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Abstract

We investigate a model of spatio-temporal spreading of human immunodeficiency

virus HIV-1. The mathematical model considers the presence of various components

in a human tissue, including the uninfected CD4+T cells density, the density of

infected CD4+T cells, and the density of free HIV infection particles in the blood. These

three components are nonnegative and bounded variables. By expressing the

original model in an equivalent exponential form, we propose a positive and

bounded discrete model to estimate the solutions of the continuous system. We

establish conditions under which the nonnegative and bounded features of the

initial-boundary data are preserved under the scheme. Moreover, we show rigorously

that the method is a consistent scheme for the differential model under study, with

first and second orders of consistency in time and space, respectively. The scheme is

an unconditionally stable and convergent technique which has first and second

orders of convergence in time and space, respectively. An application to the

spatio-temporal dynamics of HIV-1 is presented in this manuscript. For the sake of

reproducibility, we provide a computer implementation of our method at the end of

this work.

MSC: Primary 65M06; secondary 65M22; 65Q10
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1 Introduction

In this manuscript, we agree that a, b, and T∗ are real numbers such that a < b and T∗ > 0.

We fix the spatial domain B = (a,b) and the space-time domain � = B × (0,T∗). The no-

tation � is used to denote the closure of the set � in the usual topology of R2, and we

use ∂B to represent the boundary of the set B. In this work, we assume that the functions

T ,U ,V : � → R are sufficiently smooth. Meanwhile, the constants β , d, k, δ, γ , c, and

N represent nonnegative numbers. Also, we define the functions φT ,φU ,φV : B → R and

ψT ,ψU ,ψV : ∂B × [0,T] → R. Assume additionally that φW (x) = ψW (x, 0) holds for each

x ∈ ∂B andW ∈ {T ,U ,V }.
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Table 1 Physical meaning of the parameters in the continuous model (1)

Parameter Physical meaning

β New T-cells supply rate

d Rate of natural death

κ Rate of infection T-cells

δ Death rate of infected T-cells

γ Rate of return of infected cells to uninfected class

c Clearance rate of the virus

N Average number of particles infected by infected cells

Under these conventions and nomenclature, the model of type-1 human immunode-

ficiency virus (HIV-1) infection of CD4+T cells with diffusion is described by the one-

dimensional problem with initial-boundary conditions:

∂T

∂t
= β – κVT – dT + γU +

∂2T

∂x2
, ∀(x, t) ∈ �,

∂U

∂t
= κVT – (γ + δ)U +

∂2U

∂x2
, ∀(x, t) ∈ �,

∂V

∂t
=NδU – cV +

∂2V

∂x2
, ∀(x, t) ∈ �,

such that

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T(x, 0) = φT (x), ∀x ∈ B,

U(x, 0) = φU (x), ∀x ∈ B,

V (x, 0) = φV (x), ∀x ∈ B,

T = ψT , U = ψU , V = ψV , ∀(x, t) ∈ ∂B× [0,T].

(1)

This model is a system with diffusion. The functions T(x, t), U(x, t), and V (x, t) represent

the normalized densities of the uninfected CD4+T cells, infected CD4+T cells, and the

free HIV-1 infection particles in the blood, respectively. The physical meanings of the

parameters β , d, κ , δ, γ , c, and N are given in Table 1.

In order to express system (1) in an equivalent form, we suppose that T , U , and V are

positive solutions of system (1), and let λ ∈ R
+ be a free constant. Dividing both sides

of each equation of the population system by T(x, t) + λ, U(x, t) + λ, and V (x, t) + λ, re-

spectively, and using the chain rule at the left-hand side of each equation, we obtain the

following equivalent system:

∂

∂t
ln(T + λ) =

1

T + λ

[
β – κVT – dT + γU +

∂2T

∂x2

]
, ∀(x, t) ∈ �,

∂

∂t
ln(U + λ) =

1

U + λ

[
κVT – (γ + δ)U +

∂2U

∂x2

]
, ∀(x, t) ∈ �,

∂

∂t
ln(V + λ) =

1

V + λ

[
NδU – cV +

∂2V

∂x2

]
, ∀(x, t) ∈ �,

such that

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T(x, 0) = φT (x), ∀x ∈ B,

U(x, 0) = φU (x), ∀x ∈ B,

V (x, 0) = φV (x), ∀x ∈ B,

T = ψT , U = ψU , V = ψV , ∀(x, t) ∈ ∂B× [0,T].

