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The curved-beam finite element formulation by trigonometric function for curvature is
presented. Instead of displacement function, trigonometric function is introduced for
curvature to avoid the shear and membrane locking phenomena. Element formulation
is carried out in polar coordinates. The element with three nodal parameters is chosen
on curvature. Then, curvature field in the element is interpolated as the conventional
trigonometric functions. Shape functions are obtained as usual by matrix operations.
To consider the boundary conditions, a transformation matrix between nodal curvature
and nodal displacement vectors is introduced. The equilibrium equation is written by
minimizing the total potential energy in terms of the displacement components. In such
equilibrium equation, the locking phenomenon is eliminated. The interesting point in
this method is that for most problems, it is sufficient to use only one element to obtain
the solution. Four examples are presented in order to verify the element formulation and
to show the accuracy and efficiency of the method. The results are compared with those
of other concepts.
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1. Introduction

Curved beams are more efficient in transfer of loads than straight beams because the
transfer is affected by bending, shear, and membrane action. Some of the structures such
as arches and arch bridges are modeled using curved beam elements. The finite element
analysis of curved beam has been given significant attention by researchers in recent years
mostly because it is a versatile method for solving structural and other mechanical prob-
lems.
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The analysis of curved beam is conventionally formulated based on displacement
fields. Such formulation often leads to excessively stiff behavior in the thin regimes. In

such analyses, shear locking phenomenon occurs when lower-order elements are used in
modeling. This is because in such models, only flexural deformations are considered and
shear deformations are neglected. Another phenomenon is called membrane locking. It
occurs when other classical curved finite elements are used for modeling thin and thick
curved beams; because they exhibit excessive bending stiffness alone in approximating
the extensional bending response and the lower-order element cannot bend without be-
ing stretched. It means that elements are unable to represent the condition of zero radial
shear strains. Therefore, these two phenomena are associated with highly undesirable sit-
uation and numerical deficiency. Thus much attention has been focused to remedy the
locking phenomena.

Most of researches have proposed various schemes to alleviate locking such as re-
duced integration, (Zienkiewicz et al. [1]; Stolarski and Belytschko [2, 3]; Pugh et al. [4]),
discrete Kirchhoff ’s theory (Batoz et al. [5]), penalty relaxation method, (Tessler and
Spiridigliozzi [6]), hybrid/mixed concept (Reddy and Volpi [7]), isoparametric inter-
polations, (Ashwell et al. [8]), free formulation, (Dawe [9]; Ashwell and Sabir [10]),
and assumed displacement field (Raveendranath et al. [11]). However, most of these ap-
proaches have been used for thin regimes, however the given results have shown that
these methods cannot represent the behavior of the curved beam quite correctly in the
thick regimes. To overcome this problem, a three-nodded curved beam element is for-
mulated by Bathe [12], considering shear and tangential rigidity. Curved beam element
with straight beam elements is modeled Mc Neal and Harder [13]; however this results
in a large degree of freedom in a modeling. A three-nodded locking-free curved beam
elements based on curvature is formulated by Lee and Sin [14]. The latest attempt by
Sinaie et al. [15] considers eliminating shear-locking phenomenon and involves six nodal
curvatures. A new two-nodded shear flexibility curved beam element by assuming poly-
nomial radial displacement field is derived by Raveendranath [11]. Shear force effects on
curved beam element behavior were considered by Sheikh [16]. Nonlinear formulation
of curved beam element by using curvilinear system and neglecting shear force effects
is investigated by Wen and Suhendro [17] and Wen and Lange [18] and Calhoun and
DaDeppo [19].

In this paper, a new curved beam finite element formulation by trigonometric func-
tion for curvature is presented. Unlike other investigators, trigonometric function is used
for curvature and this enables efficient elimination of the shear and membrane-locking
phenomenon. This is achieved by introducing strain-displacement relationships in polar
coordinate system using a three-nodded element. Relationship between nodal curvature
and nodal displacement is obtained using transformation matrix. The total potential en-
ergy equation is written and minimized; then, force-displacement relation is derived and
an algorithm for analysis is proposed. Finally, four numerical examples are solved and
the results are compared with solutions given by other methods. The results show that
performance of the new-presented element without locking phenomena is preferred over
the other types of elements.
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Figure 2.1. Nodal curvatures and applied loads in a 3-node circular arch element.

