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It is known that some orthogonal systems are mapped onto other
orthogonal systems by the Fourier transform. In this article we introduce
a finite class of orthogonal functions, which is the Fourier transform of
Routh—Romanovski orthogonal polynomials, and obtain its orthogonality
relation using Parseval identity.
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1. Introduction

It is well known that Hermite, Laguerre and Jacobi orthogonal polynomials are
solutions of a second-order linear differential operator £ = a>(x)D* + a,(x)D where D
is the standard derivative operator, a, is a polynomial of degree at most 2 and a; is a
polynomial of degree 1. Some characterizations of these three sequences are given
in[1-4].

Three other sequences of classical orthogonal polynomials [5,6] are associated with
a positive-semidefinite linear functional, which are finitely orthogonal in the sense that
the support of the corresponding linear functional, considered as a distribution in the
dual space of polynomials with real coefficients, is a finite subset of the real line. Some
parametric constraints must appear in these sequences in order to have such a finite
orthogonality. One of them is known in the literature as Routh-Romanovski
orthogonal polynomials, introduced first by Routh [4] and then independently by
Romanovski [7]. They have attracted some attention due to their potential application
to trigonometric quark confinement potential of quantum chromodynamics (QCD)
traits. There exists some criticism about these ‘finite’ orthogonal polynomials since
they can be reduced to Jacobi polynomials. In the contributions by Lesky (see [8] as well



Table 1. Characteristics of classical orthogonal polynomials.

Definition Weight function Kind and interval Parametric constraint
Pi)(x) (1—=x)"(1+x)" Infinite, [—1,1] Yo, u>—1,v>—1
LI (x) X" exp(—x) Infinite, [0, o0) Vi, u>—1
H,(x) exp(—x?) Infinite, (—oc, 00) -
S a,b,e,d) (I —x (L —x) Finite, (—o00. 00) maxn > u—1,

x exp(v arctan %) ad —bc #0
M) (1 4 x)~ ) Finite, [0, 00) maxn < (u—1)/2,

v> —1

NW(x) X " exp(—1/x) Finite, [0, c0) max n < (u—1)/2

as the recent monograph [9]) they are deeply analysed in the framework of the spectral
analysis of second-order linear differential operators with polynomial coefficients as
the same form as classical Hermite, Laguerre and Jacobi cases (see also [10]).

Table 1 shows the main characteristics of six sequences of classical orthogonal
polynomials.

On the other side, if the linear functional u satisfies a general Pearson equation
D(A(x)u) = B(x)u such that 4 is a non-zero polynomial and B is a polynomial of
degree at least 1, then the semi-classical linear functionals (introduced by Shohat
[11]) appear where u is a positive-definite linear functional associated with a weight
function supported on the real line. In this sense, if there exists a sequence (P,,),~o of
monic polynomials orthogonal with respect to », where its support as a distribution
is an infinite subset of the real line, then it satisfies a holonomic second-order linear
differential equation A(x;n)P)(x)+ B(x;n)P,(x) + C(x; n)P,(x) =0, where A, B
and C are polynomials of degree independent of n but its coefficients dependent on #n.

In[12], all sequences of monic polynomials orthogonal with respect to such a linear
functional u of infinite support are obtained by assuming that 4, a monic polynomial,
and B are independent of # and the degree of Cis uniformly bounded. Indeed, up to a
linear change of variable, they are the Hermite, Laguerre, Jacobi and Bessel orthogonal
polynomials as well as the corresponding symmetrized orthogonal polynomial
sequences for Laguerre, Jacobi and Bessel cases. All of the mentioned cases are, in
fact, illustrative examples of semi-classical sequences of orthogonal polynomials.

Another interesting example is the incomplete symmetric monic sequence [13],
orthogonal with respect to a linear functional, satisfying a holonomic equation with
A(x; n)=x*(1 —x>™), B(x; n) = —2x((a+mb+ D)x™ — a+m— 1) i.e. polynomials of
degree and coefficients independent of n, and C(x;n) = a,x*" —Hﬂ—t—HT’”uy.
Note that they can also be obtained via Jacobi polynomials using a change of the
variable y = x*".

