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A Finite and Instantaneous Screw Based 
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Abstract 

Unifying the models for topology design and kinematic analysis has long been a desire for the research of parallel kin-

ematic machines (PKMs). This requires that analytical description, formulation and operation for both finite and instan-

taneous motions are performed by the same mathematical tool. Based upon finite and instantaneous screw theory, a 

unified and systematic approach for topology design and kinematic analysis of PKMs is proposed in this paper. Using 

the derivative mapping between finite and instantaneous screws built in the authors’ previous work, the finite and 

instantaneous motions of PKMs are analytically described by the simple and non-redundant screws in quasi-vector 

and vector forms. And topological and parametric models of PKMs are algebraically formulated and related. These 

related topological and parametric models are ready to do type synthesis and kinematic analysis of PKMs under the 

unified framework of screw theory. In order to show the validity of the proposed approach, a kind of two-translational 

and three-rotational (2T3R) 5-axis PKMs is taken as example. Numerous new structures of the 2T3R PKMs are synthe-

sized as the results of topology design, and their Jacobian matrix is obtained easily for parameter optimization and 

performance evaluation. Some of the synthesized PKMs have outstanding capabilities in terms of large workspaces 

and flexible orientations, and have great potential for industrial applications of machining and manufacture. Among 

them, METROM PKM is a typical example which has attracted a lot of attention from global companies and already 

been developed as commercial products. The approach is a general and unified approach that can be used in the 

innovative design of different kinds of PKMs.
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1 Introduction
CNC and robot based equipment are important parts 

to push “Made in China 2025” plan [1, 2]. In compari-

son with traditional CNCs and articulated robots, par-

allel kinematic machines (PKMs) are demonstrated by 

many researchers to have advantages of high stiffness, 

good accuracy, excellent dynamics and reconfigurability 

through deeply investigating their topology structures 

[3–5], stiffness characteristics [6], constraint properties 

[7] and kinematic performances [8–10]. �ey are suitable 

to be applied in machining and repairing of large scale 

component with complex surface. �e innovative design 

of PKMs is always a hot topic and draws great attention 

from both academia and industry [11, 12].

�e innovative design of PKMs usually consists of 

topology design and kinematic analysis [13–15]. It has 

long been a desire to unify these two parts under a frame-

work of the same mathematical tool. �is mathematical 

tool should be able to realize analytical description, for-

mulation and operation of both finite and instantane-

ous motions, and then relate topological and parametric 

models algebraically. Till now, there are three available 

mathematical tools at hand, i.e., matrix group, dual qua-

ternion and screw theory.

Matrix group was firstly given out by Lie and later uti-

lized by Klein to describe rigid body motion. It was 

Hervé et  al. [16, 17] who gave an approach to formulate 

Open Access

Chinese Journal of Mechanical 
Engineering

*Correspondence:  stao@tju.edu.cn 
1 Key Laboratory of Mechanism Theory and Equipment Design of Ministry 

of Education, Tianjin University, Tianjin 300350, China

Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s10033-018-0241-6&domain=pdf


Page 2 of 10Sun et al. Chin. J. Mech. Eng.  (2018) 31:44 

topological models and carried out type synthesis of PKMs 

through describing finite motions of PKMs by subgroups 

of the matrix representation of the special Euclidean group 

SE(3) and their composite manifolds. Using this approach, 

many PKMs having different motions were synthesized by 

Li and Hervé [18, 19]. Describing instantaneous motions 

by Lie algebra of SE(3), i.e., se(3), Brockett [20] applied the 

exponential mapping between SE(3) and se(3) to relating 

topological and parametric models of open-loop mecha-

nisms. His work was extended to deal with closed-loop 

and other kinds of mechanisms. However, two barriers are 

encountered when using matrix groups for finite motion 

composition in formulating topological models. One bar-

rier arises from that matrix group cannot directly reflect 

the Chasles’ axis as well as the angular and/or linear dis-

placement about and/or along that axis. �us, the descrip-

tion of finite motion by matrix group is complicated. �e 

other barrier comes from the incompetent to algebraically 

compute the finite motion composition result of matrix 

groups by using the Baker-Campbell-Hausdorff formula. 

