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A FINITE AXIOMATIZATION
OF NONDETERMINISTIC REGULAR EXPRESSIONS*

FLAVIO CORRADINI1, ROCCO D E NICOLA2 AND ANNA LABELLA3

Abstract. An alternative (tree-based) semantics for a class of regular
expressions is proposed that assigns a central rôle to the + operator
and thus to nondeterminism and nondeterministic choice. For the new
semantics a consistent and complete axiomatization is obtained from
the original axiomatization of regular expressions by Salomaa and by
Kozen by dropping the idempotence law for + and the distribution law
of • over +•

AMS Subject Classification. 68Q55, 68Q68, 08B05.

1. INTRODUCTION

The theory of regular languages was first studied by Kleene [19] and then
axiomatized by Salomaa [32] to obtain so called Kleene algebras. These are alge-
braic structures with + ,* ,* , 0 and 1 operators satisfying certain properties that
have been fruitfully used also in many areas of computer science. A version of the
axiomatization proposed by Salomaa is reported in Table 1. There, the additional
condition is imposed that the law (*R) only holds for those expressions that satisfy
the non-empty word property (ie., the axiomatization applies only to terms with-
out 1 summands in *-contexts). Recently a new axiomatization has been proposed
by Kozen [21] (see also [5]), that relies on the original axiomatization of Salomaa
for finit e (*-free) terms, and on few new laws for dealing with infinité expressions.
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TABLE 1. Complete axiomatization of regular expressions.

X + Y
(X + Y) + Z

X + 0
x + x

(X.Y)*Z
X»l

ux
x»o
o*x

(X + Y)*Z
X-(Y + Z)

1 + X*X*
(1 + X)*

Y + Z'X = Z

= Y + X
= X + (Y + Z)
= X
= X

= X.(Y.Z)
= X
= X
= 0
= 0

= (X'Z) + (Y'Z)
= (X*Y) + {X'Z)

v-#

= X*
= > Y»X* = Z

(Cl)
(C2)
(C3)
(C4)

(SI)
(S2)
(S3)
(S4)
(S5)

(RD)
(LD)

(*1)
(*2)
(*R)

Regular expressions and Kleene algebras have also been a direct inspiration
for many of the constructs and axiomatizations of concurrency models such as
CCS, CSP and ACP, generally referred to as process algebras. The main différ-
ences between the axiomatization of finit e regular expressions and those for process
algebras are essentially due to the different stress that they put on nondetermin-
ism. Indeed, the possible structure induced by the + operator is ignored by the
traditional interprétation (as sets of strings) of regular expressions, while in the
framework of process algebras nondeterminism has been assigned a central rôle.

After studying process algebras, and specifically CCS and its observational
équivalence based on the notion of bisimulation [24], Milner considered an al-
ternative semantics based on bisimulation for a calculus of expressions without
the *-operator and with an explicit recursion operator; these expressions have
been called /z-expressions. In [25], a complete inference System is defined for \i-
expressions and it is shown that, even when restricting recursion to the *-operator,
most of the axioms used by Salomaa's could be proved sound also for bisimula-
tion. In [6] Milner's axiomatization for /^-expressions was refined, by showing that
finite state process behaviours have a finite implicational axiomatization, both for
bisimulation and for a so called tree équivalence that considers as equivalent those
/x-expressions that give rise to isomorphic unfoldings. This improves on Milner's
result, because the unique fixed point rule is not even implicational (this is due to
the guardedness condition corresponding to the non-empty word property).
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However, neither [25] nor [6] provide exact axiomatic characterizations of
*-expressions and the problem of finding a complete axiomatization for the Kleene
star modulo bisimulation is left open. Indeed, after the séminal work by Milner,
many researchers have unsuccessfully attempted to solve the problem. Interesting
results have been obtained for restricted variants: prefix itération [2], multi-exit
itération [1], binary star [17], perpétuai loops [16], . . . , but the problem of axiom-
atizing nondeterministic behaviour of (*-)regular expressions is still open.

Here, we consider a nondeterministic tree-based semantics of (*-)regular expres-
sions. Our trees are very similar to those of [7]. By relying on the tree semantics
of *-expressions, we provide a complete axiomatization for a large set of regular
expressions. The restriction we impose on the gênerai syntax of regular expres-
sion with the classical * operator requires that terms in *-contexts do not have
derivatives of the form 1 + Q for some Q / 0 . This restriction, defined inductively
over the syntax of the terms, can be seen as a strengthening of the non-empty
word property used in [32]. The additional constraint is needed for the different
stress that our semantics put on choices and thus on branching. Indeed, inner 1
summands would compromise the control of the branches' growth.

For our restricted set of regular expressions we shall present a consistent and
complete axiomatization that is in full agreement with a natural tree based in-
terprétation. We shall rely on the axiomatization that first appeared in [10] (see
also [11]) for the full language and on that proposed in [15] for the restricted
language without 0 and 1 and with the binary *-operator (instead of the unary *).