(2)
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This equivalent form is employed to propose an exponential-type discretization of the

continuous problem under investigation. In particular, we provide a Bhattacharya-type

discrete scheme to solve the mathematical model (2). The reason to follow this approach

obeys the need to preserve some important features of the relevant solutions of this system

and to provide an unconditionally stable and explicit numerical solution for our differen-

tial model.

It is worth pointing out that the mathematical investigation of the human immunode-

ficiency virus HIV-1 is an interesting avenue of research. In fact, some works investigate

mathematical models to estimate HIV-1 virological failure and establish rigorously the

role of lymph node drug penetration [1], the global analysis of the dynamics of predictive

systems for intermittent HIV-1 treatment [2], mathematical models of cell-wise spread of

HIV-1 which include temporal delays [3], models for patterns of the sexual behavior and

their relation with the spread of HIV-1 [4], and the long-term dynamics in mathematical

models of HIV-1 with temporal delay in various variants of the drug therapy [5]. Some

of these models are based on ordinary differential equations, and their analytical study is

followed by simulation experiments which assess the validity of the qualitative results. To

that end, various numerical methodologies have been designed and analyzed, like some

algorithms for simulating the HIV-1 dynamics at a cellular level [6], stem cells therapy of

HIV-1 infections [7], fractional optimal control problems on HIV-1 infection of CD4+T

cells using Legendre spectral collocation [8], HIV-1 cure models with fractional deriva-

tives which possess a nonsingular kernel [9], stochastic HIV-1/AIDS epidemic models in

two-sex populations [10], among other reports [5, 11–13].

Notice that system (2) is an integer-order diffusive extension of someHIV-1 propagation

models available in the literature [9, 14]. The use of such a system is due to the current in-

formation available of the mechanisms of CD4+T cells and free HIV-1 infection particles

in the blood. In our investigation, we propose a two-level finite difference discretization

of (2). Our approach hinges on an exponential-type discretization of the mathematical

model, and we prove that the numerical model has various numerical and analytical prop-

erties which make it a useful research tool in the study of the propagation of HIV-1. For

instance, we prove that the scheme is capable of preserving the positivity and bounded-

ness of solutions. This feature is of the utmost importance in view that the variables under

investigation are densities [15]. The properties of consistency, stability, and convergence

are thoroughly established in this work. In particular, we show that the scheme is uncondi-

tionally stable, and that it has first order of convergence in time and second order in space.

We provide some simulations to assess the validity of the theoretical results.Moreover, the

computer implementation of the scheme used to obtain the simulations is provided in the

Appendix at the end of this work.

Before we begin our study, we must mention that the system under investigation (1) has

attracted the attention of these authors due tomany important reasons. As we pointed out

before, the mathematical model is motivated by various particular models available in the

literature which do not consider the presence of diffusion. Those systems are described by

ordinary differential equations, whence the investigation of their diffusive generalizations

is an important topic of research. Indeed, the consideration of a nonconstant diffusion

gives rise to a more realistic and complex scenario. Physically and mathematically, the

study of (1) would yield more interesting results. From the numerical perspective, it be-

comes necessary to possess a reliable tool to investigate the solutions of the mathematical
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model. After the theoretical and computational investigation of the scheme, researchers

in the area would possess a means to obtain trustworthy results to propose predictions on

the propagation of HIV-1 in the human body.

2 Numerical model

In this stage, we introduce discrete operators to provide a discrete model to approximate

the analytical solutions of continuous problem (2). Our approach employs finite differ-

ences, and the method to solve the continuous problem is introduced herein. The main

structural features of the proposed scheme is rigorously established in the second half of

this section.

Let us define the sets Iq = 1, 2, . . . ,q and Iq = {0} ∪ Iq for each q ∈ N. Let M and K be

natural numbers. We define the set ∂J = IM ∩ ∂B and consider discrete partitions corre-

sponding to the intervals [a,b] and [0,T∗] as

a = x0 < x1 < x2 < · · · < xm < · · · < xM–1 < xM = b, ∀m ∈ ĪM, (3)

0 = t0 < t1 < t2 < · · · < tk < · · · < tK–1 < tK = T∗, ∀k ∈ ĪK , (4)

respectively. In the first partition, the value xm is given by xm = x0+mh, where h = (b–a)/M

for each m ∈ ĪM . In the second partition, the value of tk is given by tk = kτ , where τ =

T∗/K for each k ∈ ĪK . We use the nomenclatures Tk
m, U

k
m, and V k

m to denote numerical

approximations to the exact solutions T , U , and V , respectively, at the point xm and time

tk for eachm ∈ ĪM and k ∈ ĪK .

