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SUMMARY This paper presents an algorithm for fingerprint matching

using the Phase-Only Correlation (POC) function. One of the most difficult

problems in human identification by fingerprints has been that the match-

ing performance is significantly influenced by fingertip surface condition,

which may vary depending on environmental or personal causes. This pa-

per proposes a new fingerprint matching algorithm using phase spectra of

fingerprint images. The proposed algorithm is highly robust against finger-

print image degradation due to inadequate fingertip conditions. A set of

experiments is carried out using fingerprint images captured by a pressure

sensitive fingerprint sensor. The proposed algorithm exhibits efficient iden-

tification performance even for difficult fingerprint images that could not

be identified by the conventional matching algorithms.

key words: phase-only correlation, phase-only matched filtering, phase

correlation, biometrics, fingerprint verification, fingerprint identification

1. Introduction

Human body has a complicated three-dimensional structure,

whose condition varies considerably according to environ-

mental or internal conditions. The goal of image-based bio-

metrics is, regardless of which biometric trait is used, to

identify a person as precise as possible without being af-

fected by image variations per each trial. Compared with in-

dustrial image recognition, biometrics applications require

much more robust image preprocessing as well as more pre-

cise image recognition.

A fingerprint is a representation of the epidermis of a

finger being composed of a set of ridges and furrows. The

uniqueness of a fingerprint can be determined by the pat-

tern of ridges and furrows as well as the minutiae points

(i.e., ridge ending and ridge bifurcation). Among all the bio-

metric techniques, fingerprint-based identification [1] is the

most popular method, which has been successfully used in

many applications. Typical fingerprint identification meth-

ods employ feature-based image matching, where ridge

lines in the original fingerprint image are thinned by image

preprocessing, minutiae points in the ridge lines are identi-

fied, and line orientation or the number of lines between ev-
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ery pair of minutiae points is calculated [1]–[3]. These fea-

tures are used for identifying a valid fingerprint image. The

feature-based matching provides an effective way of identi-

fication for majority of people. However, it has been known

that there are a number of people whose fingerprints could

not be identified by the feature-based methods due to spe-

cial skin conditions, where feature points are hard to be ex-

tracted by image processing. The ratio of people who have

such difficult fingerprints varies depending on race, sex, age,

job groupings, etc., but it is said that one to five percentage

of total population may fall into this category.

Addressing this problem, this paper proposes an ef-

ficient fingerprint matching algorithm using a Phase-Only

Correlation (POC) function (or simply a “phase-correlation

function”) [4]–[6]. The POC technique has been success-

fully applied to high-accuracy image registration tasks for

computer vision applications [7]–[9], where estimation of

sub-pixel image translation is a major concern. In this pa-

per, we demonstrate that the POC technique is also effective

for fingerprint matching (see [5] for earlier discussions of

this approach).

This paper is organized as follows: Sect. 2 gives the

definition of the POC function and its basic properties. Sec-

tion 3 defines a band-limited POC function for fingerprint

matching. Section 4 describes a fingerprint matching al-

gorithm using the band-limited POC function. Section 5

presents a set of experiments for evaluating matching per-

formance of the proposed algorithm and compares it with

that of the conventional matching algorithm. In Sect. 5, we

end with some conclusions.

2. Phase-Only Correlation (POC)

This section shows the definition of a Phase-Only Correla-

tion (POC) function.

Consider two N1 × N2 images, f (n1, n2) and g(n1, n2),

where we assume that the index ranges are n1 = −M1 · · ·M1

(M1 > 0) and n2 = −M2 · · ·M2 (M2 > 0) for mathematical

simplicity, and hence N1 = 2M1 + 1 and N2 = 2M2 + 1.