Topological models of many PKMs cannot be simply writ-

ten as the group products of a few Lie subgroups of SE(3). 

Hence, type synthesis of these PKMs cannot be precisely 

carried out although parametric models for kinematic 

analysis can be directly obtained by se(3).

Dual quaternion can be traced back to the early work of 

Euler, Rodrigues and Hamilton. Perez and McCarthy [21] 

are probably the first to use it in the finite and instantaneous 

motion analysis of serial kinematic chains. Unit dual qua-

ternions and unit pure dual quaternions are used by them 

to respectively describe finite and instantaneous motions, 

because the algebraic structure of the former is a double 

cover of SE(3) whose Lie algebra in turn constitutes the lat-

ter. Using group theory, Selig [22] and Dai [23] investigated 

algebraic properties of the exponential and Cayley mappings 

between these two kinds of dual quaternions, resulting in 

a clear relationship between the finite and instantaneous 

models. It should be noted that even though both finite and 

instantaneous motions can be described by dual quaterni-

ons, quaternion representation is not the simplest form. �e 

redundancy may cause complexity in analytical operations 

of finite motions. Additionally, the Rodrigues formula with 

dual angles is not the simplest form of the Baker-Campbell-

Hausdorff formula in composition of finite motions.

Screw theory was firstly proposed by Ball and has been 

developed to be a powerful tool in analysis and mechani-

cal design of PKMs. Instantaneous screw has been proved 

to be the simplest and most effective form to describe 

instantaneous motion and widely used in formulating 

parametric models to conduct velocity and force [24–26], 

precision [27, 28] and stiffness [29–32] analysis. In the 

authors’ previous work [33–36], finite screw is proved 

to be the concise and non-redundant form to describe 

finite motion and can be analytically composited by the 

screw triangle product [33]. Meanwhile, the algebraic 

structures of these two kinds of screws were revealed 

and the derivative mapping between them was built by 

the authors [33]. All these achievements show that finite 

and instantaneous screw theory has the potential to unify 

topology design and kinematic analysis into a general and 

consistent process by doing type synthesis and kinematic 

analysis under this concise mathematical tool, which can 

overcome the shortcomings of the above matrix group 

and dual quaternion based approaches.

Mainly drawing on finite and instantaneous screw 

theory, this paper proposes a unified and systematic 

approach for topology design and kinematic analysis of 

PKMs. A kind of two-translational and three-rotational 

(2T3R) PKMs is taken as example to show the validity 

of the proposed approach. �ese PKMs generate two-

DoF translations in a fixed plane followed by three-DoF 

rotations about a fixed point. Some of them have great 

potential for industrial applications in 5-axis machining 

and manufacture because of their outstanding capabili-

ties to realize large workspaces and flexible orientations. 

METROM PKM is a typical one which has attracted a 

lot of attention from global companies and already been 

developed as commercial products [37, 38]. �e approach 

is a general and unified approach that can be used in the 

innovative design of different kinds of PKMs.

�e paper is organized as follows. Having a brief review 

of the state-of-the-art of the existing approaches based 

upon different mathematical tools to uniformly describe 

finite and instantaneous motions in Section 1, Section 2 

presents the theoretical foundations of finite and instanta-

neous screw theory. �e topological models of PKMs are 

formulated by describing the PKMs, their limbs and joints 

by finite screws in Section  3, and type synthesis of the 

2T3R PKMs is done to show the usages and advantages of 

the formulated model. In Section 4, the parametric mod-

els of PKMs are directly obtained through differentiating 

the topological models, one typical structure of the 2T3R 

PKMs, i.e., the METROM PKM, is selected to show the 

detailed procedures. �e conclusions of this paper are 

drawn in Section 5 (Additional file 1).

2  Screw Theory: Finite and Instantaneous Screws
In this section, we firstly introduce the basic concepts 

and properties of finite and instantaneous screws, which 

lays the theoretical foundations of type synthesis and kin-

ematic analysis for innovative design of PKMs.

According to the Chasles’s theorem and Mozzi’s theo-

rem, both finite motion and instantaneous motion of a 

rigid body can be regarded as a rotation about an axis 

followed by a translation long that axis, as shown in Fig-

ures 1 and 2.
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For finite motion, the axis is referred as Chasles’s axis. 