Let W be any of T , U , or V . We introduce the following discrete quantities for each

m ∈ IM–1 and each k ∈ IK–1:

δtW
k
m =

W k+1
m –W k

m

τ
, (5)

δ2xW
k
m =

W k
m+1 – 2W k

m +W k
m–1

h2
. (6)

It is well known that the first operator yields a first-order estimate for the partial derivative

of W with respect to t at the point (xm, tk), while the second operator yields a second-

order estimate of the second partial derivative ofW with respect to x at the point (xm, tk).

Substituting these discrete operators at the time tk intomodel (2), we reach the next finite-

difference scheme to estimate the solutions of (2) at (m,k) ∈ IM–1 × ĪK–1:

δt ln
(
Tk
m + λ

)
=

1

Tk
m + λ

[
β – κV k

mT
k
m – dTk

m + γUk
m + δ2xT

k
m

]
,

δt ln
(
Uk

m + λ
)
=

1

Uk
m + λ

[
κV k

mT
k
m – (γ + δ)Uk

m + δ2xU
k
m

]
,

δt ln
(
V k
m + λ

)
=

1

V k
m + λ

[
NδUk

m – cV k
m + δ2xV

k
m

]
, (7)
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such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T0
m = φT (xm), ∀m ∈ IM,

U0
m = φU (xm), ∀m ∈ IM,

V 0
m = φV (xm), ∀m ∈ IM,

Tk
m = ψT (xm, tk), ∀(m,k) ∈ ∂J × IK ,

Uk
m = ψU (xm, tk), ∀(m,k) ∈ ∂J × IK ,

V k
m = ψV (xm, tk), ∀(m,k) ∈ ∂J × IK .

It is clear that this numerical model is a two-step exponential discretization of the con-

tinuous problem (2). Indeed, using the discrete operators, it is an easy algebraic task to

check that (7) can be equivalently rewritten as follows:

Tk+1
m =

(
Tk
m + λ

)
exp

[
τ (β – (κV k

m + d + 2
h2
)Tk

m + γUk
m + akT ,m + ekT ,m)

Tk
m + λ

]
– λ,

Uk+1
m =

(
Uk

m + λ
)

exp

[
τ (κV k

mT
k
m – (γ + δ + 2

h2
)Uk

m + akU ,m + ekU ,m)

Uk
m + λ

]
– λ,

V k+1
m =

(
V k
m + λ

)
exp

[
τ (NδUk

m – (c + 2
h2
)V k

m + akV ,m + ekV ,m)

V k
m + λ

]
– λ,

such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T0
m = φT (xm), ∀m ∈ IM,

U0
m = φU (xm), ∀m ∈ IM,

V 0
m = φV (xm), ∀m ∈ IM,

Tk
m = ψT (xm, tk), ∀(m,k) ∈ ∂J × IK ,

Uk
m = ψU (xm, tk), ∀(m,k) ∈ ∂J × IK ,

V k
m = ψV (xm, tk), ∀(m,k) ∈ ∂J × IK ,

(8)

where akW ,m = h–2W k
m+1 and ekW ,m = h–2W k

m–1 for each m ∈ IM–1, each k ∈ ĪK–1, and W ∈
{T ,U ,V }. Notice that each of the three equations in (8) can be expressed asTk+1

m = FT (T
k
m),

Uk+1
m = FU (U

k
m), andV

k+1
m = FV (V

k
m), respectively.Here, the expressions of the functions FT ,

FU , and FV are as follows:

⎧
⎪⎪⎨
⎪⎪⎩

FT (w) = gT (w) exp(ϕT (w)) – λ,

FU (w) = gU (w) exp(ϕU (w)) – λ,

FV (w) = gV (w) exp(ϕV (w)) – λ.