Let F(k1, k2) and G(k1, k2) denote the 2D Discrete Fourier

Transforms (2D DFTs) of the two images. F(k1, k2) and

G(k1, k2) are given by

F(k1, k2) =
∑

n1,n2

f (n1, n2)W
k1n1

N1
W

k2n2

N2

= AF(k1, k2)e jθF (k1,k2), (1)
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G(k1, k2) =
∑

n1,n2

g(n1, n2)W
k1n1

N1
W

k2n2

N2

= AG(k1, k2)e jθG(k1,k2), (2)

where k1 = −M1 · · ·M1, k2 = −M2 · · ·M2, WN1
=

e
− j 2π

N1 , WN2
= e

− j 2π
N2 , and the operator

∑

n1,n2
denotes

∑M1

n1=−M1

∑M2

n2=−M2
. AF(k1, k2) and AG(k1, k2) are amplitude

components, and e jθF (k1,k2) and e jθG(k1,k2) are phase compo-

nents. The cross spectrum RFG(k1, k2) between F(k1, k2) and

G(k1, k2) is given by

RFG(k1, k2) = F(k1, k2)G(k1, k2)

= AF(k1, k2)AG(k1, k2)e jθ(k1,k2), (3)

where G(k1, k2) denotes the complex conjugate of G(k1, k2)

and θ(k1, k2) denotes the phase difference θF(k1, k2) −

θG(k1, k2). The ordinary correlation function r fg(n1, n2) is

the 2D Inverse Discrete Fourier Transform (2D IDFT) of

RFG(k1, k2) and is given by

r fg(n1, n2) =
1

N1N2

∑

k1,k2

RFG(n1, n2)W
−k1n1

N1
W
−k2n2

N2
,

(4)

where
∑

k1k2
denotes

∑M1

k1=−M1

∑M2

k2=−M2
.

On the other hand, the cross-phase spectrum (or nor-

malized cross spectrum) R̂FG(k1, k2) is defined as

R̂FG(k1, k2) =
F(k1, k2)G(k1, k2)

|F(k1, k2)G(k1, k2)|

= e jθ(k1,k2). (5)

The POC function r̂ fg(n1, n2) is 2D IDFT of R̂FG(k1, k2) and

is given by

r̂ fg(n1, n2) =
1

N1N2

∑

k1,k2

R̂FG(k1, k2)W
−k1n1

N1
W
−k2n2

N2
.

(6)

When f (n1, n2) and g(n1, n2) are the same image, i.e.,

f (n1, n2) = g(n1, n2), the POC function will be given by

r̂ f f (n1, n2) =
1

N1N2

∑

k1,k2

W
−k1n1

N1
W
−k2n2

N2

= δ(n1, n2)

=

{

1 if n1 = n2 = 0

0 otherwise.
(7)

The above equation implies that the POC function be-

tween two identical images is the Kronecker’s delta function

δ(n1, n2).

The most remarkable property of POC compared to the

ordinary correlation is its accuracy in image matching. Fig-

ure 1 shows an example of image matching using the POC

function. When two images are similar, their POC func-

tion r̂(n1, n2) gives a distinct sharp peak. When two images

are not similar, the peak drops significantly. Thus, the POC

Fig. 1 Examples of the POC function r̂ f g(n1, n2) and the ordinary corre-

lation function r f g(n1, n2): (a) image f (n1, n2), (b) image g(n1, n2), (c) POC

function between the two identical images (the image f (n1, n2)), (d) POC

function between f (n1, n2) and g(n1, n2), (e) ordinary correlation function

between the two identical images (the image f (n1, n2)), and (f) ordinary

correlation function between f (n1, n2) and g(n1, n2).

function exhibits much higher discrimination capability than

the ordinary correlation function. The height of the peak can

be used as a good similarity measure for image matching.

Other important properties of the POC function used

for fingerprint matching is that it is not influenced by image

shift and brightness change, and it is highly robust against

noise.