In the sequel, let v be a symmetric linear functional, i.e. (v,x*"*'y=0, and
consider the linear functional u such that (u, x) = (v.x*") where (-,-) denotes the
duality bracket. It is well known that if (P,),=¢ is a sequence of polynomials
orthogonal with respect to «# and (Q,),=0 is a sequence of polynomials orthogonal
with respect to v, then Q,,(x)= P,,(.\‘j) and Qap1(x) = _\'P;‘;(xz), where (P}),-¢
denotes the sequence of polynomials orthogonal with respect to the linear functional
xu. The linear functional v is said to be the symmetrized linear functional of w.



Table 2. Characteristics of symmetrized classical orthogonal polynomials.

Definition Weight function Kind and interval Parametric constraint
—2u—2v—2, 2ul|_ o iy . u>—1/2,

S,,( 1 0 I\) x(1—x7) Infinite, [—1, 1] s

S,,(_z 21“ .\') X2 — %) Infinite, (—o0, o) w>—1/2
—2u—2v-2, 2u|_ B Sy . _ maxn < u+v—1/2,

S,,( L 0 l\) x (1 4+x7) Finite, (—eco, 00) i 14, 650
= 7 2 LR ’

S,,( 2“1+ - (2} .\‘) X" exp(—1/x?)  Finite, (—o0, c0) max n>u—1/2

By using a symmetrization process for families of classical orthogonal polyno-
mials described in Table 1, four families of symmetric orthogonal polynomials can be
derived [14], which are explicitly expressible in terms of a symmetric class of
polynomials S,(x; p,q.r,s) [14] defined by (Table 2)

- ‘) i [”f( [niz]) ([r?/Z_ll—_(Ik+H (2, 4 (_ l)n-H + 2[”/2]) P+ ’.)Aﬂ_y\"

P4 o Qi+ (=" +2)g+s
The family of S,(x: p.q,r,s) satisfies the holonomic equation
X(pa? + @U(x) + x(rx’ + 5)D! (%)
- (n(r +m-Dp2+U - (=1)")s/2)®,(x) = 0.
Tables 1 and 2 show that there are a total of 10 sequences of classical and
symmetrized of classical orthogonal polynomials. Except the Routh—-Romanovski

polynomials J‘j;"”(_x: a, b, c,d), the Fourier transforms of all 10 sequences have been

found. Indeed. in [15] the Fourier transforms of generalized ultraspherical
—2u—2v—2, 2u
-1, 1

k=0

polynomials S,,( x) and the generalized Hermite polynomials

2u ; ; .
x) are derived. In [16], the Fourier transforms of the finite orthogonal

—2u—2v+2, —2u \) s S”(—Zu +2, 2

1, 1 L, 0
and, finally, in [14] we get the Fourier transforms of finite orthogonal polynomials
M{“(x) and N(x). Notice that the Fourier transforms of classical Jacobi, Laguerre
and Hermite polynomials are already known in the literature, see e.g. [17,18]. Hence,
to complete the analysis of families of orthogonal polynomials of Tables 1 and 2,
only the Fourier transform of Routh—-Romanovski polynomials should be calcu-
lated. For this purpose, we first review the general properties of J“"(x; a, b, ¢,d) and
begin our treatment with the differential equation

((ax + b)Y + (ex + d)H) y'(x)
+ (201 = p)@® + *)x + gad — be) + 2(1 — p)ab + cd)) yi(x)
—n(n+1—=2p)a@* + ) yu(x) =0, (1)

where p,geR, neZ*, and a, b, ¢, d are all real parameters such that ad — bc > 0.

