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Abstract: Daily activity recognition between different smart home environments faces some chal-
lenges, such as an insufficient amount of data and differences in data distribution. However, a deep
network requires a large amount of labeled data for training. Additionally, inconsistent data distribu-
tion can lead to over-fitting of network learning. Additionally, the time cost of training the network
from scratch is too high. In order to solve the above problems, this paper proposes a fine-tuning
method suitable for daily activity recognition, which is the first application of this method in our
field. Firstly, we unify the sensor space and activity space to reduce the variability in heterogeneous
environments. Then, the Word2Vec algorithm is used to transform the activity samples into digital
vectors recognizable by the network. Finally, the deep network is fine-tuned to transfer knowledge
and complete the recognition task. Additionally, we try to train the network on public datasets. The
results show that the network trained on a small dataset also has good transferability. It effectively
improves the recognition accuracy and reduces the time cost and heavy data annotation.
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1. Introduction

Daily activity recognition in smart homes can identify activities of daily living (ADL)
and assist people in their daily lives without violating residents’ privacy. It greatly reduces
the cost of care for people with cognitive impairment and is a study of great medical
value. Meanwhile, it is also one of the main implementations of ambient assisted living
(AAL). Daily activity recognition in smart homes is achieved by placing different types
of sensors in the home environment. Residents trigger a corresponding stream of sensor
events when they perform their daily activities. Through these event streams, the daily
activities performed can be inferred by the residents and thus enhance the role of ambient
assisted living.

A common problem with daily activity recognition in smart home environments is
the lack of data tagging. Data tagging is a time- and cost-consuming task [1,2]. For a new
home environment, it faces the problem of cold start, whereas transfer learning can learn
existing knowledge to recognize unknown daily activities, which can greatly reduce the
task of labeling data [3–5].

Fine-tuning, as one of the main implementations of model migration, has played a
great role in the field of deep migration learning. Especially in the field of image recognition,
it has achieved great success. This is due to the richness of image datasets, which enables
the training of excellent network models. Additionally, deep networks have also been
shown to have good learning performance on one-dimensional data, and Fawaz et al. [6]
made a commendable contribution by using fine-tuning on the UCR dataset [7]. At the
same time, they also believe that there is still much work to be explored in building deep
neural networks for mining time series data.

Inspired by the success that fine-tuning has applied to image processing, this pa-
per presents a fine-tuning-based approach for daily activity recognition. The following
contributions are made.
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(1) We found a network structure suitable for identifying sensor data streams in smart homes.
(2) We performed a small data-based network model training on a public dataset [8] and

obtained highly informative parameter metrics.

The remaining structure of this paper is as follows. In Section 2, we summarize
existing feature-based transfer learning methods, instance-based transfer learning methods
and fine-tuning efforts. In Section 3, we detail our network framework and fine-tuning
methods. Additionally, in Section 4, the experimental setup and the comparison of results
are presented. Finally, in Section 5, we summarize our work and present the future outlook.

2. Related Work

In this section, we make a summary of daily activity recognition methods based
on heterogeneous smart home environments. The existing methods mainly focus on
feature-based transfer learning and instance-based transfer learning. More specifically,
feature-based transfer learning refers to the methods that will reduce the gap between
source and target domains via feature transformation. Additionally, instance-based transfer
learning refers to the reuse of data samples according to certain weight generation rules.
Additionally, we summarize the development of fine-tuning methods.

2.1. Methods of Daily Activity Recognition Based on Heterogeneous Smart Home Environments

Ye et al. proposed a method called XLearn [9]. This method is based on ontology
and feature migration. Firstly, the similarity of sensors and active samples are calculated
separately using ontology. The sensor and activity space remapping is completed using the
similarity. Then, clustering and integrated learning methods are used to label the activities.

Feuz et al. proposed a method called FSR [10]. Firstly, the common feature space
of source and target domains is constructed using meta-features. Then, the similarity of
the instance meta-features is calculated by the formula. Additionally, the source domain
feature with the highest similarity to the target domain is selected as the mapping. Finally,
activity recognition is then performed using ensemble learning.

Azkune et al. proposed a method called SEMINAR [11]. Initially, the semantics of the
sensor and active words are learned through word embedding. This creates a common
semantic feature domain, which solves the problem of mapping different domains of
sensors and activities. Then, regression fitting is performed through the long short term
memory networks (LSTMs).

Chiang et al. used binary to encode the sensor profile to obtain a vector of activities [12].
Then, the two activity vectors are correspondingly subtracted to obtain the similarity of
the two activities. Finally, based on the similarity metric, a graph matching algorithm
is used to automatically compute the appropriate feature mapping to complete daily
activity recognition.