(i) Property of shift invariance

Let g1(n1, n2) be the displaced version of the original

image g(n1, n2). Then, g1(n1, n2) is given by

g1(n1, n2) = g(n1 + τ1, n2 + τ2), (8)

where (τ1, τ2) are the displacements. The POC function

r̂ fg1
(n1, n2) between f (n1, n2) and g1(n1, n2) will be given by

r̂ fg1
(n1, n2) =

1

N1N2

∑

k1,k2

e
j{θ(k1,k2)−

2πτ1n1
N1
−

2πτ2n2
N2
}

×W
−k1n1

N1
W−k2n2

n2

� r̂ fg(n1 + τ1, n2 + τ2). (9)

The above equation shows that the correlation peak is

shifted by (τ1, τ2) and the value of the peak is invariant with

respect to the positional image translation. We can estimate
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Fig. 2 POC function (showing the cross section of n2 = 0) for (a) S/N = 20 dB, (b) S/N = 10 dB, (c)

S/N = 5 dB and (d) S/N = 0 dB.

the image shift (τ1, τ2) by detecting the location of the cor-

relation peak.

(ii) Property of brightness invariance

Suppose that g2(n1, n2) is the brightness-scaled image

of g(n1, n2), and is given by

g2(n1, n2) = αg(n1, n2), (10)

where α > 0. The 2D DFT G2(n1, n2) of g2(n1, n2) is given

by

G2(k1, k2) =
∑

n1,n2

αg(n1, n2)W
k1n1

N1
W

k2n2

N2

= αAG(k1, k2)e jθG(k1,k2). (11)

The POC function r̂ fg2
(n1, n2) between f (n1, n2) and

g2(n1, n2) is calculated as

r̂ fg2
(n1, n2) =

1

N1N2

∑

k1,k2

R̂FG(k1, k2)W
−k1n1

N1
W
−k2n2

N2

= r̂ fg(n1, n2). (12)

The above equation implies that the POC function is not in-

fluenced by brightness change.

(iii) Property of noise immunity

Figure 2 shows an example of the noise immunity of

POC, where the POC function is calculated between the

original image (a) in Fig. 1 and the same image with ad-

ditive white noise of various energy. When two input im-

ages are totally same, the POC function becomes the delta

function δ(n1, n2) having the peak value 1. When one in-

put image contains random additive noise, the correlation

peak decreases without changing its shape as noise energy

increases. From this result, we can see that POC has high

immunity against additive noise.

3. Band-Limited POC Function and Similarity Evalu-

ation for Fingerprint Matching

In this section, we modify the definition of POC function to

have a band-limited POC function dedicated to fingerprint

matching tasks.

Our initial experimental observation shows that the

POC-based image matching is quite effective for fingerprint

verification [5]. The height of the correlation peak gives

a good similarity measure in fingerprint matching. How-

ever, we also found that the 2D DFT of a fingerprint im-

age sometimes includes meaningless phase components in

high frequency domain, since a significant information of

a fingerprint image is concentrated in an elliptic frequency

band of its ridge lines. Figure 3 shows the fingerprint image

and the corresponding amplitude spectrum of its 2D DFT.

A typical fingerprint image has an elliptic spectral distribu-

tion in frequency domain. The frequency components that

are higher than this dominant frequency components have

very low power, and hence their phase components are not

reliable. The cross-spectrum R̂FG(k1, k2) (Eq. (5)) implies

that the calculation of POC emphasizes the high frequency

components, which may have less reliability (with low S/N).

We observe that this reduces the height of the correlation

peak significantly even if the given two fingerprint images

are captured from a common fingertip.

The basic idea to improve the matching performance

is to eliminate meaningless high frequency components in

the calculation of cross-phase spectrum R̂FG(k1, k2) depend-

ing on the frequency spectrum of the given fingerprint im-

age. Assume that the ranges of the inherent frequency band

are given by k1 = −K1 · · ·K1 and k2 = −K2 · · ·K2, where

0 ≦ K1 ≦ M1 and 0 ≦ K2 ≦ M2 as shown in Fig. 3(b).