A finite motion is a pose (including orientation and posi-

tion) transformation of a rigid body from its initial pose 

to arbitrary pose about and along Chasles’s axis. It can be 

expressed by a finite screw in quasi-vector form [33] in 

the simplest and non-redundant manner as

where sf and rf denote the unit vector and position vector 

of the Chasles’ axis, θ and t are the rotational angle about 

and translational distance along that axis with respect to 

the initial pose.

For instantaneous motion, the axis is referred as Moz-

zi’s axis. An instantaneous motion is a rigid body velocity 

measured at a given pose, which is constituted by angu-

lar velocity about and linear velocity along Mozzi’s axis. 

For simplicity, it is usually expressed by an instantaneous 

screw (twist) in vector form [39–41] as

(1)Sf = 2 tan
θ

2

(

sf

r f × sf

)

+ t

(

0

sf

)

,

(2)St = ω

(

st

rt × st

)

+ v

(

0

st

)

,

where st and rt denote unit vector and position vector of 

the Mozzi’s axis, ω and v are angular velocity about and 

linear velocity along that axis.

As is well known, successive finite screws of a rigid 

body from its initial pose to final pose via several inter-

mediate poses should be composited in nonlinear man-

ner. �e composition of any two finite screws is expressed 

by

where

Sf,a and Sf,b are two arbitrary successive finite screws gen-

erated by the same rigid body, the symbol "∆" is referred 

to as screw triangle product and is proven by the authors 

of this paper in Ref. [33].

Using the screw triangle product in Eq. (3), the result-

ant finite screw of the rigid body from its initial pose to 

final pose can be obtained through computing screw tri-

angle products of all the successive finite screws it gener-

ates during its continuous finite motion.

Unlike the nonlinear composition of finite screws, 

instantaneous screws are composited in linear way. Sup-

pose a rigid body generates two velocities at a given pose. 

Each is expressed by an instantaneous screw as

�e resultant instantaneous screw can be obtained by 

adding them together

As proved in our previous work [33], arbitrary finite 

screw that a rigid body generates from its initial pose 

can be written in the form shown in Eq.  (1). Regarding 

its initial pose as the given pose, arbitrary instantaneous 

screw the rigid body generates has the form in Eq. (2). At 

the initial pose (θ = 0 and t = 0) where the Chasles’ axis 

is coincident with the Mozzi’s axis at the instant, there 

(3)

Sf ,ab = Sf ,a △ Sf ,b =

(

Sf ,a + Sf ,b +
Sf ,b × Sf ,a

2

− tan
θa

2
tan

θb

2

(

tb

(

0

sf ,a

)

+ ta

(

0

sf ,b

)))/

(

1 − tan
θa

2
tan

θb

2
s
T
f ,asf ,b

)

,

Sf ,a = 2 tan
θa

2

(

sf ,a

r f ,a × sf ,a

)

+ ta

(

0

sf ,a

)

,

Sf ,b = 2 tan
θb

2

(

sf ,b

r f ,b × sf ,b

)

+ tb

(

0

sf ,b

)

.

St,a = ωa

(

st,a

rt,a × st,a

)

+ va

(

0

st,a

)

,

St,b = ωb

(

st,b

rt,b × st,b

)

+ vb

(

0

st,b

)

.

(4)St,ab = St,a + St,b.
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Figure 2 Instantaneous motion of a rigid body
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exists differential mapping between finite and instanta-

neous screws. �is means the derivative of finite screw is 

derived to be instantaneous screw [33]

�is property leads to the algebraic structures of finite 

and instantaneous screws. �e entire set of finite screws 

forms a Lie group under screw triangle product, while 

the entire set of instantaneous screws is the correspond-

ing Lie algebra under screw cross product. �e underly-

ing relationship between these two kinds of screws is 

thus revealed.

Using this relationship, the topology design and kine-

matic analysis of PKMs can be integrated into the unified 

framework of screw theory. �is is because:

(1) �e topological model of a PKM can be formulated 

by describing finite motions of the PKM, its limbs 

and joints utilizing finite screws.