In [10], the same tree based semantics of regular expression with unary
*-operator is considered and an axiomatization is obtained from that of Salomaa
in Table 1 by removing the laws stating idempotence of + (C4), the distribution
of • over -f (LD), and rules *2 and *R and adding the infmitary rule:

Vn e N, Xn*Z < Y implies X**Z < Y (u-R) .

This rule relies on the correspondence between approximants of terms and those
terms that are built by unfolding via the rewriting rule

P* —>1 + P*P\

Here we show that a large class of regular expressions can be axiomatized by the
finitary axioms of [10] including the law *1 of Table 1 plus the variant of a law
called BKS3 in [15] (firstly proposed in [35]) reported below:

X**(Y*(X + Y)* + 1) = (X + Y)\

The use of tree isomorphism as basic équivalence instead of the coarser bisimula-
tion, is motivated by two facts: it naturally arises from the algebraic-categorical
context and permits discriminating processes also according to the number of
different computations that they can perform for reaching spécifie states. For
this reason, we have called it resource équivalence. As shown in [12], well known
bisimulation-based équivalences can be obtained as quotients of this finer one.
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In [15}, for the restricted set of ternis (without 0 and 1 and with a binary
star) a finitary axiomatization is provided that relies on the classical axioms for
strong bisimulation and has three additional laws for *-terms. This work has been
very important for obtaining our resuit s. Although our language is strictly more
expressive, we have imported many proof techniques to estabïish our completeness
resuit. This can be explained if one retraces the main options one can take for the
actual proof.

As a matter of fact, one would hope to prove the completeness resuit by
structural induction, but this is impossible, because, due to the fixed point équa-
tion y a term can be equal to one of its proper subterms. Alternatively one could
try with induction on proper derivatives, but, once again, one could have proper
derivatives that are bigger than the original term. To avoid this situations, the
basic idea of [15] is that of defining a norm on terms that decreases when consid-
ering proper subterms of a given term and then using it to define a well founded
ordering. As a matter of fact a good norm must satisfy the conditions explicitated
in Proposition 5. This seems to be impossible in gênerai and one tries to restrict
the class of terms under considération. Fokkink [15] solved the problem by not
considering 1 and by using binary Kleene star, which ailowed him to ignore the
terms representing "successful termination". In présence of I's, Fokkink's norm
cannot be used. Indeed, we have kept I's and unary star but have imposed the
"more generous" condition about the non-empty word property that enable us to
use a new, more effective, norm.

The distinguishing feature of our approach, when compared to that of Fokkink,
is that our norm is based on the notion of branching and this is not easily adaptable
to calculi with the absorption law (C4) that is implied by the bisimulation based
semantics of [15]. After the crucial new définition of the norm, our completeness
follows. the same lines of [15].

We would like to thank L. Aceto, R. Backhouse, W. Fokkink, and A. Ingólfsdóttir for
many discussions on previous attempts at the problem discussed in the paper and an
anonymous référée for his/her detailed comments and suggestions. Special thanks are
due to Z. Esik for his encouragement at continuing when we were discouraged by our
failures.

2. A T R E E - B A S E D INTERPRETATION OF REGULAR EXPRESSIONS

In this section we present a denotational semantics of regular expressions by
interpreting them over a category of labelled trees. The reader is referred to [10]
for additional details about the définitions and statements presented here.

Regular expressions on an alphabet A — {a, 6, c,. . . }, are defined in the classical
way via the BNF below.

E ::= 0 1 E + E | E*E E* where a is in A
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For the full understanding of the rest of this section a basic knowledge of a few
notions of category theory is required that can be found in any introductory book;
see e.g. [29] and références therein.

Our category of trees, (see [12,20] and [13]) will be named T. A single tree
will be modelled by listing all of its runs (or paths) and then saying where they
agrée. Thus, the tree that deseribes a choice between the two séquences of actions
a.b and a.c (usually denoted by the term amb+ amc [26]) will be modelled via two
runs, x and y, labelled by ab and ac respectively, and stating that x and y do
not agree at all. In contrast, the tree denoted by a*{b -h c) and representing the
possibility of executing an a and then performing the choice between b and c will
be modelled via two runs x and y labelled by ad and ac, but, in this case, it will be
stated that x and y agrée on the initial a. Runs are used to describe computations
from one state to another, exactly like strings of actions within automata theory.
Additional structure is introduced by agreements.

We start by introducing a structure to deal with the labels. Below 4̂* dénotes
the set of finite strings over the set A.

Définition 1. Let A = (A*, <, A, e) be the meet semilattice where

i. A* is the set of words on A,
ii. < is the prefix order of words,

iii. A is the largest common prefix opération on words,
iv. e is the empty word.