(The parameters K1 and K2 may be automatically detected

by image processing.) Thus, the effective size of frequency

spectrum is given by L1 = 2K1+1 and L2 = 2K2+1. Instead

of the original POC, we use the band-limited POC function

defined as

r̂
K1K2

fg
(n1, n2) =

1

L1L2

K1
∑

k1=−K1

K2
∑

k2=−K2

R̂FG(k1, k2)

×W
−k1n1

L1
W
−k2n2

L2
, (13)

where n1 = −K1 · · ·K1 and n2 = −K2 · · ·K2. Note that the

maximum value of the correlation peak of the band-limited

POC function is always normalized to 1 and is not depend-

ing on the frequency band size L1 and L2. The shape of

the band-limited POC function for the two identical images

is always the Kronecker’s delta function δ(n1, n2). Also,

note that the original POC function can be represented as

r̂ fg(n1, n2) = r̂
M1 M2

fg
(n1, n2).

Another approach to define a frequency selective POC

function is to apply an adequate low-pass filter to cross-
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Fig. 3 Fingerprint image in space domain (a) and in frequency domain (b) (amplitude spectrum). (c)

and (d) are k2-axis and k1-axis projection of the amplitude spectrum. The dashed lines denote the mean

value for each projection.

Fig. 4 Example of genuine matching using the original POC function and the band-limited POC func-

tion: (a) registered fingerprint image f (n1, n2), (b) input fingerprint image g(n1, n2) captured from the

same fingertip, (c) original POC function r̂ f g(n1, n2) and (d) band-limited POC function r̂
K1K2

f g
(n1, n2)

where K1 = 63 and K2 = 63.

Fig. 5 Example of impostor matching using the original POC function and the band-limited POC

function: (a) registered fingerprint image f (n1, n2), (b) input fingerprint image g(n1 , n2) captured

from the different fingertip, (c) original POC function r̂ f g(n1, n2) and (d) band-limited POC function

r̂
K1 K2

f g
(n1, n2) where K1 = 63 and K2 = 63.

phase spectrum R̂FG(k1, k2). In this approach, however, the

shape and height of the correlation peak varies depending on

the type of low-pass filters [8]. Also, the evaluation of im-

age similarity requires fitting a model peak function to the

correlation data array. The band-limited POC function does

not require such a complicated computation for evaluating

the similarity between images.

Figures 4 and 5 show examples of genuine matching

and impostor matching using the original POC function r̂ fg

and the band-limited POC function r̂
K1K2

fg
. In the case of gen-

uine matching, the band-limited POC function provides the

higher correlation peak than that of the original POC func-

tion. In the case of impostor matching, the band-limited

POC function gives no distinct correlation peak, while the

original POC function gives a peak that may cause a match-

ing error. Thus, the band-limited POC function exhibits

much higher discrimination capability than the original POC

function.
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A natural question is how to determine the upper lim-

its K1 and K2 of the effective frequency components in a

given fingerprint image. In this paper, we automatically de-

termine K1 and K2 depending on the input image as fol-

lows: (i) compute the amplitude spectrum of a fingerprint

image by 2D DFT (Fig. 3(b)), (ii) compute k2-axis projec-

tion pk2
(k1) and k1-axis projection pk1

(k2) of the amplitude

spectrum (Figs. 3(c) and (d)), (iii) compute the mean values

µpk2
and µpk1

for the two projections pk2
(k1) and pk1

(k2), re-

spectively, and (iv) define the parameters K1 and K2 as

K1 = max({k1|pk2
(k1) ≧ µpk2

, 0 ≦ k1 ≦ M1}), (14)

K2 = max({k2|pk1
(k2) ≧ µpk1

, 0 ≦ k2 ≦ M2}). (15)

Note that the amplitude spectrum is even symmetric for ev-

ery axis.

In many cases, however, the band-limited POC func-

tion has multiple peaks, which is caused by elastic finger-

print deformation. The fingerprint image can expand or

contract when a fingertip contacts with the sensor surface.

Each portion of the fingerprint image will be shifted inde-

pendently, which means several sub-domains in the image

are moving individually. In this case, the POC function pro-

duces several peaks corresponding to the multiple translated

sub-domains. The height of every correlation peak reflects

the matched area of each sub-domain. Hence, we decide

to employ the sum of these peaks as an evaluation criterion

in order to make the proposed matching algorithm robust

against elastic deformation. In our algorithm, we employ the

sum of the highest P peaks of the band-limited POC func-

tion r̂
K1K2

fg
(n1, n2) as a matching score, which is denoted by

S
K1K2

P
[ f , g].