(9)

In turn, each function gT , gU , and gV is given by gW (w) = w + λ with W ∈ {T ,U ,V }, and
ϕT , ϕU , ϕV are

ϕT (w) =
τ

w + λ

(
β –

(
κV k

m + d +
2

h2

)
w + γUk

m + akT ,m + ekT ,m

)
, (10)

ϕU (w) =
τ

w + λ

(
κV k

mT
k
m –

(
γ + δ +

2

h2

)
w + akU ,m + ekU ,m

)
, (11)

ϕV (w) =
τ

w + λ

(
NδUk

m –

(
c +

2

h2

)
w + akV ,m + ekV ,m

)
. (12)
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For convenience, we define the (M + 1)-dimensional real vectors

Tk =
(
Tk
0 ,T

k
1 , . . . ,T

k
m, . . . ,T

k
M–1,T

k
M

)
, (13)

Uk =
(
Uk

0 ,U
k
1 , . . . ,U

k
m, . . . ,U

k
M–1,U

k
M

)
, (14)

V k =
(
V k
0 ,V

k
1 , . . . ,V

k
m, . . . ,V

k
M–1,V

k
M

)
, (15)

for each k ∈ ĪK . In general, we say that a vectorW ∈R is positive if all the components are

positive. In such a case, we use the notationW > 0.We say thatW is bounded from above

by s ∈ R if all the components of W are less that s, in which case we employ the notation

W < s. Finally, if s is a positive number, then we use 0 <W < s to represent thatW > 0 and

W < s.

The following results show the existence and uniqueness of the solutions of (8) along

with the preservation of the constant solutions.

Theorem 1 (Existence and uniqueness) Let k ∈ ĪK–1. If T
k > 0, Uk > 0, V k > 0, and λ > 0,

then the discrete model (8) has a unique solution Tk+1, Uk+1, and V k+1.

Proof The numbers Tk
m + λ, Uk

m + λ, and V k
m + λ are greater than zero. As a consequence,

the real numbers Tk+1
m = FT (T

k
m),U

k+1
m = FU (U

k
m), and V k+1

m = FV (V
k
m) are defined uniquely,

whence the existence and uniqueness readily follow. �

Theorem 2 (Constant solutions) For each k ∈ IK , let T
k , Uk , and V k be the zero vectors

of dimension M + 1. Then the sequences (Tk)Kk=0, (U
k)Kk=0, and (V k)Kk=0 form a solution of

model (8) if φT ,φU ,φV ,ψT ,ψU ,ψV ≡ 0 and β = 0.

Proof By the hypothesis, the vectors T0 = U0 = V 0 = 0 satisfy the initial-boundary con-

ditions. Now, if Tk = Uk = V k = 0 for some k ∈ ĪK–1, it is easy to verify that ϕT (0) =

ϕU (0) = ϕV (0) = 0. This implies in particular that Tk+1
m = FT (0) = 0, Uk+1

m = FU (0) = 0, and

V k+1
m = FV (0) = 0 for eachm ∈ IM–1. The conclusion follows using induction. �

The next lemma is an important tool to show the positivity and boundedness of the

solutions of the discrete system. The proposition is a result from real analysis, and its

proof is established through the mean value theorem.

Lemma 3 Let F , g,ϕ : [0, 1] →R be such that F(w) = g(w) exp(ϕ(w)) – λ for each w ∈ [0, 1]

and some λ ∈ R. Suppose that g and ϕ are differential and that, for each w ∈ [0, 1], the

inequality

g ′(w) + g(w)ϕ′(w) > 0 (16)

holds. Then F is an increasing function in [0, 1].

Lemma 4 Let λ > 0 and k ∈ ĪK–1. Define the following positive constants:

B0
T = β + γ +

(
κ + d +

2

h2

)
λ +

2

h2
, (17)
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B0
U =

(
γ + δ +

2

h2

)
λ + κ +

2

h2
, (18)

B0
V =

(
c +

2

h2

)
λ +Nδ +

2

h2
, (19)

and assume that 0 < Tk < 1, 0 <Uk < 1, and 0 < V k < 1. If the inequalities τB0
T < λ, τB0

U < λ,

and τB0
V < λ hold, then FT (T

k
m), FU (U

k
m), and FV (V

k
m) are increasing functions for each

m ∈ IM–1 and each k ∈ ĪK–1.

Proof Define HW (w) = g ′
W (w) + gW (w)ϕ′

W (w) for each W ∈ {T ,U ,V } and each w ∈ [0, 1].