Hu et al. proposed a new transfer learning framework [13]. To begin with, they use
web knowledge to retrieve keywords related to daily activities for sensor and activity
mapping. Then, a maximum mean difference (MMD) metric is used to obtain the similarity
of activities between two domains. Lastly, the similarity is used as the weight of daily
activity features in the source domain to complete the activity mapping.

Rashid et al. used an algorithm to mine the target data and extract the activity model
from both spaces [14]. The activity model is then mapped from the source environment to
the target environment using a semi-EM framework to complete daily activity recognition.

Hu et al. also contributed to the direction of instance-based transfer. They proposed a
method called CDAR [15]. Firstly, network search technique and MMD metric are used
to obtain the similarity between activities in two domains. Secondly, the source domain
labels are mapped to the target domain with confidence, i.e., similarity, to generate pseudo-
training data. Finally, a multi-class SVM model is trained for daily activity recognition.
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2.2. The Development Process of Fine-Tuning

Deep transfer learning methods offer unmatched advantages in accuracy over tra-
ditional transfer learning methods. Compelling results have been achieved in the field
of images. Yosinski et al. pioneered the study of the transferability of deep neural net-
works [16]. Based on the AlexNet network trained on the ImageNet dataset [17], the
authors performed fine-tuning experiments layer by layer on layers one to seven. Finally,
two conclusions were drawn: one was that deep transfer networks are more effective than
the random initialization of weights. Second, the transfer of network layers can accelerate
the learning and optimization of the network.

Fine-tuning is difficult to handle in a situation where the training data and test data
are distributed differently. Many deep learning methods have developed an adaptation
layer to accomplish the adaption of source and target domain data.

There is a Deep Domain Confusion approach (DDC) for solving the adaptive problem
of deep networks, first proposed by Tzeng et al. [18]. To begin with, they also used the
AlexNet network trained on the ImageNet dataset [17]. Then, DDC fixed the first seven
layers of AlexNet and added the adaptive metric MMD [19] on the eighth layer. This was
the previous layer of the classifier. Long et al. proposed a Deep Adaptation Networks
approach (DAN) [20], which is an extension of DDC. DAN changes the migration of only
one layer in the DDC to multiple layers. It adds three adaptive layers to the first three
layers of the classifier at the same time. In addition, DAN uses a multi-core MMD metric
(MK-MMD) [21] with better characterization capability. Additionally, it solves the problem
of selecting kernel functions in a single MMD. Furthermore, an increasing number of
researchers are focusing on methods for migration using trained deep network models
such as AlexNet, Resnet, etc. [22–27]. This significantly reduces the model training time
and improves the efficiency.

Up to this point, most of the fine-tuning studies have been based on large datasets
in the image domain. Studies in the time series domain were almost non-existent until
Fawaz et al. proposed a time-series-based network migration method on the basis of
fine-tuning [6]. Additionally, the DTW Barycenter Averaging (DBA) method [28] is used
to find out the datasets that are similar to the target domain for migration. The results
show that deep networks are portable in the time series domain with impressive success.
This also gives us more confidence to explore the possibility of fine-tuning in the smart
home domain.

2.3. Methods of Daily Activity Recognition Based on LSTM

Sun et al. investigated various deep learning models, such as LSTM, Convolutional
Neural Networks (CNN), CNN-LSTM and autoencoder-CNN-LSTM, for recognizing and
predicting abnormal ADL in older people [29].

Singh et al. used CNN for daily activity recognition and compared it with LSTM,
recurrent neural networks and other machine learning algorithms. The results show that
1D-CNNs perform similarly to LSTMs and better than other probabilistic models [30].

Liciotti et al. proposed different deep learning models to classify human activities.
In particular, LSTM was used to model the spatio-temporal sequences obtained by smart
home sensors. It was also validated on publicly available datasets, and the results showed
that the proposed LSTM model outperformed existing deep learning methods [31].

Thapa et al. adapted the LSTM algorithm to a synchronous algorithm (sync-LSTM).
sync-LSTM is able to input multiple parallel sequences simultaneously and produce multi-
ple parallel synchronous output sequences. The proposed method was used for simultane-
ous daily activity recognition using heterogeneous sensor data in smart homes [32].

Various methods for daily activity recognition using LSTM are presented by Forbes et al.
These methods exploit the temporal dependencies present in sensor data to produce richer
representations and further improve classification accuracy. Finally, a comparison is made
with some baseline classification algorithms on real-world datasets. It is also concluded
that the accuracy of the LSTM improves with more temporal information on the input [33].
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Based on the above exploration regarding the LSTM model, we further propose a
fine-tuning method based on the LSTM model to transfer the laws of sensor event flow
sequences in two heterogeneous smart homes.