4. Fingerprint Matching Algorithm Using the Band-

Limited POC Function

In this section, we propose the fingerprint matching algo-

rithm using the band-limited POC function. A fingerprint

matching algorithm compares the registered fingerprint and

the input fingerprint, and returns either a degree of similarity

or a binary decision. Matching fingerprint images is an ex-

tremely difficult problem, mainly due to the large variability

in different impressions of the same finger, e.g., (i) displace-

ment, (ii) rotation, (iii) deformation, (iv) skin condition and

(v) noise. The POC-based approach is particularly robust

against the above items (i), (iv) and (v). On the other hand,

the image rotation (ii) must be normalized by preprocessing.

We can address the fingerprint deformation (iii) due to skin

plasticity by introducing multiple-peak evaluation of match-

ing score i.e., S
K1K2

P
[ f , g].

Figure 6 shows the fingerprint matching algorithm us-

ing the POC function. The proposed algorithm first nor-

malizes the input image and compares it with the registered

image, where the total process consists of the four steps: (i)

rotation alignment, (ii) displacement alignment, (iii) com-

mon region extraction and (iv) fingerprint matching. Fig-

ure 7 illustrates the example of fingerprint matching using

procedure Fingerprint Matching Using POC Function

Input:
f (n1, n2): the registered fingerprint image,
g(n1, n2): the fingerprint image to be verified;

Output:
matching score between f (n1, n2) and g(n1 , n2);

1. begin
2. store in advance a set of rotated images fθ(n1, n2) of

f (n1, n2) over the angular range −θmax ≦ θ ≦ θmax

with an angle spacing 1◦;

3. calculate the POC function r̂
M1 M2

fθg
(n1, n2) between

fθ(n1, n2) and g(n1, n2);

4. calculate Θ = arg max
θ
{S

M1 M2

1
[ fθ , g]} to select

the rotation-normalized image fΘ(n1, n2);
5. estimate image displacements (τ1, τ2) between

fΘ(n1, n2) and g(n1, n2) from the peak location of

r̂
M1 M2

fΘg
(n1, n2);

6. extend the size of fΘ(n1, n2) and g(n1, n2) by τ1 and
τ2 pixels for n1 and n2 directions to obtain f ′(n1, n2)
and g′(n1, n2);

7. extract the effective fingerprint regions f ′′(n1, n2) and
g′′(n1, n2) from f ′(n1, n2) and g′(n1, n2);

8. detect the inherent frequency band (K1,K2) from
the 2D DFT of f ′′(n1, n2);

9. calculate the band-limited POC function

r̂
K1K2

f ′′g′′
(n1, n2);

10. compute the matching score S
K1 K2

P
[ f ′′, g′′]

11. end.

Fig. 6 Fingerprint matching algorithm using the POC function.

the proposed algorithm.

(i) Rotation alignment (lines 2–4)

The POC function is sensitive to the image rotation,

and hence we need to normalize the rotation angle between

the registered fingerprint f (n1, n2) and the input fingerprint

g(n1, n2) in order to perform the high-accuracy fingerprint

matching. Our experimental observation shows that rota-

tion alignment of less than ±1◦ must be performed for high-

accuracy fingerprint matching using the POC function. The

proposed algorithm employs a straightforward approach for

rotation estimation. We first generate a set rotated images

fθ(n1, n2) of the registered fingerprint f (n1, n2) over the an-

gular range −θmax ≦ θ ≦ θmax with an angle spacing 1◦,

where bi-cubic interpolation is employed for image rotation.

We use θmax = 20◦ in our experiment. The rotation angle Θ

of the input image is determined by evaluating the similarity

between the registered image fθ(n1, n2) (−θmax ≦ θ ≦ θmax)

and the input image g(n1, n2) using POC function. In our

experiments, we use the following formula:

Θ = arg max
θ
{S

M1 M2

1
[ fθ, g]}. (16)

In practical situation, we store in advance a set of ro-

tated versions of the registered image into a memory in or-

der to reduce the processing time. We calculate the POC

function r̂
M1 M2

fθg
(n1, n2) between the rotated image fθ(n1, n2)

and the input g(n1, n2), and find the highest correlation peak.