2. The curvature field and matrix operations

The matrix operation for the curvature χ of circular arch element is being presented in
this section (see Figure 2.1). Prior to present the formulation, it is worthy to note here
before the formulation that curvature can be interpolated with conventional trigonomet-
ric functions. In present study, a three-node element for the curvature is chosen. The
shape function for this type of element is the simplest one, which express the behavior of
a curved beam. A trigonometric function representation for curvature field χ is assumed
as

χ = a1 + a2 Cos(Φ) + a3 Sin(Φ) (2.1)

or

χ = [ f ] · [a], (2.2)

where [a] and [ f ] are two vectors defined by

[a]T = [a1 a2 a3
]
,

[ f ]= [1 Cos(Φ) Sin(Φ)
] (2.3)

in which Φ is obtained by

Φ= S

R
. (2.4)

The relation nodal for curvature vector [κ] can be written as

[κ]= [ω] · [a], (2.5)
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Figure 3.1. Components of displacement in a typical circular arch beam.

where

[κ]T =
[
χ1 χ2 χ3

]
,

[ω]=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0

1 Cos
L

R
Sin

L

R

1 Cos
L

2R
Sin

L

2R

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
(2.6)

Substituting (2.5) in (2.2) results in

χ = [ f ] · [ω]−1 · [κ] (2.7)

as depicted in Figure 2.1. If the curvature in the element is interpolated the following
equations are obtained:

[
fκ
]= [ f ] · [ω]−1, (2.8)

χ = [ fκ
] · [κ], (2.9)

[
fκ
]=

[
f κ1 f κ2 f κ3

]
, (2.10)

f κ1 =
{

1
4

(
Cos

(
L

4R

)
−Cos

(
3L− 4S

4R

)/(
Sin
(
L

4R

)2

Cos
(
L

4R

)))}
, (2.11)

f κ2 =
{
− 1

2

(
Sin
(
L− 2S

4R

)
Sin
(
S

2R

)/(
Sin
(
L

4R

)2

Cos
(
L

4R

)))}
, (2.12)

f κ3 =
(

Sin
(
L− S

2R

)
Sin
(
S

2R

)/
Sin
(
L

4R

)2)
. (2.13)

3. The sectional rotation field

The geometry of a circular arch element with radius R and centroidal arc length L loaded
in plane is shown in Figure 3.1.
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Considering the figure, the sectional rotation field θ for a typical circular arch element
in polar coordinates is derived using the curvature χ as

χ = θ,S, (3.1)

where subscript S denotes differentiation with respect to arc length. Substituting (2.9) in
(3.1) and integrating from (3.1) results in

θ = [ fθ
] · [κ],

[
fθ
]=

∫ S

0

[
fκ
] ·ds+C1,

(3.2)

where C1 is the integration constant and [ fθ] is determined as detailed in Appendix A.

4. The radial and tangential displacement fields

The radial displacement W and the tangential displacement U for a typical circular arch
element are illustrated in Figure 3.1. The relationships between these components of dis-
placement and the shearing strain γ as well as the tangential strain ε are as follows:

ε =U,S−W

R
,

γ =W,S− θ +
U

R
.

(4.1)

The membrane force N , the bending moment Mb, and the shear force V , respectively are
given by

N = EAε, Mb = EIχ, V = kGAγ, (4.2)

where A is the cross sectional area, I is the moment of inertia, E is the modulus of elas-
ticity, G is shear modulus and k is the shear coefficient. The equilibrium equations of a
circular arch element, take the following form (Timoshenko and Gere [20]):

Mb,S +V = 0,

V,S +
N

R
= 0,

N,S +
Mb,S

R
= 0.

(4.3)

Substituting (4.1) in (4.2) and then in (4.3) yields

W,SS +
W

R2
= χ−

(
EI

GAk
+
I

A

)
· χ,SS,

U = R ·
(
θ−W,s− EI

GAk
· χ,s

)
.

(4.4)
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Solving (4.4) for the radial and tangential displacements can be calculated in terms of
curvature as

W = fW · κ+C2 · cos(Φ) +C3 · sin(Φ),

U = fU · κ+R ·C1 +C2 · sin(Φ)−C3 · cos(Φ),
(4.5)

where constants, C1, C2, and C3, are the components of rigid-body displacements while
fθ , fW , and fU are detailed in Appendix A.