3. The Proposed Approach

The process of the proposed approach based on deep network transfer learning is
shown in Figure 1. First of all, some definitions are given. In order to transfer knowledge
in different environments, we unify the sensor space and activity space of the source and
target domains. Secondly, we describe the network model used. Finally, we show how the
samples are learned via network transfer to reduce the over-fitting process.
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3.1. Unify Sensor Space and Activity Space

To begin with, we give definitions about sensor events and active samples.

Definition 1. s = (d, t, sn, sv, ac) is a sensor event. d is the date when sn was activated, t is the
time when sn was triggered and sn is the name of sensor. sn is made up of an abbreviation for the
type of sensor and a number, for example, “M008” in Table 1 represents the eighth motion sensor
distributed in the smart home. Additionally, sv is the value of sn when sn was activated or not
activated. Different types of sensors have different types of values, e.g., values or Boolean values. ac
is the activity that the resident does when triggering the sn. As shown in Table 1, s1 = (2012/7/20,
15/04/49. 047095, LS008, 38, Sleep_Out_Of_Bed). s1 represents the LS008 sensor event that was
triggered by a resident during the “Sleep_Out_Of_Bed” activity on 20 July 2012, 4 min and 49 s
after 3:00 p.m.

Definition 2. When a person performs an activity in a smart home environment, the corresponding
sensor event stream is triggered. In this paper, we only use the names of sensors to compose the
activity samples instead of sensor events. Given n sensor names sn1, sn2, . . . , sna and a label
yl, yl belongs to the active label space. <sn1, sn2, . . . , sna, yl> is said to be an activity sample, if
∀1 ≤ i ≤ a-1, sni+1 is always followed by sni in temporal order. An activity, “Sleep_Out_Of_Bed”,
is shown in Table 1; it can be represented as <M008, LS008, . . . , M008>.

The layout of sensors in different smart home environments is different, but similar
locations and types of sensors play similar roles. We mapped the sensors with the same
location and type to unify the sensor space, and some of the sensor mappings are shown
in Table 2. By using the renaming rule, sensors were renamed as “Location_Type”. For
example, door sensors “D003” in the bathroom of the source smart home and B were
distributed across i and the bathroom in the target smart home, which were renamed S.
Additionally, we merged the activities that live only time difference into one and unified
the activity space. In addition, for each active sample, we used a fixed window to cut, and
filled the samples with “no” if they were less than the window size. This was to ensure
that the length of each input sample was the same and to facilitate network training. Then,
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we transformed the sample into a numerical vector using Word2Vec algorithm [34]. The
entire data processing flow is shown in Figure 2.

Table 1. An example of a “Sleep_Out_Of_Bed” activity in source domain.

d t sn sv ac

20 July 2012 15/04/47. 939431 M008 ON

Sleep_Out_Of_Bed

20 July 2012 15/04/49. 047095 LS008 38
20 July 2012 15/04/49. 11856 M008 OFF
20 July 2012 15/09/05. 634721 LS012 27
20 July 2012 15/09/49. 513611 LS009 26
20 July 2012 15/10/37. 143058 LS014 35
20 July 2012 15/10/44. 79274 LS001 12
20 July 2012 15/12/01. 593479 LS003 6
20 July 2012 15/12/44. 773366 LS016 15
20 July 2012 15/12/47. 7472 LS004 14
20 July 2012 15/12/53. 867533 LS013 27
20 July 2012 15/13/29. 44345 LS011 20
20 July 2012 15/19/05. 563968 LS012 26
20 July 2012 15/19/49. 404442 LS009 23
20 July 2012 15/20/37. 05254 LS014 31
20 July 2012 15/20/44. 684768 LS001 10
20 July 2012 15/21/51. 214887 LS008 34
20 July 2012 15/21/51. 241965 M008 ON
20 July 2012 15/21/52. 330604 M008 OFF

Table 2. Example of a unified sensor space.

Source Domain Target Domain Location Type Rename

LS009, LS012, LS014 LS013, LS014, LS015 Bedroom Light Bedroom_Light

M002, M003 M008, M010 Bedroom Motion Bedroom_Motion

D003 D003 Toilet Door Toilet_Door
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3.2. Network Structure

We chose the LSTM model for transfer learning. The sensor data streams triggered
by the activity have a certain time sequence. Additionally, LSTMs can learn the internal
representation of time series data and can perfectly match the specially processed feature
input. This network achieved a high accuracy on the dataset of human activity recognition
using smartphones [35]. Its network structure is shown in Figure 3.
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There are seven layers. The first layer is the input layer. Additionally, the second and
fourth layers are LSTM layers, the third and fifth are dropout layers and the sixth and
seventh layers are fully connected layers.