The rotated image fΘ(n1, n2) that gives the highest correla-

tion peak is selected as the rotation-normalized image.

(ii) Displacement alignment (lines 5–6)

This step is to align the translational displacement τ1

and τ2 between the rotation-normalized registered image
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fΘ(n1, n2) and the input image g(n1, n2). The displacement

parameters (τ1, τ2) can be obtained as the peak location of

the POC function r̂
M1 M2

fΘg
(n1, n2). Then, we extend the size

of the two images by τ1 and τ2 pixels for n1 and n2 direc-

tions, respectively, as shown in Fig. 7(c), in order to align the

translational displacement between the two images. Thus,

we have normalized versions of the registered image and the

input image, which are denoted by f ′(n1, n2) and g′(n1, n2).

(iii) Common region extraction (line 7)

Next step is to extract the overlapped region (intersec-

tion) of the two images f ′(n1, n2) and g′(n1, n2). This pro-

cess makes possible to improve the accuracy of fingerprint

matching, since the non-overlapped areas of the two images

become the uncorrelated noise components in the POC func-

Fig. 7 Example of fingerprint matching using the proposed algorithm:

(a) the registered fingerprint image f (n1, n2) and the input fingerprint im-

age g(n1, n2), (b) rotation-normalized images fΘ(n1, n2) and g(n1, n2), (c)

normalized images f ′(n1, n2) and g′(n1, n2), and (d) common effective fin-

gerprint regions f ′′(n1, n2) and g′′(n1, n2).

tion. In order to detect the effective fingerprint areas for

each image (the registered image f ′(n1, n2) or input image

g′(n1, n2)), we examine the x-axis projection and the y-axis

projection of pixel values. Only the common effective image

areas, f ′′(n1, n2) and g′′(n1, n2), of the two fingerprint im-

ages are extracted for the succeeding image matching step

(Fig. 7(d)).

(iv) Fingerprint matching (lines 8–10)

In this step, we first detect the inherent frequency

band K1 and K2 from the 2D DFT of the registered fin-

gerprint image f ′′(n1, n2). Then, we calculate the band-

limited POC function r̂
K1K2

f ′′g′′
(n1, n2) between the two images

f ′′(n1, n2) and g′′(n1, n2), and evaluate the matching score

S
K1K2

P
[ f ′′, g′′]. As discussed earlier, the band-limited POC

function gives multiple correlation peaks due to elastic fin-

gerprint deformation. Thus, we need to introduce P-peak

evaluation in computing the matching score S
K1K2

P
[ f ′′, g′′].

We use P = 2 in our experiments.

5. Experiments and Discussions

This section describes a set of experiments for evaluating

fingerprint identification performance of the proposed algo-

rithm.

In this experiment, we capture fingerprints using a fin-

gerprint verification system (Yamatake Corporation, Proto-

type Version of “Friendtouch-Mini”) shown in Fig. 8. This

system [10] employs a pressure sensitive sensor, and can

capture fingerprint images of 256 × 384 pixels. We expand

the image size to 384 × 384 pixels for our matching algo-

rithm.

We create a fingerprint database to compare identifica-

tion performance between the proposed algorithm and the

conventional algorithms. The subjects being tested are se-

lected from 700 employees of a factory at Yamatake Corpo-

ration. From our experience, those who have difficult finger-

print is 3% of the total population. In order to compare the

performance of the proposed algorithm and that of the con-

ventional algorithms for difficult fingerprints, we select total

of twelve subjects as follows: (i) eight of them are male and

four are female, (ii) age range is from twenties to thirties,

Fig. 8 Fingerprint verification system (developmental prototype ver-

sion).
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Fig. 9 Examples of fingerprint images in the database: (a) good quality fingerprint, (b) dry fingertip,

(c) allergic skin disease and (d) rough fingertip.