5. Nodal curvatures and nodal displacements relation

Consider a circular arch element with six specified boundary conditions as shown in
Figure 3.1. By applying boundary conditions to nodes 1 and 2, the deformation-curvature
relations are obtained as

W1 = fW
∣
∣
S=0 · κ+C2, (5.1)

U1 = fU
∣
∣
S=0 · κ+R ·C1−C3, (5.2)

θ1 = fθ
∣
∣
S=0 · κ+C1 = C1, (5.3)

W2 = fW
∣
∣
S=L · κ+C2 · cos

L

R
+C3 · sin

L

R
, (5.4)

U2 = fU
∣
∣
S=L · κ+R ·C1 +C2 · sin

L

R
−C3 · cos

L

R
, (5.5)

θ2 = fθ
∣
∣
S=L · κ+C1, (5.6)

where fi|S=a is the value of fi at S = a. Substituting (5.1)–(5.3) in (5.4)–(5.6), respec-
tively, and eliminating the constants C1, C2, and C3, the nodal displacements and nodal
curvature obtained as

[
Tκ
] · [κ]= [Tu

] · [δ], (5.7)

where [δ] is the boundary condition vector and is defined as

[δ]=
[
U1 W1 θ1 U2 W2 θ2

]T
,

[
Tκ
]=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

fW
∣
∣
S=Lκ− fW

∣
∣
S=L cos

L

R
+ fU

∣
∣
S=0 sin

L

R

fU
∣
∣
S=Lκ−FW

∣
∣
S=0 sin

L

R
− fU

∣
∣
S=0 cos

L

R

fθ
∣
∣
S=L

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

[
Tu
]=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−cos
L

R
sin

L

R
−Rsin

L

R
1 0 0

−sin
L

R
−cos

L

R
−R
(

1− cos
L

R

)
0 1 0

0 0 −1 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦
.

(5.8)
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The transformation matrix [T], which relates the nodal curvature vector and the nodal
displacement vector, may be expressed as follow:

[T]= [T−1
κ

] · [TU
]
, [κ]= [T] · [δ]. (5.9)

6. Equilibrium equation of the element

The finial finite element equilibrium equation is written in terms of the displacement
components of the two nodes. The shear and tangential strains are incorporated into the
total potential energy by the force equilibrium equation. Therefore, the presented analysis
formulation of the circular arch element is ensured to be free of the locking phenomena.
The total potential energy in a circular arch element shown in Figure 2.1 is written as

π = 1
2
EI
∫ L

0
χ2ds+

1
2
GAk

∫ L

0
γ2ds+

1
2
EA
∫ L

0
ε2ds− [Pe

]
. (6.1)

In the above equation, Pe is the equivalent nodal load vector. Considering the expression
for each strain and displacement field and invoking the stationary condition of the given
system, that is, δπ = 0 the relation between force and displacement is obtained in the
following steps:

[K] · [δ]= [Pe
]
. (6.2)

The stiffness matrix [K] is given by

[K]= [T]T ·
[
EI
(∫ L

0
f Tκ · fκ dS+α

∫ L

0
f Tκ,s · fκ,s dS+β

∫ L

0
f Tκ,ss · fκ,ss dS

)]
· [T] (6.3)

and the equivalent nodal load vector [Pe] is obtained by:

[
Pe
]=

∫ L

0
VT
W ·Pr ·dS+

∫ L

0
VT
U ·Pt ·dS+

∫ L

0
VT
θ ·m ·dS, (6.4)

where Pr , Pt and m are the distributed radial, tangential, and moment loads applied,
respectively, as shown Figure 2.1. The VW , VU and Vθ are defined later in Appendix B.

7. Numerical studies

Four sample problems of a curved beam are solved in this section. (1) An arc for various
subtended angles supported on a fixed and a roller at the other end. (2) A quarter cir-
cular cantilever circular arch. (3) A pinched ring and (4) A quarter circular arch with a
moment load applied. These problems are elaborately selected because they are of typical
theoretical studies to investigate shear and membrane-locking phenomena. Comparison
of the results obtained in this study is shown with those obtained by other investigators.

7.1. Example 1: an arc for various subtended angles. An arc of a ring with angle α and
with one end fixed and a concentrated load P at the other roller end, as in Figure 7.1, is
characterized by slenderness, R/h = 50. The vertical displacements obtained under load
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Figure 7.1. An arc for various subtended angles α.

Table 7.1. Comparison of the finite element solution (radial displacement under load) of one-quarter
ring with other methods.

Angle α
(degree)

Results by
Lee and Sin [14]

Results by
Raveendranath et al. [11]

Results by
Sinaie et al. [15]

One-element
present study

10 0.004 19 0.004 19 0.004 19 0.004 19

20 0.007 7 0.007 7 0.007 7 0.007 7

30 0.014 2 0.014 1 0.014 2 0.014 23

40 0.028 7 0.028 6 0.028 7 0.028 76

50 0.054 0.054 0.054 0.054 00

60 0.093 1 0.093 0 0.093 1 0.093 16

70 0.149 9 0.148 5 0.149 9 0.149 95

80 0.228 8 0.227 5 0.228 8 0.228 8

90 0.335 0 0.334 5 0.335 0 0.335 1

100 0.475 0 0.474 5 0.475 0 0.475 2

120 0.889 2 0.889 2 0.889 2 0.889 8

140 1.557 0 1.556 5 1.557 0 1.558 9

160 2.608 9 2.607 8 2.608 9 2.613 8

180 4.240 3 4.240 0 4.240 3 4.253 9

P are compared with those given by the other methods (Raveendranath et al. [11]; Lee
and Sin [14] and Sinaie et al. [15]), and are summarized in Table 7.1.