The data in the input layer are activity samples, and the time dimension depends on
the sample length. In this paper, the length is set to a fixed length. Other than that, the
input data are the timing vectors compiled by the Word2Vec method [34]. Additionally,
the activation sequence order of the sensor can also be learned by the LSTM unit. For the
two-layer LSTM structure, the active samples are able to represent the features in a more
abstract way at a higher level. In addition, it reduces the number of neurons, increases
the accuracy and reduces the training time. As for the sample size in heterogeneous
environments, it is too small and tends to cause over-fitting. This also leads to many
redundancies between the features represented by individual neurons. To solve this
problem, dropout layers are introduced. Additionally, these layers have the direct effect of
randomly reducing the number of intermediate features and, thus, reducing the redundancy.
The parameter for these two dropout layers is set to a reasonable value. Additionally, this
parameter yields the most combinations of network structures and effectively reduces
over-fitting. In addition to this, the activation functions of the two fully connected layers
are rectified linear activation function (ReLU) and softmax, respectively. In the softmax
classification layer, the number of its neurons corresponds to the number of label types in
the dataset. Finally, the output of the network is the classification results of activities.

3.3. Fine-Tuning

Since there are few extant studies of time series models, we had to train the model
using a source domain dataset as a pre-trained model. It is worth noting that we looked for
the training model with the highest accuracy as our pre-training model. Additionally, we
believe that such model parameters represent a better training network with better results
than a new model with random initialization of parameters.

Additionally, the activity spaces of the source and target domains were already unified,
so there was no need to displace the final classification layers. Therefore, all models share
a network structure. If your type does not match the type of the pre-trained model, just
swap out the last classification layer. After that, use initialization methods to obtain the
parameters of the last layer, such as random initialization and uniform initialization [36].

Then, we loaded the parameters of the pre-trained model on the new model. After
our many trials, the effect of fine-tuning the latter layers was not so significant. We finally
chose to fine-tune the global with a smaller learning rate, using a small amount of known
data in the target domain. This is also consistent with two literature findings [6,16]. Such
training makes comprehensive use of known data to learn more, with some magnitude of
improvement in effectiveness.
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4. Results and Evaluation
4.1. Smart Homes Datasets

The Center for Advanced Research in Adaptive Systems (CASAS) at Washington State
University is a renowned team for activity recognition in smart homes. We used the public
datasets they posted on their website to conduct the experiments [8]. These data were
collected from smart homes with sensors arranged. Additionally, the sensors were divided
into the following six types, which were “temperature sensor (T)”, “infrared motion sensor
(M)”, “wide area infrared motion sensor (MA)”, “light sensor (LS)”, “Light Switch Sensor
(L)” and “Door Switch Sensor (D)”. The home was divided into seven areas, which were
Kitchen, Dining, Parlor, Porch, Toilet, Bedroom and Porch_Toilet.

Additionally, we selected ten common daily activities in the datasets for training,
which were “Bed_Toilet_Transition”, “Cook”, “Dress”, “Eat”, “Med”, “Personal_Hygiene”,
“Relax”, “Sleep”, “Sleep_Out_Of_Bed”, “Toilet”. We combined similar activities with
only temporal distinctions occurring as a whole. For example, “Eat”, “Eat_Lunch”,
“Eat_Breakfast” and “Eat_Dinner” were merged into “Eat” and “Cook”, “Cook_Lunch”,
“Cook_Breakfast” and “Cook_Dinner” were merged into one daily activity “Cook”. Because
temporal features are not included in the training samples, we did not classify activities
with only temporal distinctions.

4.2. Metrics

Daily activity recognition for smart homes is a classification problem. Therefore, we used
evaluation metrics of accuracy, precision, recall and F1 score as shown in Equations (1)–(4),
respectively. TP is the number of true positives which are correctly classified. Additionally,
TN is the number of true negatives correctly classified. FP is the number of false positives
which are incorrectly classified, whereas FN is the number of false negatives which are
incorrectly classified.

Accuracy = TP + TN/(TP + TN + FP + FN) (1)

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

F1-score = 2 × Precision × Recall/(Precision + Recall) (4)

4.3. Experiments and Results

The layouts are different from one smart home to another. Intuitively, the more
similar the layouts of smart homes are, the better the transferring performance is. In the
proposed approach, layout similarity between smart homes is evaluated before transferring.
Because HH101, HH105, HH109 and HH110 have similar layouts, they were selected for
our experiments. Additionally, we let them be each other as source and target domains.
The number of functional areas of the selected smart homes is shown in Table 3.

Table 3. The distribution of functional areas in the selected smart homes.