Définition 2. An A-tree, that often will be called simply tree, t = (X, o;,/?)
consists of:

i. a set X of runs;
ii. a map a : X —> A*,

the extent map, giving the computation a(x) performed on a run x;
iii. a map f3 : X x X —>. A*,

the agreement map, saying to what extent two computations agree.
For the agreement map it is required, that for any x,yyz in X,

a. f3(xrx) = a(x)
(a run agrées with itself along all its length)

b. p(x,y) < a(x) Aa(y)
(the agreement between runs is not more than their largest common
prefix)

c. f3{x,y)f\f3{y,z)<{3{x,z)
(the agreement between x, y and z is not more than that between x
and z)

d. P(x,y)^0(y,x)
(it does not matter in what order agreement is specified).

We will write £, t\ and Î2 for denoting typical trees, with components t = (X, a, ƒ?),
ti = (Xi,ai,fii) and t<i — (X2,a2,$2)- We now present an appropriate notion
for comparing trees. A tree morphism from a tree t\ to a tree t^ is a map from
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the set of runs of t\ to the set of runs of £2 preserving extent while allowing the
agreement to increase.

Définition 3. A tree morphism ƒ : t\ —» £2 is a map ƒ : X\ —> X2 satisfying
i. OL2{f(x)) = ai (a;) ( ƒ does not change extent)

ii. &2(f(x),f(y)) > (3i(x>y) (ƒ does not decrease agreement).

We are now set to define a category of ̂ I-trees and shall dénote by T the category
whose

i. objects are trees (£ = (.X", a,/?));
ii. arrows are tree morphisms;

iii. identities, (idt = irfx) a r e defined in terms of identities over set of runs;
iv. composition, (̂  o ƒ), is given by function composition.

Some properties of our category immediately follow.
Proposition 1. T has initial object, given by the empty tree 0 = (0, 0, 0), and
has coproducts ©, given by disjoint unions.

In the next définition we introducé a concaténation operator between trees and
then we prove that it is a tensor product, i.e. an associative binary functor with
unity.

Définition 4. Given two trees, £1 = (Xi,ai,/3i) and £2 = {X2^a2^2) sequential
composition <E> is defined as follows (hère . is used to dénote string concaténation):
£1 & £2 = < X,a:{3 > , where

- X = Xx x X2

(a run in t is a run of £1 followed by a run of £2)

(the labels of runs in t are obtained by concatenating those of the arguments);

r= r
\

ri, 2/i ) otherwise
(the agreement between the second components of two composite runs is
considered only if the runs have a common initial part).

Proposition 2. Sequential composition (& is a tensor product with object unit tree
1 = ({#}, a(x) = e, (3(x,x) = e) and T is monoidal w.r.t. 0 .

An "itération" operator over trees is now given.

Définition 5. Given a tree £ = (X, a, j8) over the alphabet A, we can define
J.OO / V"OO ^vrO° rô^

0
 ^ '

1. X°° = {< #i,X2, ••••)xn > \n G N and Xi G X}
2. a°°(< a?i, ̂ 2,.. . , â n >) — ot(xi)a(x2)-.'Ct(xn)

3.

a(xi)a(x2)...Oï(xfc)/3(xA;+i)2/ifc+i) if Xi = yu Vi, 0 < i < fc
and Xi+i 7̂  2/i+i

a(xi)a(o;2)...a(xfc) if Xi — yi Vz, 0 < i < k
and n — fc or ?n = k.
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If in the définition above we stop the construction at a given level i, i.e. n < i
we obtain the définition of the z-th approximant of t°°. We have the following
statement (see [10] for details).

Proposition 3. t°° = (X°°, a°°, j3°°) is the colimit of the chain made out of üs
approximants.

Regular expressions can be interpreted as trees in the category T by means of
a function T defined by induction on the structure of terms.

Définition 6. (Denotational Semantics)
An algebraic interprétation of regular expressions is obtained by associating to
them a tree in T via function T:

- T[0] = 0,

- T\a\ = (x, a(x) =• a, f3(x, x) = a),

= T\Ef°.
The above tree-based interprétation of regular expressions gives rise to a natural
équivalence relation over them. Two regular expressions E and F are resource
equivalent if and only if they give rise, according to function T[_], to isomorphic
trees.

Définition 7. We say that two regular expressions E and F are resource equiva-
lent, E ~ F, if and only if T\E\ and T\F\ are isomorphic.