polynomials S,,(

x) are obtained



According to [5], one of the solutions of Equation (1) is the real polynomial

)“n(-\') = JLF"I](.\’; a, b, e, d)
= (—1)"((ab + ¢d) + i(ad — bc))'(n+ 1 — 2p),

" /n P4+ k
g g(k) (ab + cd) + i(ad — bc))

r (k—n. p—n—iq/2
X
2 2p—2n

2

2(ad — be) g
(ad — be) —i(ab +cd)) ™’

in which i =+/—1 and ,F(-) is a special case of the generalized hypergeometric
function [19, 20] of order (p, ¢) =(2, 1) defined by

qu( a, @, ..., dp .\') _ (@) (@) - - (c.!,,)ki:ir" 3)
b|, f)g, e h(f =0 (bl)k(bl)k pE (bf!)k k!
with (1), = [T ¢ + ).
The polynomials (2) can also be represented by the Rodrigues formula [21]
JP(x; a,b,c,d)
NP x4 b
= (=1)"((ax + b)? + (ex + d)')" exp(—q arctan o~ i )
cx+d
d” Ay 11— b
X I (((a.r + b)Y + (ex+d)) "exp (q arctan f: I d))' 4

Using the Sturm-Liouville theory for continuous functions, it is shown in [21]
that the polynomials (2) are finitely orthogonal with respect to the weight function

a9y —p X b
WAPD(x; a,b, e,d) = ((ax + b)* + (cx + d)?) "exp (q arctan ﬁ) (5)
ex +d
on the real line as follows:
oo - x+b
5 / 2 ” d A —— ax
f_x((m+ h)” + (ex +d)°) “exp qarctan———
x JSPD(x; a,b, e, d)IPD(x; a, b, ¢, d)dx
cad 2
= ([ WAPD(x; a, b, ¢, d)(JP9(x; a, b, c, d))hdx) B
. 0 (n# m), _
= ||-||5 6
R { 1 (n=m), ©

where m,n=0,1,... ., N<p—1/2 with N=max{m,n}, a, b, ¢, d, geR and
ad—be > 0.

In this article, we give the explicit form of the norm square ||-||5 in (6) to be able to
obtain the Fourier transform of the standard form of Routh—-Romanovski
polynomials and then introduce a new set of finite orthogonal functions via
Parseval’s identity.



2. Computation of the norm square of Routh—-Romanovski polynomials

To calculate the norm square value ||—||§ of Routh-Romanovski polynomials, if the
Rodrigues formula (4) is replaced in (6), then we get

ala® + &)'T2p — n)

M2 =—"F0p —2m)
X f ((ax + b)* + (cx +d)?)" exp (qarctan e b)dx, (7)
—o0 ex+d
where
I'(z) = f xle*dx, Re(z) >0, (8)
0

is the well-known gamma function.
Relation (7) can still be simplified via Cauchy beta integral formula [22,23], which
says that if Re(a) >0, Re(bh) >0 and Re (¢+d) > 1, then

o o dr De+d—1)

o ); |-l(‘+£fj_
2% J_ss (@ i)t —i)” (e)l(d) @+ @

In particular, taking into account that

(@ — ity ™ (a+ i)’ = (&® + 1*) exp(2q arctan t/a), (10)

for such a choice of the parameters, from (9) we get

/2 —r
[ e'cos' 1dr = g I.(r“k L —. (11)
g I(1+590(1 +55)
By using (11) we can now obtain the explicit form of the integral
2 n—, X b
r= f ((ax + b)? + (cx + d)z) pexp(qarctan et J)dx, (12)
- ex+d

and the norm square value afterwards. Indeed, it is enough to set
x = ld=baotmitabted) iy (12) and then use (11) to finally get

as+c-

2 (ad — be)*\" " —p
1* = % (1 +lanz I)” ,f+1

—a2\ @+

ad — he g atant —c¢ dr
X ———ex arctan——
a? 4 c? P\¢ ctant+a

ad — be 2n=2p+1  pm/2 ¢
= L—l—lh cog¥ 22 fexp(q(: — arctan ~))df
(@ + AP J_ap a

(ad — [)(‘)2"_2",'1-1_I ey [He gt o 2p—2n=2

= chp(—q arctan —) e cos” “tdt
(a? + 2! W Jr2

_ (ad — bey" ! 2= (2p —2n— D

— : 3
(@ + )Pt N(p—n+ig/2)T(p—n—iq/2) )

&
exp( —qarctan f)
P( q %



This gives us the norm square value of the Routh-Romanovski polynomials
in (7) as follows.