(2) �e parametric model of the PKM can be directly 

obtained through differentiating its topological 

model at given pose.

(3) Type synthesis and kinematic analysis for innova-

tive design of PKMs can be easily carried out using 

these two models under the simple and consistent 

screw theory.

In the following two sections, 5-axis PKMs hav-

ing 2T3R motion will be taken as example to show the 

detailed procedures of this finite and instantaneous screw 

based approach for topology design and kinematic analy-

sis. Firstly, type synthesis of this kind of PKMs will be 

done utilizing finite screws, which will result in numer-

ous new topology structures with potential industrial 

applications. �en, the kinematic analysis of a typical 

structure, i.e., the METROM PKM, will be conducted to 

show how to directly obtain the parametric model based 

upon instantaneous screws through differentiating the 

corresponding topological model. �e Jacobian matrix 

and constraint force will be formulated, which is ready 

for parameter optimization and performance evaluation.

3  Type Innovative Design Based upon Finite 
Screws

3.1  Topological Model of a PKM

Suppose a PKM is composed of l open-loop limbs, as 

shown in Figure  3. Each limb consists ni (i = 1, 2, ···, l) 

one-DoF joints (revolute joints (R) and prismatic joints 

(5)

Ṡf

∣

∣

θ = 0

t = 0

= θ̇

(

sf

r f × sf

)

+ ṫ

(

0

sf

)

= ω

(

st

rt × st

)

+ v

(

0

st

)

= St .

(P)). Because the finite motions of the PKM’s moving plat-

form can be obtained as the intersection of those of its 

limbs, and the finite motions of each limb are the com-

position of those of all joints in it, following analytical 

equations can be formulated through describing the finite 

motions of the PKM, its limbs and joints as finite screws.

Where Sf,PKM denotes the finite screw generated by the 

PKM, Sf,i is the finite screw generated by its ith limb, 

Sf,i,k is the finite screw of the kth joint in the ith limb. �e 

denotations of si,k, ri,k, θi,k and ti,k can be referred to the 

symbols in Eq. (1).

Equations  (6)‒(8) contain all the topological informa-

tion of the PKM, including:

(1) �e number of limbs and the number of joints in 

each limb;

(2) �e type of each joint, i.e., R joint or P joint;

(3) �e direction and position of each joint, i.e., the 

geometrical arrangement of each joint in the limb 

which it belongs to;

(4) �e geometrical relationships among different limbs.

(6)Sf ,PKM = Sf ,1 ∩ Sf ,2 ∩ · · · ∩ Sf ,l ,

(7)

Sf ,i = Sf ,i,ni △ Sf ,i,ni−1 △ · · · △ Sf ,i,1, i = 1, 2, · · · , l,

(8)

Sf ,i,k =















2 tan
θi,k

2

�

si,k

ri,k × si,k

�

, R joint,

ti,k

�

0

si,k

�

, P joint,

k = 1, 2, · · · , ni.

Base

Moving platform

The ith limb

The kth joint 

in the ith limb

Figure 3 A PKM having l limbs
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�us, these three equations can exactly serve as topo-

logical model of the PKM, which can be used for topol-

ogy design. In what follows, we take 5-Axis PKMs having 

2T3R motion as example to show the usage of this finite 

screw based topological model in doing type synthe-

sis, resulting in numerous new topology structures with 

potential industrial applications.

3.2  Type Synthesis of 2T3R 5-Axis PKMs

�e main goal of type synthesis is inventing innovative 

mechanisms with new topology structures having the 

given motion pattern. �e expected motion pattern of 

the discussed PKMs is 2T3R, i.e., two-DoF translations 

in a fixed plane followed by three-DoF rotations about 

a fixed point O, which allows the PKMs realize 5-axis 

machining. Hence, the finite motions of a PKM with this 

2T3R motion can be written using finite screw as

According to Eq. (6), the feasible limb structures for the 

2T3R PKMs should generate finite screws that contain 

Sf,PKM in Eq. (9)

�rough adding none or one translational factor into 

Sf,PKM, finite screws of the feasible limb structures should 

have either of the following two expressions

which correspond to the 5-DoF and 6-DoF limb struc-

tures, respectively.