3. THE COMPLETENESS PROOF

In this section we prove that the axioms in Table 2 form a complete axiomati-
zation for

(T[£\,®, 0,0,1, (-)°°).
We improve, hence, previous results that rely on an infinitary inference rule:
the o;-induction rule. To avoid considering terms leading to infinitely branch-
ing trees, we should restrict attention to terms without itérations of 1 within
*-contexts. Indeed, we shall further restrict this condition and consider only terms
within *-contexts that do not have derivatives of the form 1 + Q for some Q ̂  0.
This will enable us to use structural induction in our completeness proof. The
wanted set of terms is determined by the boundedness predicate defined below.
The restriction will allow us to assume that terms of the form G*H cannot be
derived from derivatives of their subterm H. For a more explicit syntactical and
semantical characterization of the predicate the reader is referred to Lemma 2 and
Proposition 4, respectively.

Définition 8. (Well-formed property and Boundedness Predicate)
Let wf and bounded be the least predicates over regular expressions that satisfy
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wf(E) and wf(F) imply wf(E + F)\
wf(F) implies wf(E*F)
bounded(a), bounded(0) and bounded{l)\
bounded(E) and bounded(F) imply bounded(E'+F) and bounded(E*F)
bounded(E) and wf(E) implies bounded(E*).

Some examples of (non-) well-formed and bounded terms are now in order.
Regular expressions (14-I)*a and a*(b*+c*)0d are well-formed and a*, ((1 + l)*a)*,
(a*(b* + c*)md)* are bounded. On the other hand, regular expressions am(l + 1)
and a#(6* 4- c*) are not well-formed and (a*)*, (a*(6* + c*))* are not bounded.

Let £ dénote the set of regular expressions which satisfy the boundedness pred-
icate. In the rest of the paper we will concentrate on terms in £ which will be still
called regular expressions.

TABLE 2. Axioms for nondeterministic regular expressions.

X +Y

X + 0

(X»Y)»Z
X'l
UX
X'O

(X + Y).Z

X*
V* (\r ( V _i_ "VO* _i_ 1 ̂

J\. *\J- m\S*~ i J- ) i J-J

= Y + X

= X

= X'(Y.Z)
y

= X
= 0
= 0

= (x.z) + (y.z)

= 1 + X'X*
= (X + Y)*

(Cl)
(C2)
(C3)

(SI)
(S2)
(S3)
(S4)
(S5)

(RD)

m

Moreover, all terms shall be considered modulo associativity, commutativity
and absorption of 1 and 0, ie. up to axioms (Cl), (C2), (C3) and (S2), (S3) of
Table 2, We shall refer to all axioms there in as Ax and for any pair of regular
expressions E and F in £, we shall write E —Ax F if E ~ F is derivable from the
laws in Ax and the usual laws for equational reasoning. Notice that in Table 2
axiom (*1) could be replaced by the simpler axiom 0* = 1.

The correctness result is standard. Apart from (*2'), all the axioms in Table 2
have been proven sound in [10]. Soundness of (*2') can be established similarly.

Theorem 1. Axioms in Table 2 are valid in {T\£], ©, ®,0,l ,(-)°°).
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Proof. We prove correct ness of (*1) and (*2') only. We observe that bot h TJX*]
and TJl -f X»X*| are colimit of the same chain of approximants, therefore they
are isomorphic. More elementarily, they are both obtained as all possible finîte
concaténations of runs in T|X], each of them taken once, labelled via concaténa-
tion in A* and glued as far as possible. Analogously, T{X*»(Y»(X + Y)* + 1)]
and T\(X + Y}*\ are both obtained as all possible finite concaténations of finite
blocks of runs in T[XJ and T[yfl, every concaténation taken once, labelled using
concaténation in A* and glued as far as possible. D

Before stating our main statement we need some new notation and further
useful results. First of all we show that regular expressions can be reduced to a
standard form.

Définition 9. (Normal forms)
A normal form is either 0 or a term of the form

iel j£J

where £?m = 1 for all ra and n^, njt, rti, nj are normal forms different from 0 and
1 and we have bounded(rij) and bounded(n1).

Lemma 1. (Réduction to normal forms)
Every regular expression E is provably equal, via the laws of Table 2, to a normal
form fnf (E).

Proof The proof proceeds by induction on the depth of terms, defined by

depth(O) = 0
depth(l) = depth(a) = 1

depth(£ + F) = max{depth(JE7), depth(F)}
depth(^-F) = depth(E) + depth(F)

depth(E*) = 1 + depth(E).

We assume that the claim holds for terms E with depth(i£) < n. Hence, we prove
it for terms E of depth equal to n by (inner) induction on the syntactie structure
of terms. •

Let us now briefly comments on our normal forms. A regular expression is
either provably equal to 0 or to an expression not containing O's, with a number of
1 summands. This multiplicity is due to the fact the classical axiom X + X — X
does not hold within our framework. lts absence has been fully motivated in [11],
by resorting to parallels with resource based interprétation and fault tolérance.
One can notice is probably equal to 0 or to an expression not containing 0. A
regular expression does not have unique normal form and a normal form can be
obtained by using *-free axioms only.