CoroLrLary 1 We have

o0 -
2]—1 j_w ((ax + b)* + (ex + d)l)_Pexp(q arctan f: i :;)

x JPO(x; a,b, e, d)JP)(x; a,b,c,d)dx
B (22”"'1‘3”(&{!— be)y* ! exp(—g arctan(c/a))
a 2p — 2n — 1)(@® + ¢2) P!

nT'(2p —n)
: Mp—n+ig/2)T(p—n—ig/2) Smns (14)

where m, n=0,1,... ., N=max{m. n} <p—1/2, a. b, ¢, d, geR and ad — bc > 0.

On the other hand, since the weight function of orthogonality relation (14) can be
simplified as

_, o
((@x +0)* + (ex +d)) "exp (ff arctan J)

cx +d
= (ax + b) + i(cx + d) """ (ax + b) — i(cx + d)) P2
. o —p—igy2 _ o\ —Ptig/2
= |(@ + icy ")’ (\ g ’_{/) (.\' 22 '.d) ; (15)
a—+Ic a—Iie

and the corresponding orthogonality interval is (—oo,00), after a suitable linear
change of variable the standard form of polynomials (4) can be considered as

ﬁi;a.ql(_\,) — JLD.QI(_\—; 1,0,0,1)
n pr
=(—)'(n+1-2 ), ( )
/ § k

F(k—n, p—n—iq/2
X
B 2p—2n

2)(—:‘.\-)*‘. (16)

Taking into account the identity [5]

" (n) (k—n, l—g*—n
3
=\k l—p*—n

_ (q* )u L p*
et
APy q

the polynomials in (16) take the form

)

x4 s) (17)

—n, n+l1-=2p|1—ix
P9 (x) = Qi = p+iq/2), F [ ’
o) =@ -prigen( "

= n(2i)" Pl =p=1al2) (jx), (18)

where P*F)(x) are the well-known Jacobi orthogonal polynomials [22].



CoROLLARY 2 For the standard polynomials I'79(x) we have

l o0
T f (14 x?)7 exp(g arctan x)I79 (x) [P (x)dx
- -0

— ‘,1!22’1—0-1—211"'(2]) i ’7)6”1'.;:
T @p=2n—DI(p—n+ig/2)T(p—n—ig/2)’

(19)

where m, n=0,1,..., N=max{m, n} <p—1/2 and geR.

It is well known that some orthogonal systems are mapped onto each other by
some integral transforms such as Fourier, Mellin and Hankel transforms, see e.g. [15,
16, 18, 24, 25]. Following this approach, in the following section we obtain the
Fourier transform of the standard form of Routh-Romanovski polynomials to
introduce a finite class of orthogonal functions by using Parseval’s identity.

3. Fourier’s transform of polynomials /,7¥'(x) and its orthogonality relation
The Fourier transform of a function g € L*(R) is defined as [24]

G(s) = F(g(x)) = f e g(x)dx, (20)
—o0
and for its inverse transform we have
5™
g(x) = —/ "™ G(s)ds. (21)
27 J e
For g, he L*(R), Parseval’s identity related to the Fourier transform is [24]
o0 1 00
[ g(x)h(x)dx = e [ F( g(x)F(h(x))ds. (22)
e 2n J_

Now, we define the following specific functions:

Yok 2y—f s A Jled) -
=g(x) = (1 + x*) P exp(erarctan x)[\“(x), (23)

h(x) = (1 + x%) “exp(/arctan x)IV")(x),

m

where «, £, ¢, d, and [, u, v, w are real parameters.