It can be seen, from Table 7.1 that the results of the present analysis agree well with
those obtained by other methods. Also, just one element can be calculating accuracy



H. Saffari and R. Tabatabaei 9

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
ad

ia
ld

is
pl

ac
em

en
t,
W

0 20 40 60 80 100 120 140 160 180

Angle, α (degree)

2 elements (Lee and Sin [14])
4 elements (Raveendranath et al. [11])
1-element present method

Figure 7.2. Radial displacement under load for various subtended angle α.

results by presented method. Figure 7.2 is the graphical representation of the results by
various concepts mentioned above. While the results of present study are superposed. In
this figure, the radial displacement of joint 2 of thin arch for various subtended angle
α is shown. It can be seen from Figure 7.2 that the solutions given by Raveendranath et
al. [11] and Lee and Sin [14] in good agreement with the results obtained by new formu-
lation presented here. It should be remembered that in present study only one element
has been employed whereas in other methods, the number of elements are large.

7.2. Example 2: a quarter circular cantilever ring. The details of a quarter circular can-
tilever ring are shown in Figure 7.3. The finite element results for radial displacement
(W), tangential displacement (U), and sectional rotation (θ) at the ring tip and for a
wide rang of slenderness, (R/h = 4 to 1000, thick to thin) and those obtained by other
methods are all summarized in Table 7.2. The free-locking exact solution can be derived
analytically using Castigliano’s theorem (considering all bending, shear and membrane
are strain energy components) and is shown as follows: (Lee and Sin [14])

Wc = πPR3

4EI
+
πPR

4GAk
+
πPR

4EA
, (7.1a)

Uc = PR3

2EI
− PR

2GAk
− PR

2EA
, (7.1b)

θc = PR2

EI
. (7.1c)
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Figure 7.3. A quarter circular cantilever circular arch.

Table 7.2. Comparison of the finite element solution ratio of a quarter circular cantilever circular
arch.

Slenderness
ratio R/h

Two-element model by
Raveendranath et al. [11]

One-element
present study

Wf

Wc

θ f
θc

U f

Uc

Wf

Wc

θ f
θc

U f

Uc

4 0.997 61 0.999 32 1.034 06 1.000 0 1.000 0 1.033 50

10 0.998 28 0.999 32 1.000 53 1.000 0 1.000 0 1.005 27

20 0.998 37 0.999 32 1.001 28 1.000 0 1.000 0 1.001 31

50 0.998 40 0.999 32 1.000 17 1.000 0 1.000 0 1.000 21

100 0.998 40 0.999 32 1.000 01 1.000 0 1.000 0 1.000 05

200 0.998 40 0.999 32 0.999 96 1.000 0 1.000 0 1.000 01

500 0.998 40 0.999 32 0.999 95 1.000 0 1.000 0 1.000 0

1000 0.998 40 0.999 32 0.999 95 1.000 0 1.000 0 1.000 0

Subscripts f and c denote the finite element solution and analytic solution by Castigliano’s theorem,

respectively.

Table 7.2 shows the accuracy of the present model and indicates that the results are better
than those obtained by other methods.

It is concluded, from the results given in preceding sections, that trigonometric func-
tion for curvature concept provides sufficient accuracy while using the least number of
elements employed. Moreover, the shear and membrane-locking phenomenon is com-
pletely eliminated in this regime.
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Figure 7.4. A pinched ring with a load 2P and model for 1/4 circular arch.

7.3. Example 3: a pinched ring. Another example, which is studied here, is a pinched
ring typically shown in Figure 7.4. The same radial loads are applied at top and bottom
of such ring. The ring is modeled by a 1/4 section with the boundary conditions as shown
in Figures 7.4(a), 7.4(b) and then analyzed using only one element.

