses nine classification models..ese
classifiers are BERT-base, BERT-large, RoBERTa-base,
RoBERTa-large, DistilBERT, ALBERT-base-v2, XLM-RoB-
ERTa-base, Electra-small, and BART-large.

Tables 1–3 present sample tweets for all three datasets.
Tables 4–8 show results of nine transfer learning models
which are validated using the above-mentioned performance
metrics named precision, recall, F1-score, and accuracy on
COVID-19 fake news dataset, COVID-19 English tweet
dataset, and extremist-non-extremist dataset, respectively.
Results clearly show that transfer learning classification
models outshine using test datasets obtained from reliable
sources. Tables 5, 7, and 9 present a comparative analysis for
all three datasets with state-of-the-art approaches. Figure 1
presents the research methodology for the proposed re-
search work. Figures 2–4 show accuracies graph of TL
classifiers for COVID-19 fake news, COVID-19 English
tweet, and extremist-non-extremist dataset Figures 5–13
present the heat maps for COVID-19 fake news dataset.
While Figures 14–22 present the heat maps for transfer
learning classifiers and Figures 23–31 show heat maps for
extremist-non-extremist dataset.

5. Experimental Results

5.1. Results for COVID-19 Fake News Data

5.1.1. Discussion. .e above-mentioned diagrams and tables
contain results for transfer learning classifiers for the
COVID-19 fake news dataset. .ese nine transfer learning

Table 1: Sample tweets of the COVID-19 fake news dataset.

Tweets Labels
A chain lists recommendations to prevent and treat
coronavirus 0

Australia closing borders in a few hours for 6 months 1

Table 2: Sample tweets of extremist-non-extremist dataset.

Tweets Labels
Oh Allah, we are helpless Nonextremist
Oh Allah, destroy US and Israel Extremist

Table 3: Sample tweets of COVID-19 English tweets dataset.

Tweets Labels
Bill Maher says coronavirus “overreactions”
making him “sick:” “People die! .at’s what
happens in life!

Uninformative

#Australia Melbourne GP clinic closed after
doctor tests positive for #coronavirus after seeing
70 patients this month

Informative

Table 4: Transfer learning-based approaches results for fake news
on COVID-19.

Model Accuracy Precision Recall F1 score
BERT-base 99.56 97.21 97.77 97.53
BERT-large 99.31 99.07 93.13 95.89
RoBERTa-base 99.71 99.85 96.84 98.29
RoBERTa-large 99.66 98.78 97.32 98.04
DistilBERT 99.41 96.69 96.69 96.69
ALBERT-base-v2 98.68 90.83 95.30 92.94
XLM-RoBERTa-base 99.22 96.01 95.08 95.54
Electra-small 99.17 96.85 93.56 95.14
BART-large 99.31 99.07 93.13 95.89

Table 5: Comparison of proposed approaches with state-of-the-art
approaches.

State-of-the-art approaches Proposed
[83] [84] [85] [86] Roberta-large
75% 93.6% 91% 91% 99.66%

Table 6: Transfer learning-based approaches results for COVID-19
English tweet dataset.

Model Accuracy Precision Recall F1 score
BERT-base 98.44 98.42 98.45 98.43
BERT-large 98.44 98.45 98.42 98.43
RoBERTa-base 96.48 96.48 96.62 96.48
RoBERTa-large 97.00 96.97 97.12 97.00
DistilBERT 98.31 98.39 98.23 98.30
ALBERT-base-v2 97.78 97.75 97.83 97.78
XLM-RoBERTa-base 98.57 98.53 98.61 98.56
Electra-small 94.52 94.66 94.76 94.52
BART-large 98.83 98.85 98.80 98.82
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classifiers showed excellent performance on the COVID-19
fake news dataset. .ese classifiers are evaluated using
different values of precision, recall, accuracy, and F1-score.
Transfer learning classification models performed really well
and achieved the highest accuracies. Among all transfer
learning models, the RoBERTa-base model achieved the
highest accuracy of 99.71%. .e RoBERTa-large gained the
second position and BERT-base achieved the third position
among all transfer learning models with 99.68% and 99.56%
of accuracy. DistilBERT, BERT-large, BART-large, XLM-

RoBERTa, Electra-small, and ALBERT-base-v2 achieved
99.41%, 99.31%, 99.31%, 99.22%, 99.17%, and 98.68% of
accuracies, respectively. So, RoBERTa-base leads all seven-
teen classification models.