(iii) seven of them have good quality fingerprints, three have

dry fingertips, one has rough fingertip, and one has allergic

skin disease. Thus, the test set considered here is specially

designed to evaluate the performance of fingerprint match-

ing algorithms under difficult condition.

Figure 9 shows some examples of fingerprint images in

this database and the corresponding amplitude spectra. Fig-

ure 9(a) is a good-quality fingerprint, (b)–(d) are degraded

fingerprints due to a dry fingertip, a rough fingertip and al-

lergic skin disease. We can observe that the good quality

fingerprint (Fig. 9(a)) has distinct minutiae points, while the

degraded fingerprints (Figs. 9(b)–(d)) have some ambiguous

minutiae points, which may cause serious miss-matching

when using the minutiae-based matching algorithm. We ex-

pect that the proposed algorithm is more robust to such fin-

gerprint degradation than the minutiae-based matching al-

gorithm, since the POC-based matching employs global tex-

ture information rather than the small feature points. Also,

the degraded fingerprints tend to contain random noise com-

ponents in both high frequency domain and low frequency

domain. Since the signal energy is significantly lower in

high frequency domain, phase components are not reliable

in high frequency domain. We can eliminate the effect of

unreliable phase components in high frequency domain by

using the band-limited POC function.

Registered fingers are right index fingers. The False

Rejection Test (FRT) is to evaluate the False Rejection Rate

(FRR) of fingerprint verification for every subject, where

FRR is the probability that an authorized person is falsely re-

jected. For this purpose we capture 10 fingerprint images of

the same right index finger for every subject, each of which

is taken at different timing. These 10 fingerprint images

must be passed by verification. The total number of finger-

print images used for FRT is 120 (12 subjects × 10 images).

On the other hand, the False Acceptance Test (FAT) is

to evaluate the False Acceptance Rate (FAR) of fingerprint

verification for every person, where FAR is the probability

Fig. 10 Typical snapshots of the minutiae-based matching algorithm: (a)

gray-scale normalization of a fingerprint image and (b) extraction of minu-

tiae points (i.e., cores, deltas and ridge ends) after binarizing the fingerprint

image.

that a non-authorized person is accepted as an authorized

person. For every “genuine” target subject, we can consider

11 “impostors” in our experiment, and thus we capture 11

fingerprint images of right index fingers from the 11 impos-

tor subjects. We also capture 12 fingerprint images of right

middle fingers (different fingers) from all the subjects. For

every genuine subject, these 23 fingerprint images must be

rejected by verification. The total number of fingerprint im-

ages used for FAT is hence 276 (12 subjects × 23 images).

We compare three different matching algorithms: (A)

the original POC-based algorithm without using band-

limited POC function and common region extraction, (B)

a typical minutiae-based algorithm (which is commercially

available recently), and (C) the proposed algorithm. The

minutiae-based matching algorithm used in this paper can be

summarized as follows: (i) normalize the pixel value of the

given fingerprint images to the range of [0,255] (Fig. 10(a)),

(ii) extract the effective fingerprint region for the two im-

ages, (iii) enhance the fingerprint ridges, (iv) binarize the

enhanced fingerprint images, (v) extract the three types of

minutiae points, i.e., cores, deltas and ridge ends, from the
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Fig. 11 ROC curve and EER.

binarized fingerprint images (Fig. 10(b)), and (vi) perform

minutiae matching and evaluate the similarity between the

two fingerprint images. The performance of the biometrics-

based identification system is evaluated by the Receiver Op-

erating Characteristic (ROC) curve, which illustrates the

FAR against the FRR at different thresholds on the matching

score. Figure 11 shows the ROC curve for the three algo-

rithms (A)–(C). The proposed algorithm (C) exhibits signif-

icantly higher performance, since its ROC curve is located

at lower FRR/FAR region than those of the original POC-

based algorithm (A) and the minutiae-based algorithm (B).