Substituting Eq. (10) into Eqs. (11) and (12) leads to the 

two standard Sf ,i

(9)

Sf ,PKM = t2

(

0

s2

)

△ t1

(

0

s1

)

△ 2 tan
θc

2

(

sc

rO × sc

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

.

(10)Sf ,PKM ⊆ Sf ,i

(11)Sf ,i = Sf ,PKM,

(12)Sf ,i = Sf ,PKM △ t3

(

0

s3

)

,

(13)

Sf ,LI = t2

(

0

s2

)

△ t1

(

0

s1

)

△ 2 tan
θc

2

(

sc

rO × sc

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

,

(14)

Sf ,LII = t2

(

0

s2

)

△ t1

(

0

s1

)

△ 2 tan
θc

2

(

sc

rO × sc

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

△ t3

(

0

s3

)

,

where Sf ,LI and Sf ,LII denote the first and second standard Sf,i.

According to Eqs. (9) and (10), joint types and arrange-

ments of the limb structures which generate the above 

two expressions can be obtained. �us, Eqs.  (13) and 

(14) correspond to two standard limbs,  RaRbRcP1P2 and 

 P3RaRbRcP1P2, where the subscripts denote the directions 

of the joints. Based upon these two standard limbs, all 

the derivative limbs can be synthesized using the proper-

ties of screw triangle product. It should be noted that we 

only concern the 5-DoF limbs here, because the 6-DoF 

ones can be easily obtained by random permutation of 

the joints in  P3RaRbRcP1P2.

A 5-DoF derivative limb of  RaRbRcP1P2 should satisfy 

the following two conditions:

(1) �e finite screw it generates is equivalent to the 

standard one, i.e., Sf ,LI in Eq. (13), and thus denoted 

as S′

f ,LI;

(2) �e five factors in S′

f ,LI are the same with those in 

Sf ,LI but have different sequence, or S′

f ,LI has differ-

ent factor(s) with Sf ,LI.

Firstly, we consider the situation that S′

f ,LI and Sf ,LI 

have the same five factors. It means that the correspond-

ing derivative limb structures have the same five joints 

with  RaRbRcP1P2. Hence, these derivative limb structures 

can be obtained by permutation of  RaRbRcP1P2 while 

unchanging the finite screw it generated. Because the 

three R joints constituted a spherical joint (S), their direc-

tion can be arbitrarily chosen. �us, we can suppose that 

the direction of  Rc is perpendicular to the directions of 

 P1 and  P2, i.e., sc × (s1 × s2) = 0. In this way, it can be 

proved that arbitrarily adjusting the sequence among  Rc, 

 P1 and  P2 will always result in the derivative limb struc-

tures that satisfy the two conditions.

For example,  RaRbP1P2Rc can be obtained through 

changing the order of  Rc in  RaRbRcP1P2. Based upon 

Eqs.  (7) and (8), S′

f ,LI generated by  RaRbP1P2Rc can be 

formulated as

Equation  (15) can be rewritten as follows by comput-

ing the resultant of the first three factors using the screw 

triangle product in Eq. (3)

(15)

S
′

f ,LI = 2 tan
θc

2

(

sc

rO × sc

)

△ t2

(

0

s2

)

△ t1

(

0

s1

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

.

(16)

S
′

f ,LI = 2 tan
θc

2

(

sc

rO × sc +
t1s1+t2s2
2 tan

θc
2

+
(t1s1+t2s2)×sc

2

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

.
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Equation  (16) has the following equivalent expression 

for sc × (s1 × s2) = 0,

where

Following the similar way to derive Eq.  (17) from 

Eq. (15), Eq. (13) can be rewritten as

where

Because (t1s1 + t2s2) × sc and t1s1 + t2s2 are two arbi-

trary orthogonal vectors that are perpendicular to sc, 

both rc and rc′ denote arbitrary vectors perpendicular to 

sc. �us, Eq. (15) is equivalent to Eq. (13).

In this manner, two derivative limb structures, 

 RaRbP1P2Rc and  RaRbP1RcP2, can be synthesized.