After some algebra, it is possible to see that

HT (w) =
GT (w)

w + λ
, ∀w ∈ [0, 1], (20)

HU (w) =
GU (w)

w + λ
, ∀w ∈ [0, 1], (21)

HV (w) =
GV (w)

w + λ
, ∀w ∈ [0, 1], (22)

where

GT (w) = w + λ + τ

[
γUk

m + akT ,m + ekT ,m – κλV k
m – dλ –

2λ

h2
– β

]
, (23)

GU (w) = w + λ – τ

[
γ λ + δλ +

2λ

h2
+ κV k

mT
k
m + akU ,m + ekU ,m

]
, (24)

GV (w) = w + λ – τ

[
cλ +

2λ

h2
+NδUk

m + akV ,m + ekV ,m

]
, (25)

for each w ∈ [0, 1]. Using Lemma 3, we want to prove that the functions FT , FU , and FV are

increasing in [0, 1]. To that effect, we need to show that the functions HT ,HU , and HV are

positive on [0, 1] or, equivalently, that the functions GT , GU , and GV are positive. Using

the hypotheses, note

∣∣akW ,m

∣∣ ≤
1

h2
, ∀W ∈ {T ,U ,V }, (26)

∣∣ekW ,m

∣∣ ≤
1

h2
, ∀W ∈ {T ,U ,V }. (27)

As a consequence, observe that GW (w) ≥ λ – τB0
W > 0 for each W ∈ {T ,U ,V } and w ∈

[0, 1]. In this way, the functions GT , GU , and GV are positive on [0, 1]. Using Lemma 3, we

conclude that the functions FT , FU , and FV are increasing in the interval [0, 1]. �

LetW ∈ {T ,U ,V }. In the following,RφW andRψW
represent the ranges of the functions

φW and ψW , respectively, over the interval [0, 1].
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Theorem 5 (Positivity and boundedness) Let λ > 0, and suppose that the following in-

equalities are satisfied:

⎧
⎪⎪⎨
⎪⎪⎩

β + γ < d,

κ + δ < γ ,

Nδ < c.

(28)

Let B0
T , B

0
U , and B

0
V be as in Lemma 4, and suppose thatRφW ,RψW

⊆ (0, 1). If the inequali-

ties τB0
T < λ, τB0

U < λ, and τB0
V < λ hold, then there are unique sequences of vectors (Tk)Kk=0,

(Uk)Kk=0, and (V k)Kk=0 that satisfy 0 < Tk < 1, 0 <Uk < 1, and 0 < V k < 1 for each k ∈ IK .

Proof We use induction to reach the conclusion. By hypothesis, the conclusion of this

theorem is satisfied for k = 0, so let us assume that it holds also for some k ∈ ĪK–1. Lemma 3

assures that the functions FT , FU , and FV are increasing on [0, 1]. Let m ∈ IK–1. If β = 0

and Tk
m =Uk

m = V k
m = 0, then it follows that

FT (0) = λ exp

(
τ

λ

(
β + γUk

m

))
– λ = 0, (29)

FU (0) = λ exp

(
τ

λ

(
κV k

mT
k
m

))
– λ = 0, (30)

FV (0) = λ exp

(
τ

λ

(
NδUk

m

))
– λ = 0. (31)

On the other hand, the hypothesis establishes that

ϕT (1) <
τ

1 + λ
(β – d + γ ) < 0, (32)

ϕU (1) <
τ

1 + λ
(κ – γ + δ) < 0, (33)

ϕV (1) <
τ

1 + λ
(Nδ – c) < 0. (34)

This and (9) show that FT (1) < 1, FU (1) < 1, and FV (1) < 1. Notice that the functions

FT ,FU ,FV : [0, 1] → R are increasing and that 0 < FW (0) < FW (1) < 1 for each W ∈
{T ,U ,V }. The inequalities 0 <W k < 1 for W = T ,U ,V imply that Tk+1

m = FT (T
k
m), U

k+1
m =

FU (U
k
m), and V k+1

m = FV (V
k
m) all are numbers in the set (0, 1) for each m ∈ IM–1. Using the

data at the boundary, we reach 0 < Tk+1
m < 1, 0 <Uk+1

m < 1, and 0 < V k+1
m < 1. The conclusion

follows using induction. �

As a conclusion of this section, the numerical methodology is a structure-preserving

scheme to approximate the solutions of (2). In this manuscript, the concept of ‘structure

preservation’ or ‘dynamical consistency’ refers not only to the capacity of discrete models

to keep discrete versions of some physical features. In this context, these notions refer

also to the capability of a numerical method to be able to conserve some mathematical

characteristics of the solutions of interest of continuous paradigms, like positivity [16],

boundedness [17, 18], monotonicity [19], and convexity of approximations [20], among

other physically relevant features [21].
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3 Numerical properties

In this stage, we present the main numerical features of the finite-differences scheme (8).