To prove completeness, we need a well-founded ordering on terms. To this
purpose we want a norm that enjoys spécifie properties and shall need a number
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of définitions. To give an intuition, this norm will correspond to the maximal sum
of branchings along a minimal run reached by a derivative of the given term.

The next définition introduces the set of dérivâtives of a regular expression E.

Définition 10. Let E be a regular expression not containing 0, I be a set of
regular expressions, and T*E be defined by {F*E\F G Z},

1. the set of immédiate derivatives of 15, ider(E)1 is inductively defined by:

ider(l) = 0
ider(a) = {1}

ider(E + F) = ider(E) U ider{F)

{ider(E'F) = { ***W'F * f ^ *0
v f y ider(F) otherwise

ider(E*) = ider(EyE*.

If E G ider(F), we shall write F >- E.
2. The set of derivatives of E, der(E) (the transitive closure of >-), is inductively

defined by:

der(ï)
der(a)

der(E + F)
der(E'F)

der(E*)

= 0
= {1}
= der(E)
= der(E)
= der(E)

U der{F)
•F U der(F)
'E*.

Remark 1. Two derivatives of an expression are considered as different if they
are syntactically different and remain such also after application of (Cl), (C2),
(C3) and of (S2), (S3).

Lemma 2. Let E not containing 0 be such that wf(E) holds and F G der(E).
Then, either wf(F) holds or F is 1. Moreover, 1 G der(E).

Proof. The proof goes by induction on the structure of E. D

A notion of head normal form will also be needed in the sequel, and crucial for
establishing correspondence results between subterms and their semantic interpré-
tation.

Définition 11. (Head normal forms)
A head normal form is either 0 or a term of the form

where for ail fc, Fk — 1 and every Ej is an expression different from 0 and 1.
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Lemma 3. Every term E, can be transformed, via the laws of Table 2, into the
head normal form 0 or into a head normal form

hnf(E) =
iel j£J

where Ej € ider(E) for every j € J.

Proof The proof follows similar lines of that of Lemma 1. The only critical case
to consider is when E = 5*. By axiom (*1) we have 5* = 1 + 5*5* and
hence hnf(S*) = 1 + hnf(S9S*), then the problem reduces to finding a head
normal form for 5; Note that bounded(S*) implies that hnf(S) is of the form
(Hiel ai + HjeJ a3*Sj) an<^ t n u s t n a t ^* t e r m s cannot appear at the top level in
hnf(S*S*). •

Remark 2. hnf(E) is unique up to axioms (Cl), (C2), (C3), (S2), (S3). The
cardinality of K, Le. the number of 1 summands in hnf(E) corresponds to the
number of trivial runs of the tree produced by the semantic interprétation.

Now we want to see the impact of the définitions above on the model. Hence
we will describe derivatives semantically. The same will be done in the sequel via
suitable remarks.

The tree corresponding to the T-interpretation of a derivative of a regular
expression E can be obtained from the tree corresponding to the T-interpretation
of E as follows.

Let E be a regular expression and t — (X, a, f5) be the tree corresponding to E
according to interpreting function (T[£?J = t). Consider x be a run in t and s be
such that € < s < e(x). If we let s — s' stand for the result of erasing the prefix
s' from 5, the derivative t' = (X\al^(5*) of t along x after 5, written t[x,s >, is
defined by:

X' - {yeX\0(x,y)>s}
a!{y) = a(y) — s for every y € Xf

(3f = /?(y, z) — s for every y, z G Xf.

Lemma 4. Let t be the tree interpreting the term E. Then every derivative tf of
t along x after s, t[x, s >, is the interprétation of a derivative of E.

Proof. The proof goes by induction on the length of 5. Let such length be 1. Since
t is an interprétation of hnf(E) as well, we have that t[x,a >. defined as above,
is either 1 or Ej depending on whether a is one of the a^ or one of the a,j. If we
assume the assert for s of length n, then every derivative of t for s of length n + 1
corresponds to an immédiate derivative of a derivative of E. •

We need also the notion of initial branching of a term (intuitively corresponding
to the number of initial branches of the tree obtained by interpreting the term).
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Définition 12. Given a term E not containing Ö such that its head normal form
is:

hnf(E) = _

The initial branching of 1£, br(E), is defined below; there n is used to dénote the
cardinality of K:

br(l) = 1
br(a) = 1

br(E + F) = br(E) + br(F)
br(E*F) = br{E)+nxbr(F)

br(E*) = l + br(E).

Définition 13. A complete chain of derivatives of F is a séquence of terms
Fi >- Fi.. • >- Fn, with F >- JF\, such that the head normal form of each Fi
does not have 1-summands while the head normal form of Fn does.

Every term (different from 0 and 1), gives rise to a finit e complete chain of
derivatives. This can be easily seen by structural induction.