Smart Home Kitchen Dining Parlor Porch Toilet Bedroom Porch_Toilet

HH101 1 1 1 1 1 1 1

HH105 1 1 1 1 1 1 1

HH109 1 1 1 1 1 1 1

HH110 1 1 1 1 1 1 1

Then, we used a fixed window of size 100 to cut the sensor data stream for each active
excitation. In the case of insufficient length, “no” was used to fill it. Further, we encoded
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each active sensor stream using the Word2Vec method [34]. A digital representation of each
sensor was obtained and then the text vector was transformed into a digital one which was
recognizable by the network.

Firstly, the data from the source domain were used as the training set to pre-train
the network model. We used accuracy as a metric to save the best pre-trained model.
Additionally, the accuracy of each pre-trained model selected ranged from approximately
88% to 98%. Then, we took the network parameters of each layer and loaded them into
the new network model. Finally, we fine-tuned the whole network with some data from
the target domain. We need to note that it is better to choose a smaller learning rate when
fine-tuning the network. Since the trained network model weights are already smoothed,
we do not want to distort them too quickly. Our comparison experiment used data from the
source domain and part of the target domain as the training set, and tested the remaining
data in the target domain, i.e., without fine-tuning. The basic parameters of experiments
are shown in Table 4. Additionally, the settings of the training and test sets are shown in
Table 5. All results are shown in Table 5 and in Figures 4–15.

Table 4. Parameters of the LSTM network for our method and comparison method.

Window Learning Rate Dropout Optimizer Batch Size Epoch Loss Function

Ours 100 Model: 0.001
Fine-tuning: 0.00001 0.5 Adam 64 500 Cross-entropy

Comparison 100 0.001 0.5 Adam 64 500 Cross-entropy
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Figure 4. Results of our method and comparison experiments for accuracy, precision, recall and
F1-score at each epoch, based on the source domain as HH101, target domain as HH105.
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Figure 5. Results of our method and comparison experiments for accuracy, precision, recall and
F1-score at each epoch, based on the source domain as HH101, target domain as HH109.
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Table 5. Experimental setup and results of our method and the comparison method.

Experiment Training Set Test Set Accuracy

Group
1

Ours_101to105 1 × HH101 + Fine-tuning(0.2 × HH105) 0.8 × HH105 0.6899

Comparison_101to105 1 × HH101 + 0.2 × HH105 0.8 × HH105 0.6592

Group
2

Ours_101to109 1 × HH101 + Fine-tuning(0.2 × HH109) 0.8 × HH109 0.7413

Comparison_101to109 1 × HH101 + 0.2 × HH109 0.8 × HH109 0.7004

Group
3

Ours_101to110 1 × HH101 + Fine-tuning(0.2 × HH110) 0.8 × HH110 0.6673

Comparison_101to110 1 × HH101 + 0.2 × HH110 0.8 × HH110 0.6129

Group
4

Ours_105to101 1 × HH105 + Fine-tuning(0.2 × HH101) 0.8 × HH101 0.7664

Comparison_105to101 1 × HH105 + 0.2 × HH101 0.8 × HH101 0.7238

Group
5

Ours_105to109 1 × HH105 + Fine-tuning(0.2 × HH109) 0.8 × HH109 0.7339

Comparison_105to109 1 × HH105 + 0.2 × HH109 0.8 × HH109 0.6943

Group
6

Ours_105to110 1 × HH105 + Fine-tuning(0.2 × HH110) 0.8 × HH110 0.6129

Comparison_105to110 1 × HH105 + 0.2 × HH110 0.8 × HH110 0.5376

Group
7

Ours_109to101 1 × HH109 + Fine-tuning(0.2 × HH101) 0.8 × HH101 0.7468

Comparison_109to101 1 × HH109 + 0.2 × HH101 0.8 × HH101 0.7131

Group
8

Ours_109to105 1 × HH109 + Fine-tuning(0.2 × HH105) 0.8 × HH105 0.6256

Comparison_109to105 1 × HH109 + 0.2 × HH105 0.8 × HH105 0.5949

Group
9

Ours_109to110 1 × HH109 + Fine-tuning(0.2 × HH110) 0.8 × HH110 0.6631

Comparison_109to110 1 × HH109 + 0.2 × HH110 0.8 × HH110 0.6004

Group
10

Ours_110to101 1 × HH110 + Fine-tuning(0.2 × HH101) 0.8 × HH101 0.7877

Comparison_110to101 1 × HH110 + 0.2 × HH101 0.8 × HH101 0.7806

Group
11

Ours_110to105 1 × HH110 + Fine-tuning(0.2 × HH105) 0.8 × HH105 0.5837

Comparison_110to105 1 × HH110 + 0.2 × HH105 0.8 × HH105 0.4776

Group
12

Ours_110to109 1 × HH110 + Fine-tuning(0.2 × HH109) 0.8 × HH109 0.8069

Comparison_110to109 1 × HH110 + 0.2 × HH109 0.8 × HH109 0.7586

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 17 
 

As shown in Figure 6, HH101 is the source domain and HH110 is the target domain. 