Secondly, we consider the situation that S′

f ,LI has dif-

ferent factor(s) with Sf ,LI . In this situation, each deriva-

tive limb structure has at least one different joint with 

 RaRbRcP1P2. Supposing that the direction of  Rc is perpen-

dicular to that of  P1, i.e., sTc s1 = 0 , it can be proved that 

the generated finite screw will not be changed if we use 

one  Rc to replace  P2, or two  Rc to replace  P1 and  P2.

For example,  RaRbRcP1Rc can be obtained from 

 RaRbRcP1P2 by replacing  P2 with  Rc. According to Eqs. (7) 

and (8), S′

f ,LI generated by  RaRbRcP1Rc is

(17)

S
′

f ,LI = 2 tan
θc

2

(

sc

r
′

c × sc

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

,

r
′

c = rO −
(t1s1 + t2s2) × sc

2 tan
θc
2

+
t1s1 + t2s2

2
.

(18)

Sf ,LI = 2 tan
θc

2

(

sc

rO × sc +
t1s1+t2s2
2 tan

θc
2

−
(t1s1+t2s2)×sc

2

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

= 2 tan
θc

2

(

sc

rc × sc

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

,

rc = rO −
(t1s1 + t2s2) × sc

2 tan
θc
2

−
t1s1 + t2s2

2
.

(19)

S
′

f ,LI = 2 tan
θ

′

c

2

(

sc

rQ × sc

)

△ t1

(

0

s1

)

△ 2 tan
θc

2

(

sc

rO × sc

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

.

Using the properties of screw triangle product, Eq. (19) 

can be rewritten as

where s̃c is the skew matrix of sc, E3 is a unit matrix of 

order three.

Because sTc s1 = 0, the second and third factors are two 

translations perpendicular to sc. Using the similar deriva-

tions from Eq.  (15) to Eq.  (17), the following equivalent 

expression of Eq. (20) can be obtained

where

For the same reason as discussed about 

rc and r
′

c, r
′′

c denotes arbitrary vec-

tor which is perpendicular to sc, because 
(

t1 exp (θc s̃c)s1 + (exp (θc s̃c) − E3)
(

rQ − rO

))

× sc and 

t1 exp (θc s̃c)s1 + (exp (θc s̃c) − E3)
(

rQ − rO

)

 are two arbi-

trary orthogonal vectors that are perpendicular to sc. �is 

means that Eq. (19) is equivalent to Eq. (13).

In this manner,  RaRbRcP1Rc and  RaRbRcRcRc are synthe-

sized as derivative limb structures.

Furthermore, it is easy to see that arbitrarily adjust-

ing the sequence among two  Rc and  P1 will not change 

the generated finite screw based upon the derivations 

in the first situation. Hence, two additional deriva-

tive limb structures are obtained, i.e.,  RaRbP1RcRc and 

 RaRbRcRcP1.

From the above analysis, totally seven 5-DoF feasible 

limb structures for the 2T3R PKMs are synthesized. 

For simplicity, we rewrite the three adjacent R joints, 

 RaRbRc, as S, and the two adjacent R joints,  RaRb, as U 

(universal joint). �ese seven limb structures are listed 

in Table 1.

(20)

S
′

f ,LI = 2 tan
θc + θ ′

c

2

(

sc

rQ × sc

)

△

(

0

(exp (θc s̃c) − E3)
(

rQ − rO

)

)

△ t1

(

0

exp (θc s̃c)s1

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

,

(21)

S
′

f ,LI = 2 tan
θc + θ

′
c

2

(

sc

r
′′

c × sc

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

,

r
′′

c = rQ −

(

t1 exp (θc s̃c)s1 + (exp (θc s̃c) − E3)
(

rQ − rO

))

× sc

2 tan
θc+θ ′

c

2

+

t1 exp (θc s̃c)s1 + (exp (θc s̃c) − E3)
(

rQ − rO

)

2
.
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Having these limb structures at hand, we can obtain 

any 2T3R PKMs with several 5-DoF and 6-DoF limbs 

obeying some specific assembly conditions.

(1) According to Eq. (6), all the 5-DoF limbs in a 2T3R 

PKM should have the same translation plane and the 

same rotation center O. �us, only one 5-DoF limb can 

be selected to compose a 2T3R PKM because S and/or U 

joints that belong to different limbs cannot be placed at a 

common point for the convenience of mechanical design.