Using Castigliano’s theorem, the radial displacement under point load can be obtained
as (Lee and Sin [14])

W1 =−
[
PR3

EI

4−π
2π

+
PR

2GAk
− PR

2EA

]
, (7.2a)

W2 = PR3

EI

π2− 8
4π

+
πPR

4GAk
+
πPR

4EA
. (7.2b)

Figure 7.5 shows the comparison of the finite element results with those of the theoreti-
cal solution. In order to better represent the comparison, nondimensional axis is chosen.
The ratios of the radial deflection obtained by all methods studied to the results of Cas-
tigliano’s theorem are shown on abscise. It is mentioned here that again only one element
has been employed in present finite element analysis.

The present model yields better result Wf /Wc = 1.0 as shown in Figure 7.5. However,
results of element by (Raveendranath et al. [11]) are found to yield Wf /Wc = 0.955 and
formulation of (Sinaie et al. [15]) is reported to yield result, Wf /Wc = 0.999. However,
the results the other methods for the single element model are not reported here.
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Figure 7.6. A half-circular arch with hinged supports, under the action of a concentrated moment.

7.4. Example 4: a quarter-thin circular arch with hinged supports. Figure 7.6 Shows
the details of a half-circular arch with hinged supports, subjected to a concentrated mo-
mentMo at the middle of the span. This means that at the middle point, the bending mo-
ment is expected to be discontinuous. The analytical solutions for central displacement
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Figure 7.7. Internal bending moment distributions for hinge curved beam.

based on Euler theory of thin beams are reproduced here as follows (Raveendranath et
al. [11]):

Wc = 0, (7.3a)

Uc =−0.0100489
Mo ·R2

EI
, (7.3b)

θc = 0.1211846
Mo ·R
EI

. (7.3c)

In this problem, two elements are used to model this curved beam. Shear effects are ne-
glected in the analysis of this sample problem for the sake of simplicity, as otherwise the
explicit calculation of the central deflections calculated via Castigliano’s theorem becomes
very complicated (Lee and Sin [14]):

M =

⎧
⎪⎪⎨

⎪⎪⎩

(1−Cosψ + Sinψ)
Mo

2
, 0≤ ψ ≤ π

4
,

−(1 + Cosψ− Sinψ)
Mo

2
,

π

4
≤ ψ ≤ π

2
,

(7.4a)

N =− Mo√
2R

Sin
(
ψ− π

4

)
, (7.4b)

V = Mo√
2R

Cos
(
ψ− π

4

)
. (7.4c)

The finite element results for the components of displacements are in very good agree-
ment with the above analytical ones. Figures 7.7, 7.8, and 7.9 show, respectively, bending
moment, membrane force, and shear force distribution along the arc length calculated at
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Figure 7.8. Internal memberane force distributions for hinge curved beam.

the nodes and element centered for four elements of the arch using other method. The
solutions for two elements model are in very good agreement with the exact solution
given by Castigliano’s theorem over the entire arc length.

8. Conclusions

A new finite element formulation of the circular arch element was presented in this paper
using Trigonometric function. Despite other conventional methods which use displace-
ment functions, the element curvature in current study is defined by three nodal curva-
tures. First the curvature field is defined by trigonometric function while the fundamental
relations are derived in polar coordinate for the typical circular arch element. Second, the
curvature field in the circular arch is related properly to the three nodal curvatures. This
entails that the shape functions are of trigonometric ones. Integration over the curvature
enables calculation of the tangential and the radial displacements as well as the sectional
rotation between the nodal curvature and displacement is derived by eliminating the rigid
displacement components at a typical element node and by using a transformation ma-
trix. Third, minimization of potential energy equation based on internal forces results in
force-deformation relation. Last, an algorithm for finite element analysis was presented
followed by numerical investigations on typical examples (problems) on curved beams.
Four examples were studied in order to verify the validity of the present concept. The
results obtained on these typical problems showed that the accuracy of the concept pre-
sented is more than those of the other methods. Using the trigonometric functions, the
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element formulation is largely developed such that only one element can be used to model
a curved beam while exact results can be reached. This is because the trigonometric func-
tion defines, from the geometrical point of view, the element curvature more accurately.
Moreover, since the total potential energy due to axial, shear and bending forces have
all been considered in the new formulation, the membrane and shear-locking phenom-
ena have been eliminated. These result in more accurate results compared to those of the
other methods.

Symbols

W : Radial displacement χ: Curvature of element
U : Tangential displacement θ: Sectional rotation
Mb: Bending moment γ: Shearing strain
V : Shearing force ε: Tangential strain
N : Axial force k: Shear coefficient
κ: Nodal curvature δ: Nodal displacement
Pe: Equivalent nodal load vector
R: Radius of arc
A: Cross-section
I : Moment of inertia
E: Young’s modulus
G: Shear modulus
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(A.1)

where

β = IR2

A
α= EI

GAk
. (A.2)
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