Our method led the comparison method from the beginning to the end and remained 

stable throughout, peaking at the 119th iteration; the comparison method peaked at the 

378th iteration. Our method improved 5.43% in accuracy and 1.58% in F1-score over those 

of the comparison method. Additionally, precision and recall were on par with that of the 

comparison method. 

 

Figure 6. Results of our method and comparison experiments for accuracy, precision, recall and F1-

score at each epoch, based on the source domain as HH101, target domain as HH110. 

As shown in Figure 7, HH105 is the source domain and HH101 is the target domain. 

Our method achieved better recognition at the 50–150th iteration and remained stable af-

ter the 250th iteration; the comparison method remained stable only after the 250th itera-

tion, but the accuracy results were consistently lower than those of our method. Our 

method improved 4.26% in accuracy, 5.35% in recall and 3.46% in F1-score over those of 

the comparison method. In addition, the precision was on a par with that of the compari-

son method. 

 

Figure 7. Results of our method and comparison experiments for accuracy, precision, recall and F1-

score at each epoch, based on the source domain as HH105, target domain as HH101. 

As shown in Figures 8 and 9, HH105 is the source domain and HH109/HH110 is the 

target domain. Our method achieved a high level of accuracy after a smaller number of 

iterations and consistently led the comparison methods with a high level of accuracy. In 

Figure 8, our method improved 3.96% in accuracy, 4.30% in recall and 3.34% in F1-score 

over those of the comparison method. In addition, the precision was on a par with that of 

the comparison method. In Figure 9, our method improved 7.53% in accuracy, 12.13% in 

precision, 8.93% in recall and 9.98% in F1-score over those of the comparison method. In 

addition, the performance of the fine-tuned model was very stable, which demonstrates 

the effectiveness of our migration method on LSTMs. 

0 100 200 300 400 500

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
er

ce
n
ta

g
e

Number of epoch

 Our_Acc

 C_Acc

 Our_Pre

 C_Pre

0 100 200 300 400 500

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
er

ce
n
ta

g
e

Number of epoch

 Our_Rec

 C_Rec

 Our_F1

 C_F1

0 100 200 300 400 500

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
er

ce
n
ta

g
e

Number of epoch

 Our_Acc

 C_Acc

 Our_Pre

 C_Pre

0 100 200 300 400 500

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
er

ce
n
ta

g
e

Number of epoch

 Our_Rec

 C_Rec

 Our_F1

 C_F1

Figure 6. Results of our method and comparison experiments for accuracy, precision, recall and
F1-score at each epoch, based on the source domain as HH101, target domain as HH110.
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Figure 7. Results of our method and comparison experiments for accuracy, precision, recall and
F1-score at each epoch, based on the source domain as HH105, target domain as HH101.
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Figure 8. Results of our method and comparison experiments for accuracy, precision, recall and
F1-score at each epoch, based on the source domain as HH105, target domain as HH109.
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Figure 9. Results of our method and comparison experiments for accuracy, precision, recall and
F1-score at each epoch, based on the source domain as HH105, target domain as HH110.
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Figure 10. Results of our method and comparison experiments for accuracy, precision, recall and
F1-score at each epoch, based on the source domain as HH109, target domain as HH101.
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Figure 11. Results of our method and comparison experiments for accuracy, precision, recall and
F1-score at each epoch, based on the source domain as HH109, target domain as HH105.
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Figure 12. Results of our method and comparison experiments for accuracy, precision, recall and
F1-score at each epoch, based on the source domain as HH109, target domain as HH110.
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Figure 13. Results of our method and comparison experiments for accuracy, precision, recall and
F1-score at each epoch, based on the source domain as HH110, target domain as HH101.
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Figure 14. Results of our method and comparison experiments for accuracy, precision, recall and
F1-score at each epoch, based on the source domain as HH110, target domain as HH105.
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Figure 15. Results of our method and comparison experiments for accuracy, precision, recall and
F1-score at each epoch, based on the source domain as HH110, target domain as HH109.

For each set of experiments, the results are shown in Figures 4–15. The following
analysis of the improvement of each indicator is based on the indicators that work best in
our method and in the comparison method.