5.1.2. Comparative Analysis with State-of-the-Art
Approaches. In Table 5, the proposed work is compared with
state-of-the-art approaches [83–86] w.r.t to the text classi-
fication task. State-of-the-art approaches use machine

Table 7: Comparison of proposed approaches with state-of-the-art approaches.

State-of-the-art approaches Proposed
[87] [88] Bart-large
0.78% 60.40% 98.83%

Table 8: Transfer learning-based approaches results for the extremist-non-extremist dataset.

Model Accuracy Precision Recall F1 score
BERT-base 99.71 98.82 97.84 98.33
BERT-large 99.71 98.82 97.84 98.33
RoBERTa-base 99.66 99.29 96.82 98.02
RoBERTa-large 99.36 98.56 94.16 96.24
DistilBERT 99.51 96.80 97.74 97.27
ALBERT-base-v2 98.97 94.80 93.45 94.12
XLM-RoBERTa-base 99.56 99.77 95.26 97.40
Electra-small 98.73 97.42 87.82 92.02
BART-large 99.56 98.22 96.77 97.48

Table 9: Comparison of proposed approaches with state-of-the-art approaches.

State-of-the-art approaches Proposed
[89] [90] [91] [92] BERT-base/BERT-large
86.3% 85% 0.78% 76.5% 99.71%
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Figure 2: Classification accuracy transfer learning-based approaches’ results for fake news on COVID-19.
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learning and deep learning techniques including XGBoost,
Näıve Bayes, deep neural network, and T1-convolutional
neural network. .e objective and purpose of experimen-
tation are to perform fake news text classification using state-
of-the-art techniques and transfer learning-based proposed
fine-tuned approaches. .e performance of experimented
approaches is compared in terms of accuracy on COVID-19
fake news dataset. XGBoost exhibits the lowest accuracy of
75% on the COVID-19 fake news dataset. .e proposed
approach achieved the highest accuracy of 99.66% using
RoBERTa-base.

5.2. Results for COVID-19 English Tweets Dataset

5.2.1. Discussion. Transfer learning models work out-
standingly on all experimented datasets and surprisingly
take less time.TL models performed best on the COVID-19
tweet dataset. Bart-large won this time with a 98.83%
accuracy score. It also performed well in terms of precision,
recall, and F1-score as it has achieved 98.85, 98.80, and 98.82
respectively. XLM-RoBERTa stands in the second position
with a 98.57% accuracy score. BERT-base and BERT-large
gained the third position with a 98.44% accuracy score. .ey
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Figure 3: Classification accuracy transfer learning-based approaches results for COVID-19 English tweets.
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have achieved 98.42 precision, 98.45 recall, and 98.43
F1-score. DistilBERT, ALBERT-base-v2, RoBERTa-large,
RoBERTa-base, and Electra-small achieved 98.31, 97.78,
97.00, 96.48, and 94.52 accuracy score, respectively. So,
transfer learning models performed outstandingly on all
three experimented datasets.

5.2.2. Comparative Analysis with State-of-the-Art
Approaches. In Table 7, the proposed work is compared with
state-of-the-art approaches [87, 88] with respect to the text
classification task. State-of-the-art approaches use machine
learning techniques including multilayer perceptron and
support vector machine. .e objective and purpose of ex-
perimentation are to perform tweets classification using
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Figure 5: Heat map of BERT-base.
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Figure 7: Heat map of RoBERTa-base.
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Figure 8: Heat map of RoBERTa-large.
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Figure 9: Heat map of DistilBERT.
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Figure 10: Heat map of ALBERT-base-v2.
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state-of-the-art techniques and transfer learning-based
proposed fine-tuned approaches. .e performance of
experimented approaches is compared in terms of accuracy
on the COVID-19 English tweet dataset. MLP exhibits the
lowest accuracy of 0.78% on the COVID-19 English tweet
dataset. .e proposed approach achieved the highest ac-
curacy of 98.83% using BART-large.