More precisely, we are interested in proving consistency, unconditional stability, and con-

vergence. To show the consistency of the numerical scheme, we require the following con-

tinuous operators:

LTT = (T + λ)
∂

∂t
ln(T + λ) – β + κVT + dT – γU –

∂2T

∂x2
, (35)

LUU = (U + λ)
∂

∂t
ln(U + λ) – κVT + (γ + δ)U –

∂2U

∂x2
, (36)

LVV = (V + λ)
∂

∂t
ln(V + λ) –NδU + cV –

∂2V

∂x2
(37)

for each (x, t) ∈ �. Also, we define the difference operators

LTT(xm, tk) =
(
Tk
m + λ

)
δt ln

(
Tk
m + λ

)
– β +

(
κV k

m + d – δ2x
)
Tk
m – γUk

m, (38)

LUU(xm, tk) =
(
Uk

m + λ
)
δt ln

(
Uk

m + λ
)
– κV k

mT
k
m + (γ + δ)Uk

m – δ2xU
k
m, (39)

LVV (xm, tk) =
(
V k
m + λ

)
δt ln

(
V k
m + λ

)
–NδUk

m + cV k
m – δ2xV

k
m (40)

for each m ∈ IM–1 and k ∈ ĪK–1. For the remainder, the symbols ‖ · ‖2 and ‖ · ‖∞ are used

to denote the Euclidean and the maximum norms in R
M+1, respectively.

Theorem 6 (Consistency) If T ,U ,V ∈ C
4,3
x,t (�) and λ > 0, then there exist positive con-

stants CT , CU , and CV , which are independent of τ and h, such that

∣∣LWW (x, t) – LWW (xm, tk)
∣∣ ≤ CW

(
τ + h2

)
(41)

for each m ∈ IM–1, k ∈ ĪK–1, and W ∈ {T ,U ,V }.

Proof We prove the consistency only forW = T , the consistencies forW =U andW = V

are proved in a similar fashion. To that end, we employ the usual arguments based on

Taylor polynomials. As a consequence of the hypotheses on the regularity of T , there exist

positive constantsCT ,1 and CT ,2 independent of τ and h such that, for each (m,k) ∈ IM–1 ×
IK–1,

∣∣∣∣
(
Tk
m + λ

) ∂

∂t
ln

(
Tk
m + λ

)
–

(
Tk
m + λ

)
δt ln

(
Tk
m + λ

)∣∣∣∣ ≤ CT ,1τ , (42)

∣∣∣∣
∂2T

∂x2
(xm, tk) – δ2xT

k
m

∣∣∣∣ ≤ CT ,2h
2. (43)

On the other hand, observe that

∣∣κV (xm, tk)T(xm, tk) + dT(xm, tk) – κV k
mT

k
m – dTk

m

∣∣ = 0, (44)
∣∣γU(xm, tk) – γUk

m

∣∣ = 0. (45)

Finally, the conclusion follows now from the triangle inequality after we define the positive

constant CT = max{CT ,1,CT ,2}, which is independent of τ and h. Similarly, we may show

the inequalities corresponding toW =U andW = V . �
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Under the assumptions of this theorem, there is a positive constant C which is indepen-

dent of τ and h with the property that, for eachm ∈ IM–1, k ∈ ĪK–1, andW ∈ {T ,U ,V },

∣∣LWW (x, t) – LWW (xm, tk)
∣∣ ≤ C

(
τ + h2

)
. (46)

Indeed, observe that C = CT ∨ CU ∨ CV is a constant which satisfies this inequal-

ity. This fact will be employed when we prove the convergence of scheme (7). In our

next step, we show the stability of the proposed scheme. To that end, we fix two sys-

tems of initial-boundary data which are labeled  = (φT ,φU ,φV ,ψT ,ψU ,ψV ) and ̃ =

(φ̃T , φ̃U , φ̃V , ψ̃T , ψ̃U , ψ̃V ). The corresponding solutions of (7) are represented respectively

by (T ,U ,V ) and (T̃ , Ũ , Ṽ ). In particular, notice that the following result proves that the

scheme is unconditionally stable.