As shown in Figure 4, HH101 is the source domain and HH105 is the target domain.
Our method achieved better activity recognition at the 50th iteration and tended to stabilize
thereafter, peaking at the 348th iteration; the comparison method stabilized at around the
200th iteration, peaking at the 259th. However, our method was able to approach the peak
of the comparison method at an early stage and remained stable. Additionally, our method
improved 3.07% in accuracy, 9.48% in precision, 8.61% in recall and 9.91% in F1-score over
that of the comparison method.

As shown in Figure 5, HH101 is the source domain and HH109 is the target domain.
Our method achieved better activity recognition at the 100th iteration, peaking at the
434th iteration; the comparison method achieved better activity recognition at the 250th it-
eration, peaking at the 256th. However, on every iteration, our method outperformed
the comparison method. Our method improved 4.08% in accuracy, 10.94% in recall and
10.23% in F1-score over those of the comparison method. In addition, the precision was on
a par with that of the comparison method.

As shown in Figure 6, HH101 is the source domain and HH110 is the target domain.
Our method led the comparison method from the beginning to the end and remained
stable throughout, peaking at the 119th iteration; the comparison method peaked at the
378th iteration. Our method improved 5.43% in accuracy and 1.58% in F1-score over those
of the comparison method. Additionally, precision and recall were on par with that of the
comparison method.

As shown in Figure 7, HH105 is the source domain and HH101 is the target domain.
Our method achieved better recognition at the 50–150th iteration and remained stable after
the 250th iteration; the comparison method remained stable only after the 250th iteration,
but the accuracy results were consistently lower than those of our method. Our method im-
proved 4.26% in accuracy, 5.35% in recall and 3.46% in F1-score over those of the comparison
method. In addition, the precision was on a par with that of the comparison method.

As shown in Figures 8 and 9, HH105 is the source domain and HH109/HH110 is the
target domain. Our method achieved a high level of accuracy after a smaller number of
iterations and consistently led the comparison methods with a high level of accuracy. In
Figure 8, our method improved 3.96% in accuracy, 4.30% in recall and 3.34% in F1-score
over those of the comparison method. In addition, the precision was on a par with that of
the comparison method. In Figure 9, our method improved 7.53% in accuracy, 12.13% in
precision, 8.93% in recall and 9.98% in F1-score over those of the comparison method. In
addition, the performance of the fine-tuned model was very stable, which demonstrates
the effectiveness of our migration method on LSTMs.

As shown in Figures 10–12, our method achieved a high level of accuracy in less than
50 iterations and remained stable, whereas the comparison method took 200–300 iterations
to reach stability. Additionally, our method generally improved accuracy by 3.07–6.27%
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over that of the comparison method. In Figure 10, our method improved the precision
by 6.12% and the F1-score by 6.05%; in Figure 12, our method improved the precision by
7.63%; the rest of the indicators were at the same level as those of the comparison method.

As shown in Figure 13, at the end of the iteration, our proposed method was close to
the recognition results of the comparison method. However, our method achieved more
than 75% accuracy almost at the beginning of the phase, and the comparison method
did not reach a similar level until the 300th iteration. This demonstrates that fine-tuning
methods on LSTMs can learn the knowledge of the target domain extremely quickly and
make corrections to the network parameters, achieving strong migration effects in a shorter
period of time.

As shown in Figure 14, our method showed considerable superiority, improving
accuracy by 10.16%, recall by 9.17% and F1-score by 8.8% over those of the comparison
method. In addition, the precision remained on par with that of the comparison method.
Additionally, as seen in Figure 15, our method’s metrics were also consistently higher
than those of the comparison method, improving accuracy by 4.87%, recall by 3.39% and
F1-score by 1.5% over those of the comparison method.

By analyzing the above graphs and charts, we can observe that the accuracy was
improved by 0.7–10.6% and most experiments improved by 3–5%. The precision was
improved by up to 12.13%, the recall was improved by up to 10.94% and the F1-score was
improved by up to 10.23% compared with those of the direct training. Additionally, the
learning efficiency of the fine-tuned network was fast, and most results were optimal in
about 50–100 epochs. This is because the fine-tuning incorporates the parameters of the
pre-trained model. Based on this, the classification weights of the network can be corrected
with a small amount of training data to achieve better classification results. This shows that
our proposed fine-tuning method demonstrates excellent transfer effects on the domain
of daily activity recognition and exhibits strong stability and generalization. Furthermore,
the training time of the fine-tuning method is less than one-third of the time required for
training from scratch, which greatly saves training time.