(2) In order to design PKMs with suitable actuations, 

we select one 5-DoF limb and four 6-DoF limbs to com-

pose a 2T3R PKM. In this way, each limb has one actua-

tion. �e four 6-DoF limbs are separated into two groups, 

which are placed symmetrically with respect to the trans-

lation plane of the 5-DoF limb. �e five limbs are fixed 

at an icosahedron shape base in order to minimize risk 

of collisions and guarantee rigidity of the entire machine 

[37].

Using these assembly conditions, many innovative 

2T3R PKMs can be synthesized. Here, we only list four 

topical PKMs due to space limitations, as shown in Fig-

ure 4. Some of these PKMs have been successfully applied 

in machining and manufacture or have great potential 

industrial applications because of their outstanding capa-

bilities to realize large workspaces and flexible orienta-

tions, among which the SPR-4(SPRR) in Figure  4(a) is 

known as METROM PKM [37] and has been developed 

as commercial product by German company [37] (Addi-

tional files 2, 3, 4, 5).

4  Kinematic Analysis Based upon Instantaneous 
Screws

4.1  Parametric Model of a PKM

For a PKM composed of l limbs as shown in Figure 3, its 

topological model has been formulated in Eqs.  (6)‒(8) 

based upon finite screws. As discussed in Section 2, the 

parametric model for kinematic analysis of the PKM can 

be directly formulated using the differential mapping 

between finite and instantaneous screws. According to 

Eq. (5), the instantaneous screws generated by the PKM, 

its limbs and joints can be obtained through differentiat-

ing the corresponding finite screws of them.

Firstly, the instantaneous screw generated by the kth 

joint in the ith limb at its initial pose can be obtained 

through differentiating Eq. (8) as

Table 1 5-DoF limb structures for 2T3R PKM

Standard limbs Derivative limbs

SP1P2 UP1P2Rc,  UP1RcP2

SP1Rc,  SRcRc

UP1RcRc,  SRcP1

Figure 4 Typical 2T3R PKMs. a SPR-4(SPRR), b SRR-4(SPRR), c UPPR-

4(SPRR), d UPRR-4(SPRR)



Page 8 of 10Sun et al. Chin. J. Mech. Eng.  (2018) 31:44 

Equation (22) shows the velocity of each one-DoF joint 

in the PKM. It can serve as the parametric models of the 

joints by taking ωi,k and vi,k as the parameters, because 

the unit and position vectors of the joints at their initial 

poses are determinate quantities.

In the similar manner, parametric model of the ith limb 

can be obtained by differentiating Eq.  (7) and obtaining 

the instantaneous screws of the limb at its initial pose

Finally, the parametric model of the PKM can be for-

mulated through differentiating Eq. (6) as

From Eqs.  (22)–(24), it can be clearly seen that the 

relationships between the parametric models of a PKM, 

its limbs and joints obtained in this paper are coinci-

dent with those given by other traditional approaches. 

However, unlike the traditional approaches, it is unnec-

essary to obtain the instantaneous screw system of a 

PKM through solving intersection of the instantaneous 

screw systems of its limbs in our approach. Based upon 

Eq. (24), the instantaneous screw system of the PKM can 

be directly formulated through differentiating the finite 

screw given in its topological model. In this way, the 

Jacobian matrix of the PKM for velocity, force, precision 

and stiffness modeling can be easily carried out using the 

obtained instantaneous screw system, which is ready to 

(22)

St,i,k = Ṡf ,i,k

�

�

θi,k = 0
ti,k = 0

=















θ̇i,k

�

si,k

ri,k × si,k

�

, R joint

ṫi,k

�

0

si,k

�

, P joint

=















ωi,k

�

si,k

ri,k × si,k

�

, R joint

vi,k

�

0

si,k

�

, P joint

(23)

St,i = Ṡf ,i

∣

∣

θi,k = 0

ti,k = 0
, k=1,2,··· ,ni

=

ni
∑

k=1

Ṡf ,i,k

∣

∣

θi,k = 0

ti,k = 0
, k=1,2,··· ,ni

=

ni
∑

k=1

St,i,k .