First we deflne the size of a term E along one of the shortest complete
chains c:

s(E,c) = br(E)

Then define the norm of E as

\E\ = max(

where c is one of the shortest complete chains of derivatives E^ e der (E).
Intuitively, s(EJc) is the sum of branchings along a minimal run; therefore \E\
is the maximal size reachable by one of its derivatives.

Remark 3. The notions of branching and size are invariant with respect to
resource équivalence.

As shown in [10] for the weaker notion of non-empty word property in the sense
of Salomaa, we have the following statement:

Proposition 4. A tree corresponding to an expression satisfying the boundedness
predicate is finitely branching. Moreover, a tree corresponding to a wf expression
does not have two different runs x\, x<z such that ƒ?(< Xi,cc2 >) = a(xi).

Let us show now some critical properties of our norm on processes. The first
one states that the subterms of a regular expression have a norm that is smaller or
equal to the one of the expression itself. The relevant property is that |J5| < \E*\.
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expression. Then the following inequalities

(2) \F\ < \E + F\
(4) |F| < \E'F\

Proof. The only critical case is (5); this, we are going to prove. The other cases are
simpler. Let us remark that, since wf(E) holds, the initial branching of derivatives
of E and in E* along a minimal complete chain do coincide apart from the last
derivative. This is 1 for E and 1 + br{E) for E*. Indeed, if Ef G der(E) then
E'*E* G der(E*) and, for the boundedness property, they have the same initial
branching, if Ef is not 1 (see Lem. 2). D

We can now prove that the norm of a derivative of a regular expression is smaller
or equal to the one of the expression itself and that norm is preserved by resource
équivalence.

Proposition 6. Let E be a regular expression, E1 G der(E) and ~ dénote resource
équivalence. Then:

(1) W\<\E\,
(2) E~F implies \E\ = |F|.

Proof. (1) The two norms are the maximum with respect to two sets such that
one is included in the other.
(2) Semantically equivalent terms are interpreted by isomorphic trees, where norm
corresponds to surn of branching along a minimal non trivial run. •

The norm and the derivative of a process are used to define an ordering over
processes.

Définition 14. We say E < F if and only if

\E\ < \F\ or E e der(F) and F <£ der(E).

Strong preorder < over regular expressions induces a well-founded partial order on
classes of terms (denoted with the same symbol), where two terms are in the same
class if they can dérive each other. The proof of this fact is borrowed from [15]
-Lemma 7-. We report the proof for completeness.

Lemma 5. < is a well-founded ordering on regular expressions.

Proof. If E € der(F) then every derivative of E is also a derivative of F. Thus
\E\ < \F\. Hence, E < F implies \E\ < \F\.

Suppose that < is not well-founded, so there exists an infinité chain ... < E2

< Ei < EQ. For ail n we have |£7n+i| < \En\. Then there must exist an N such
that \EN\ = \En\ for ail n > N. By the définition of <, E < F and |JE7[ = |F |
imply E G der(F) (and F $ der(E)). But each regular expression has only fmitely
many derivatives so, in our infinité chain, there are m,n > N with m < n and
Em — En. Then En jt £?m contradicting the hypothesis. •
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Another crucial property we need, states that each derivative F1 of F, cannot
dérive E*F. This lemma is adapted from [15] -Lemma 8-,

Lemma 6. If F1 G der(F) then Ff < E*F.

Proof. We need a function g defined, for terms not containing 0, as:

5(1) - 0
g(a) = 0

g(E + F) = maxWE^giF)}
g(E'F) = max{g(E), g(F)} if E is not a (_)*-term

g(E*'F) = maX{g(E),g(F) + l}-

By structural induction one can prove that F' G der (F) implies g{Ff) < g (F)
for every regular expression F. Boundedness hypothesis is crucial to prove that
g(G'*G*'H) = g(G*'H), where Gf e der{G). Indeed, by the boundedness predi-
cate, a derivative of a term G in G**H cannot ends with a star term. Hence, by
the définition of function g, g(Gf*G*-H) = nmx{g(Gf),g(G*-H)} = g{G**H).

Therefore, g(Ff) < g (F) < g(E**F), so E**F cannot be a derivative of F'
while F( e der{E**F). Then F( < E*F. D

We need a lemma analogous to Lemma 9 in [15]. We shall call recursive a term
of the form G'G*H, with G' G der(G).

Lemma 7. Let E be a recursive term or in normal form and let E' be such that
E >- Ef. Then either E1 < E or E and Ef are both recursive and they dérive each
other.

Proof. Let us first remark that, if Ef is a derivative of E then \Ef\ < \E\y therefore
we have two mutually excluding cases:

- Ef < E and, in this case, Ef cannot dérive E
- \Ef\ = \E\ and the two terms dérive each other.