In addition, we have compared the existing deep migration method for daily activity
recognition. The method mainly uses the Domain Adaptive Neural Network (DANN) for
model migration. Additionally, the experimental setups are shown in Table 6. As can be
seen from Table 6 and Figures 16–18, our method outperformed the DANN method on all
datasets, except for Group 11. Accuracy improved by more than 10% within most groups,
and even by 23% in group 10. Precision and F1-score also improved on most of the datasets.
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Figure 16. Accuracy of our method and that of DANN, based on Group 1 to Group 12.
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Table 6. Experimental setup and results of our method and the DANN method.

Group Experiment Training Set Test Set Accuracy

1
Ours_101to105 1 × HH101 + Fine-tuning(0.2 × HH105) 0.8 × HH105 0.6899

DANN_101to105 1 × HH101 + 0.2 × HH105 0.8 × HH105 0.6312

2
Ours_101to109 1 × HH101 + Fine-tuning(0.2 × HH109) 0.8 × HH109 0.7413

DANN_101to109 1 × HH101 + 0.2 × HH109 0.8 × HH109 0.7265

3
Ours_101to110 1 × HH101 + Fine-tuning(0.2 × HH110) 0.8 × HH110 0.6673

DANN_101to110 1 × HH101 + 0.2 × HH110 0.8 × HH110 0.6343

4
Ours_105to101 1 × HH105 + Fine-tuning(0.2 × HH101) 0.8 × HH101 0.7664

DANN_105to101 1 × HH105 + 0.2 × HH101 0.8 × HH101 0.5437

5
Ours_105to109 1 × HH105 + Fine-tuning(0.2 × HH109) 0.8 × HH109 0.7339

DANN_105to109 1 × HH105 + 0.2 × HH109 0.8 × HH109 0.5656

6
Ours_105to110 1 × HH105 + Fine-tuning(0.2 × HH110) 0.8 × HH110 0.6129

DANN_105to110 1 × HH105 + 0.2 × HH110 0.8 × HH110 0.5156

7
Ours_109to101 1 × HH109 + Fine-tuning(0.2 × HH101) 0.8 × HH101 0.7468

DANN_109to101 1 × HH109 + 0.2 × HH101 0.8 × HH101 0.7296

8
Ours_109to105 1 × HH109 + Fine-tuning(0.2 × HH105) 0.8 × HH105 0.6256

DANN_109to105 1 × HH109 + 0.2 × HH105 0.8 × HH105 0.4656

9
Ours_109to110 1 × HH109 + Fine-tuning(0.2 × HH110) 0.8 × HH110 0.6631

DANN_109to110 1 × HH109 + 0.2 × HH110 0.8 × HH110 0.5625

10
Ours_110to101 1 × HH110 + Fine-tuning(0.2 × HH101) 0.8 × HH101 0. 7877

DANN_110to101 1 × HH110 + 0.2 × HH101 0.8 × HH101 0.5546

11
Ours_110to105 1 × HH110 + Fine-tuning(0.2 × HH105) 0.8 × HH105 0. 5837

DANN_110to105 1 × HH110 + 0.2 × HH105 0.8 × HH105 0.6343

12
Ours_110to109 1 × HH110 + Fine-tuning(0.2 × HH109) 0.8 × HH109 0.8069

DANN_110to109 1 × HH110 + 0.2 × HH109 0.8 × HH109 0.6687
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Figure 17. Precision of our method and that of DANN, based on Group 1 to Group 12.



Appl. Sci. 2023, 13, 5706 15 of 17

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 17 
 

 

Figure 16. Accuracy of our method and that of DANN, based on Group 1 to Group 12. 

 

Figure 17. Precision of our method and that of DANN, based on Group 1 to Group 12. 

 

Figure 18. F1-score of our method and that of DANN, based on Group 1 to Group 12. 

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

Group

 DANN

 Ours

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

ci
si

o
n

Group

 DANN

 Ours

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
1

-s
co

re

Group

 DANN

 Ours

Figure 18. F1-score of our method and that of DANN, based on Group 1 to Group 12.

5. Conclusions and Future Work

In this paper, we explore a suitable deep neural network LSTM for the smart home
domain. Additionally, we conduct extensive experiments on the CASAS dataset. We
fine-tuned for small datasets, effectively improving recognition accuracy even better than
direct training. At the same time, the fine-tuning greatly saves training time. It can be
seen that in the initial epoch, the training accuracy rises quickly and reaches the best soon.
We note that this is the first time that fine-tuning has made results in the smart home
domain. This is exciting and means that the deep network has good transferability in the
field of daily activity recognition in smart homes, instead of its superior performance in the
image domain.

In the future, we hope we can build a library of fine-tuned network models based
on smart homes together with you. Additionally, we will conduct further research on
network migration at different levels. Additionally, we intend to add adaptive layers at
some important levels to make the data distribution more similar and enhance the effect of
fine-tuning.
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