(24)

St,PKM = Ṡf ,PKM

∣

∣

θi,k = 0

ti,k = 0
,
i = 1, 2, · · · , l
k = 1, 2, · · · , ni

= Ṡf ,1

∣

∣

θ1,k = 0

t1,k = 0
, k=1,2,··· ,n1

∩ Ṡf ,2

∣

∣

θ2,k = 0

t2,k = 0
, k=1,2,··· ,n2

∩ · · · ∩ Ṡf ,l

∣

∣

θl,k = 0

tl,k = 0
, k=1,2,··· ,nl

= St,1 ∩ St,2 ∩ · · · ∩ St,l .

conduct kinematic analysis for parameter optimization 

and performance evaluation.

4.2  Kinematic Analysis of METROM PKM

Taking a typical structure of the synthesized innovative 

PKMs in Section 3, i.e., SPR-4(SPRR) (METROM) PKM 

shown in Figure  4(a), for example, the detailed proce-

dures of how to directly obtain its parametric model 

through differentiating the topological model will be 

shown. �e instantaneous screws related Jacobian matrix 

will then be formulated for kinematic analysis.

According to the derivations in Section 3, the topologi-

cal model of the METROM PKM can be formulated as

Using the derivative properties of screw triangle 

product [33], the parametric model of this PKM can be 

directly obtained by taking differential of Eq. (25)

It means that the instantaneous screw generated by 

the METROM PKM at its initial pose is the linear com-

bination of five instantaneous screws. �us, the Jacobian 

matrix of this PKM can be obtained through rewriting 

Eq. (26) into matrix form

Based upon this Jacobian matrix, the constraint force 

exerted on the moving platform of the PKM can be 

found. It is a line vector whose axis passes through point 

O with the direction s1 × s2, which restrains the one-DoF 

translation along its direction. It is expressed by a screw 

(wrench) as

(25)

Sf ,METROM = t2

(

0

s2

)

△ t1

(

0

s1

)

△ 2 tan
θc

2

(

sc

rO × sc

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

.

(26)

St,METROM = Ṡf ,METROM

∣

∣

θm = 0

tn = 0
,m=a,b,c, n=1,2

= ṫ2

(

0

s2

)

+ ṫ1

(

0

s1

)

+ θ̇c

(

sc

rO × sc

)

+ θ̇b

(

sb

rO × sb

)

+ θ̇a

(

sa

rO × sa

)

= v2

(

0

s2

)

+ v1

(

0

s1

)

+ ωc

(

sc

rO × sc

)

+ ωb

(

sb

rO × sb

)

+ ωa

(

sa

rO × sa

)

.

(27)

St,METROM =

�

sa sb sc 0 0

rO × sa rO × sb rO × sc s1 s2

�











ωa

ωb

ωc

v1

v2











.
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Having the Jacobian matrix and constraint force of the 

METROM PKM at hand, kinematic analysis of it can be 

carried out. In this way, parameter optimization and per-

formance evaluation can be done, which are important 

parts in the parameter innovative design of METROM 

PKM. Because velocity and force [24–26], precision [27, 

28] and stiffness [29–32] analysis of PKMs using Jacobian 

matrix and constraint force under instantaneous screws 

are widely researched, we do not give the detailed proce-

dures here due to space limitation.

5  Conclusions
�is paper presents a finite and instantaneous screw 

based approach for topology design and kinematic analy-

sis. A kind of 2T3R 5-axis PKMs is taken as example to 

show the validity of the proposed approach. Following 

conclusions are drawn.

(1) �e topological models of PKMs are formulated by 

describing finite motions of the PKMs, their limbs 

and joints by finite screws.

(2) Using the derivative mapping between finite and 

instantaneous screws, the parametric models of 

PKMs are proved to be directly obtained by differ-

entiating the corresponding topological models.

(3) Using these models, type synthesis and kinematic 

analysis of PKMs can be carried out and strongly 

related. Type synthesis for topology design and 

kinematic analysis for parameter optimization and 

performance evaluation of a kind of 2T3R 5-axis 

PKMs are done to show the validity of the proposed 

approach.
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