Then proving the lemma essentially reduces to prove the following statement: if
two terms dérive each other, they are recursive. By Lemma 6, in a finit e chain of
immédiate derivatives such that the first term and the last one are equal (we will
call it a loop), if a term is recursive, then ail terms are recursive too. In fact norm
cannot decrease along the loop, therefore the immédiate derivative of a recursive
term, say G'G*H, cannot be a derivative of H and it will be recursive; then ail
terms are recursive because we are dealing with a loop. In particular the lemma
is true for recursive terms. Hence we are left to prove that a non recursive term
E in normal form cannot be derived by a derivative of the same type, Le. it does
not exist a loop of immédiate derivatives for it. This last claim can be proved by
structural induction. Suppose
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where £7m = 1 for all m and n*, Sj are either 1 or normal forms different from 0
and 1 and E is not just a summand consisting of a recursive form.

For the base cases, namely E = 0 and E = ^2meM Em of (non recursive)
normal forms the assert is true. Suppose now by contradiction that for a given
more complex E there is a loop beginning with Ef. Since E >- Ef and it is a not
recursive normal form, we have that the only possibility is: E' = n* for some i
and rii not recursive.

The supposed loop, would provide a loop also for E\ but, as a proper subterm
of E, the claim is true for E\ hence we have a contradiction. •

Another useful property is a right-cancellative property for sequential compo-
sition; namely, whenever E*F ~ GmF then E ~ G. Let us notice that trees of
our model are finite branching and, therefore, they cannot have innnitely many
runs of the same length. Cancellative property for coproduct is valid for the same
reason.

Lemma 8. If E*F ~ GmF with none of E,G,F resource equivalent to 0, then
E~G.

Proof. Let us call depth of a tree the length of one of its minimal runs. E and G
must have the same depth. If this depth is 0, then they have a certain number of
trivial runs, but, by the cancellative property for coproduct, they have the same
amount of trivial runs, so that we can ignore them and restrict our reasoning
to trees where depth is greater than 0. If t = T\E9F\ and if = T\G*F\ are
isomorphic, being finite branching, we have that they are made out of nnitely
many derivatives of the form t[x,ai > and t'[xf,ai > pairwise isomorphic. Since
their depth is greater than 0, we can assume that x — (y} z) with y a non trivial
run in T[J5], and, analogously xf = (y', zf) with yf a non trivial run in T[GJ. Let
us take such a non trivial run y of length n, by repeatedly applying the reasoning
above, affcer n steps, we can have a semantical derivative where y has become
trivial and it will correspond in the induced isomorphism to a run obtained from
T\G\ in the same way and trivial as well. We have only finitely many of such
runs, so that we can inductively define a bijective correspondence between them
extending to an isomorphism between T\E\ and T[G]. •

Lemma 9. Let E and F be regular expressions in normal form such that E ~ F.
Then proving E =Ax F reduces to proving a finite number of équations of the fol-
lowing kinds, where we let E1 e der (E), F1 e der (F) and Ef < E or F' < F

EQ

Er
E2

0
1
a

= 0
= 1
— a

Eb R'*R**S = T**U Rf G der(R)
E6 Rf*R**S = Tf*T**U R' G der(R) and T € der(T).
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Proof. Consider the head normal forms of E and F respectively, namely hnf(E)
and hnf(F). Split them according to their ^-equivalent summands. Then we
have that the two summands appearing in the équations can be as follows:

- as in cases EQ, E\, E<I or
- as in case Es or
- of the form ccE' = a*Ff where E' G der (E), Ff G der(F) and neither E' < E

nor Ff < F.
The only problematic case is the last one. By Lemma 7, we have that, when
aMEf — a*F' reduces to Ef = F' , only cases E4, E5, and E6 are possible because
terms will be necessarily recursive. •

We are now ready to prove our main statement.

Theorem 2. Let E and F be regular expressions such that E ~ F. Then E =Ax
F.

Proof. The proof is by induction on the product ordering over E x S. By Lemma 1
we can assume that E and F are in normal form. By Lemma 9, we have to consider
at most the équations Eb, Ei, E2, E3, E4, E5 and EQ. But Eo, Ei and E2 are
trivial and E3 follows immediately by induction reasonings. Thus we concentrate
on proving E4, E5 and E$.

E4 Consider équation R**S ~ T**U. Consider the head normal forms (see
Lem. 3)

R =AX Y, Rï a n d T
 =AX J2 Ti

iei jeJ
of R*mS and T**U respeetively. By définition of head normal form Ri and
Tj are of the form either a*V or a where a G A. Since R*mS ~ T**U> each
Ri*R*9S (i € I) is resource equivalent to Tj'T**U (j G J). We distinguish
two cases;
(a) Ri*R**S ~ Tj*T**U for a j G J. Then Ri ~ Tj by Proposition 8.
(b) Ri*R**S - a*Uf for a derivative U' of U.
Thus / can be divided into the following subsets:

IQ = {i G / | 3j G J such that Ri - Tj}

and

Ji = {z G / | 317' G der(t/), 3a G 4 such that Ri*R**S - a-C/'}-

Similarly, J can be divided:

Jo = {j G J | 3i G / such that Tj ~ ft}

and

Jx = {jeJ | 3S" G der(5), 3a G A such that T^T**U - o*5'}-
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If Ii and Ji are not empty, then R**S ~ U", for a derivative U" of U, and
T**U - S", for a derivative S" of S. Thus 17" ~ 5". Induction yields
R*'S =Ax U" =Ax S" =Ax T**V.