Note that if the Fourier transform exists for the functions defined in (23), then
the computation of the Fourier transform of one of them is sufficient. For instance,
for the function g defined in (23) we have

F(g(x)) = f e (1 + x%) P exp(a arctan x)[“(x)dx
—00
s o]

= Q2i)"(1 — ¢ +id/2), e~ " (1 — ix) Pl + ix)~F %

—00

n (—!1),\.(1?—1— [ ZC)A_ o .
’ (g(l e+ idiayhia ™ )d_\




1-2
= (2)"(1 — ¢+ id/2), Z( ,I)t(j—-rd/Z),_ 2‘;

X f ' e M1 — ix)"PHEHE(] 4 ix) PB4y, (24)

-0

Now, it remains in (24) to evaluate

Aj(s; @, B) = f &N — py PR 4 ix) P E . (25)

—DQ

If Re(p+¢) > 1, then [24, formula 12, p. 119]

b b
. - l_(” (s/2)7! Weg 14-4(25), 5> 0,
f e (1 — ix)"(1 +ix)dx = (26)
- —(—.T/z) : - VV.; p l=p q(—z.?)_, 5§ < 0,
X0) 12 e

where W, (s) denotes the second kind Whittaker functions [24, p. 386] defined by

5 g [(—=2b) 1/24b—-a
N — ol/2,—5/2 b .
Woas(s) =5"€ (—l"(l/.? 53" F|( bl |

I"'(2h) b 1/2—b—a
r1/2+b—a)" F( a1 [F)) L

Hence, for Re(28—k) <1 and k+ 1 —28¢ Z, (25) would be equal to

(27)

4 )
— (5/2)P 1 W_isie 1_g(25), s> 0,
L(B—k—iaf2) - (28)

Al ) = » |
(—s/2)f 1412 Wisia 11 5(—25), s< 0.

.
L(B + ia/2)

Thus relation (24) becomes

(1 — ¢+ n+id/2) = (=n)(n+ 1 = 2¢), 4
(1 —c+id/2) Z(l — ¢+ idf2),k12%

F(g(x)) = 2"7" wssaB). (29)

For simplicity if we here introduce the function

(—=n)(n+1—=2p3),
1 — p3 +ipa/2) k12K

By(s: P12, 3. ps) = Z( A%(s: p1.p2)s (30)

then it is clear from (29) that

(1l —ec+n+id/2)
Il —e+id/2)

As a further consequence, by referring to (22) and (23) we have

B,(s; . B, c.d). (31)

F(g(x)) =2""

(=)"2"T(1 — v+ m — iw/2)

F(h(x)) = Tl —v—iw/2)

B(s; —Lu, v, —w). (32)




By substituting (31) and (32) in Parseval’s identity (22) one gets

(14 x3)~* exp((a + 1) arctan x) &P (x) 1) (x)dx

—0o
_ (A e 2P - L a2 T — i — i 2)
- (1l —c+id/2)T(1 —v—iw/2)

x f Bu(s; o, B, ¢, d) Byu(s; =1 u, v, — w)ds. (33)
o0

Now, if on the left-hand side of (33) we take
c=v=f+4u and d=w=a+1,

then according to the orthogonality relation (19) and the constraints about the
parameters mentioned above, the following theorem, which is the main result of this
article, will be finally deduced.

MaiN THEOREM  The sequence of functions {B,(s: py, P2, p3.pa)in=0 defined in (30)
satisfies the finite orthogonality relation

00
] B,(s:a.B,v.w)By(sia —w,v— B, v, —w)ds

—0a
i I'2v—n (1 —v—iw/2) 5
T Q@u=2n—=DT—=n+iw/2T@—=n—iw/2)TX(1 —v+n+iw/2)

form, n=0,1,... N=max{mn} <2—-1<v—12.n+1-28¢Z, and o, w e R.

(34)
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