When FAR is zero, the FRR of the proposed algorithm is

2.5%, while the FRR of the original POC-based algorithm

is 18.3% and that of the minutiae-based algorithm is 14.2%.

The Equal Error Rate (EER) provides a good indica-

tor of system performance, which is defined as the error

rate where the FAR and the FRR are equal. The EER of

the proposed algorithm (C) is 1.7% while EER of the origi-

nal POC-based algorithm (A) is 6.0% and that of minutiae-

based algorithm (B) is 7.0%. As is observed in the above

experiments, the proposed algorithm is particularly useful

for verifying difficult fingerprint images.

Figures 12 and 13 shows actual joint distribution of

matching scores for the three algorithms (A)–(C). Figure 12

compares the matching scores of the original POC-based al-

gorithm (A) (horizontal axis) and those of the proposed al-

gorithm (C) (vertical axis) for total 396 matching tests (120

FRTs plus 276 FATs). The vertical dashed line indicates

the highest impostor’s score of the original POC-based algo-

rithm (A) and the horizontal dashed line indicates the high-

est impostor’s score of the proposed algorithm (C). For these

algorithms, we can observe clear correlation in their match-

ing scores. In a practical fingerprint verification system, the

highest impostor’s score ThA (or ThC) is used as the thresh-

old value of verification in order to guarantee the condition

FAR = 0. Assuming this condition, we can observe that the

original POC-based algorithm (A) accepts only 81.7% of

genuine fingerprints and rejects the remaining 18.3%, while

the proposed algorithm can accept 97.5% of genuine finger-

prints and reject only 2.5% of them.

Fig. 12 Overall joint distribution of matching scores for the proposed

matching algorithm and the original POC-based matching algorithm.

Fig. 13 Overall joint distribution of matching scores by the proposed al-

gorithm and the minutiae-based matching algorithm.

Similar comparison is performed between the typical

minutiae-based algorithm (B) and the proposed algorithm

(C) as shown in Fig. 13. In this case, no correlation is ob-

served between the matching scores of the two algorithms,

since these algorithms employ totally different matching cri-

teria. When FAR = 0, the minutiae-based algorithm (B) ac-

cepts only 85.8% of genuine fingerprints and rejects the re-

maining 14.2%, while the proposed algorithm (C) achieves

much higher acceptance rate 97.5%.

Figures 14, 15, 16 and 17 show the joint distribu-

tion of matching scores for two algorithms (B) and (C) de-

pending on the quality of the registered fingerprints: good

quality (seven images), dry skin (three images), rough skin

(one image), and allergic skin (one image), respectively.

Note that Fig. 13 combines these four figures (Figs. 14–17).

When good-quality fingerprints are used as the registered

fingerprints (Fig. 14), genuine matching always gives higher

scores than impostor matching for both algorithms. When

the degraded fingerprints are used as the registered fin-
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Fig. 14 Joint distribution of matching scores when good-quality finger-

prints (seven images) are used as registered reference fingerprints.

Fig. 15 Joint distribution of matching scores when dry-skin fingerprints

(three images) are used as registered reference fingerprints.

Fig. 16 Joint distribution of matching scores when a rough-skin-

condition fingerprint (one image) is used as a registered reference finger-

print.

Fig. 17 Joint distribution of matching scores when an allergic-skin fin-

gerprint (one image) is used as a registered reference fingerprint.

gerprints (Figs. 15–17), some genuine-matching scores are

lower than impostor-matching scores for the minutiae-based

matching algorithm (B). On the other hand, for the proposed

algorithm (C), genuine matching always gives higher scores

than imposter matching. This clearly demonstrates the ex-

cellent performance of the proposed algorithm for low qual-

ity fingerprint images.

6. Conclusion

This paper proposed an efficient fingerprint matching al-

gorithm using the Phase-Only Correlation (POC) function.

The proposed technique is particularly effective for verify-

ing low-quality fingerprint images that could not be identi-

fied correctly by conventional techniques. It seems that the

POC-based matching algorithm could be applied to other

biometrics technologies, such as iris/retinal scanning, facial

scanning and hand scanning.
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