5.3. Results for Extremist-Non-Extremist Dataset

5.3.1. Discussion. All these figures and tables clearly show
the performance of transfer learning classifiers on the ex-
tremist-non-extremist dataset. Evaluation metrics consist of
precision, recall, F1-score, and accuracy. Transfer learning
classifiers overshine with the highest accuracies. BERT-base
and BERT-large shine among other transfer learning
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Figure 11: Heat map of XLM-RoBERTa-base.
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Figure 12: Heat map of Electra-small.
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Figure 13: Heat map of BART-large.
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Figure 14: Heat map of BERT-base.
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Figure 15: Heat map of BERT-large.
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Figure 16: Heat map of RoBERTa-base.
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models. Both classifiers gained a 99.71% accuracy score.
RoBERTa-based gained a 99.6% accuracy score, XLM-
RoBERTa and BART-large gained a 99.56% accuracy score,
DistilBERT gained a 99.51% accuracy score, RoBERTa-large
gained a 99.36% accuracy score, ALBERT-base-v2 achieved a
98.97% accuracy score, and Electra-small gained a 98.73%
accuracy score. From all the above-mentioned results,

BERT-base and BERT-large both outshine among all nine
text classification models.

5.3.2. Comparative Analysis with State-of-the-Art
Approaches. In Table 9, the proposed work is compared with
state-of-the-art approaches [89–92] with respect to the text
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Figure 17: Heat map of RoBERTa-large.
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Figure 18: Heat map of DistilBERT.
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Figure 19: Heat map of ALBERT-base-v2.
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Figure 22: Heat map of BART-large.
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Figure 20: Heat map of XLM-RoBERTa-base.
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classification task. State-of-the-art approaches use machine
learning and deep learning-based techniques including
Naı̈ve Bayes, CNN, and HDLTex. .e objective and pur-
pose of experimentation are to perform tweets classification
using state-of-the-art techniques and transfer learning-

based proposed fine-tuned approaches. .e performance of
experimented approaches is compared in terms of accuracy
on the extremist-non-extremist dataset. HDLTex achieved
the lowest accuracy of 76.5% on the extremist-non-ex-
tremist dataset. .e proposed approach achieved the
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Figure 23: Heat map of BERT-base.
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Figure 24: Heat map of BERT-large.
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Figure 25: Heat map of RoBERTa-base.
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Figure 26: Heat map of RoBERTa-large.
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Figure 27: Heat map of DistilBERT.
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Figure 28: Heat map of ALBERTa-base-v2.
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highest accuracy of 99.71% using BERT-large and BERT-
base.

6. Conclusion

In this research, nine transfer learning models which are
BERT-base, BERT-large, RoBERTa-base, RoBERTa-large,
DistilBERT, XLM-RoBERTa-base, ALBERT-base-v2,

Electra-small, and BART-large are applied on COVID-19
fake news dataset, COVID-19 English tweet dataset, and
extremist-non-extremist dataset for binary text classifica-
tion. .e experimentation is performed on these datasets
which are taken from reliable repositories. All transfer
learning models are evaluated using evaluation metrics:
accuracy, precision, recall, and F1-score.

In the future, we aim to do experiments on large and
more datasets with multiclass classification. We can also use
different language datasets to perform text classification. It
would be valuable to include emoticons as they are widely
used in social media to represent expressions. Also, we will
try to use the Twitter streaming API to retrieve tweets in real
time in order to do a real-time sentiment analysis and ex-
plore other social networks.
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