Hence, we may assume that either Ii or J\ is empty, say J\ = 0. We try
to dérive équation

s =Axu. (i)

In order to dérive équation (1), we show that each summand at the l.h.s. of
the equality is provably equal to a summand of U and vice versa.

By définition of I\, for each i G / i , there exists a summand a*Uf of U
such that Ri*R**S ~ a»U'. Since U' < T**U, induction yields Ri*R*'S =Ax

a*U'.
Cönsider a summand a*S/ of S. Since R**S ~ T*mU and J\ = 0, it

follows that a*Sf is equivalent to a summand a*Uf of U so induction gives
a*St =Ax a*Uf. Finally summands equal to 1 of S corresponds with analo-
gous summands of U.

By converse arguments it follows that each summand of U is provably
equal to a summand at the l.h.s. of the equality.

Since J\ = 0, it follows that JQ / 0, so clearly also IQ ̂  0. Put Ro =Ax

Eie/0 Ri an(^

Ro = T . . (2)

In order to prove this équation, note that by définition of /o and JQ — J, each
Ri (i G /o) is equivalent to a Tj (j e J). Since | i^ | < \R\ < \R*\ < \R*mS\,
induction yields Ri =Ax Tj. Conversely, each Tj (j G J) is provably equal
to a, Ri (i G /o). Hence RQ ~AX T. Since IQUII = 7, we have

R**S =Ax ( ieh

=AX Ro'-ÇZiei* Ri'((Ro + Eig/, RiT'S) + S)
by axiom (*2' and RD)

=Ax iîo*-(Eie/^-(^*5) + S)
=Ax T**U.

£̂ 5 Consider équation R'*R**S - T**U, where R' € der(R). If R' = 1 then, by
axiom (S3), the proof proceeds as in the previous case. Assume Rf ^ 1. By
Lemma 2, iî' is well-formed. For this reason, it cannot be the case that 1 is
a summand of the head normal form of R!. Thus the head normal form of
U must be of the form:

U =Ax ^Cli'Ui.
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Since RUR**S ~ T**U each Ui is resource equivalent to R**S or to a term
R"-R*-S, where R" e der(R). But Ui < T*-U and \R**S\ = \R'*R**S\ or
\R*-S\ = \R"-R*-S\ (because fl*-S, R'*R**S and R"*R**S have the same
derivatives). Induction yields 17» =Ax #*•£ or Ui =Ax R"*R*'S respec-
tively. This holds for ail i, so U =Ax E»e/a*# t /* = A * Vr#CR**S) f o r s o m e

regular expression V. Then, R'*R**S =Ax {T* *V)* (R* • S) and hence, by
Proposition 8, R' ~ T*-1^. Since \R'\ < \R''(R**S)\ and |r*»y| < |T*-17|
induction yields R' =Ax T**V. Hence, R'*(R**S) =Ax (T**Vy{R*'S) =Ax

T**(V*(R**S)) =Ax T**U.
E6 Consider équation R'*R**S - Tf*T*»U, where R' e der(R) and T' e der(T).

We have two cases to consider:
(i) Suppose there exists T" e der(T) such that R**S - T"*T**U (if there

exists R" G der(iî) such that R"*R**S ~ T**C/ the proof is completely
similar). Then, by item Eh, R**S =f

Ax T"*T*»U follows.
Hence, R'*R**S - R'*T"*T**U - Tf*T**U. By Proposition 8, #'*T"
- T'. Moreover, \R'*T"\ < \R'*T"*T*'U\ = \T'*T*»U\ = \R'*R**S\
so that \R'*T"\ < \R'*R**S\ and \T'\ < \V*T**U\ - \T"*T**U\. By
induction hypothesis RUT" =Ax T'.
Finally, R'*R**S =Ax R!*Tff*T**U =Ax Tf*T**U.

(ii) Suppose that both R*^S ~ U', for some U' G der(U), and T*»17 - S',
for some 5' G der (S), hold.
Then, by Lemma 4, there are <£/" e der(U) and 57/ G rfer(5) such
that Rf*R*-S - t/" and T'*T**U ~. S". But *7" < T'*T*-U and
5/7 < R'*R*-S. Thus, R'*R**S ^Ax U" =Ax S" =Ax T'-T*-U
immediately follows. •
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