Theorem 7 (Stability) Let  and ̃ be two sets of initial-boundary conditions for problem

(7), and let λ > 0. Suppose that the hypotheses of Theorem 5 are satisfied for both triplets

(T ,U ,V ) and (T̃ , Ũ , Ṽ ).There is a constant C,which is independent of the initial data such

that

∥∥W k – W̃ k
∥∥

∞ ≤ C
∥∥W 0 – W̃ 0

∥∥
∞, ∀k ∈ ĪK ,∀W ∈ {T ,U ,V }. (47)

Proof Beforehand, notice that Theorem 5 guarantees that (T ,U ,V ) and (T̃ , Ũ , Ṽ ) exist

and that they are bounded. On the other hand, let W = T and introduce the function

k
m : [0, 1](M+1) →R for eachm ∈ IM–1 and ĪK–1 by

k
m(T) =

(
Tk
m + λ

)
exp

(
τ�(T)

Tk
m + λ

)
– λ, ∀T ∈ [0, 1](M+1). (48)

Here, the function �(T) is defined by

�(T) = β –

(
κV k

m + d +
2

h2

)
Tk
m + γUk

m + akT ,m + ekT ,m. (49)

It is readily checked that the functionk
m is of class C1([0, 1](M+1)) for each k ∈ IK . As a con-

sequence of this, the numberCm,k = max[0,1](M+1) ‖∇k
m‖2 exists. For eachT , T̃ ∈ [0, 1](M+1),

there exists some ξ ∈ [0, 1](M+1) with the property that

∣∣k
m(T) –k

m(T̃)
∣∣ ≤

∥∥∇k
m(ξ )

∥∥
2
‖T – T̃‖2 ≤ Cm,k

√
(M + 1)‖T – T̃‖∞. (50)

As consequence, note that, for each m ∈ IM–1,

∣∣Tk
m – T̃k

m

∣∣ =
∣∣k

m(T) –k
m(T̃)

∣∣ ≤ Ck

∥∥Tk – T̃k
∥∥

∞, (51)

where

Ck = 1∨ max
{
Cm,k

√
(M + 1) : 1≤ m ≤ M – 1

}
. (52)

Using (51), it is clear that ‖Tk+1 – T̃k+1‖∞ ≤ Ck‖Tk – T̃k‖∞ for each k ∈ ĪK+1. Finally, re-

cursion shows now that the inequality ‖Tk – T̃k‖∞ ≤ CT‖T0 – T̃0‖∞ is satisfied for each
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k ∈ ĪK , where

CT = (M + 1)K/2

K–1∏

k=0

Ck . (53)

Similarly, we can prove that there exist positive constants CU and CW , with the property

that ‖Uk – Ũk‖∞ ≤ CU‖U0 – Ũ0‖∞ and ‖V k – Ṽ k‖∞ ≤ CV‖V 0 – Ṽ 0‖∞. The conclusion

is reached now if we define C = CT ∨CU ∨CV . �

Finally, we study the convergence of the numerical scheme (8). In the next result, we

let (T ,U ,V ) be a solution of differential problem (2) associated with the set of initial-

boundary data  = (φT ,φU ,φV ,ψT ,ψU ,ψV ). Meanwhile, the numerical solution obtained

through the discrete model (8) is denoted by (T̃ , Ũ , Ṽ ).

Theorem 8 (Convergence) Let  be a set of initial-boundary data which are bounded in

(0, 1), and let λ > 0. Assume that problem (2) has a unique solution bounded in (0, 1) such

that T ,U ,V ∈ C
4,3
x,t (�). Suppose that the conditions of Theorem 5 hold, and let

exp(τ /λ) – 1≤ 2τ /λ. (54)

For each W = T ,U ,V , there is a constant CW independent of τ and h such that, for each

k ∈ ĪK ,

∥∥W k – W̃ k
∥∥

∞ ≤ CW

(
τ + h2

)
. (55)

Proof Beforehand, notice that Theorem 5 assures that positive and bounded solutions for

discrete problem (7) exist. Without loss of generality, letW = T and define the difference

ekm = Tk
m – T̃k

m for each m ∈ ĪM and k ∈ ĪK . Notice that the exact solution T of problem (1)

satisfies scheme (8) at the point (xm, tk) having some local truncation error Rk
m for each

m ∈ ĪM–1 and k ∈ ĪK–1. Also, for each m ∈ ĪM–1 and k ∈ ĪK–1, the analytical and discrete

solutions satisfy, respectively,

(
W k

m + λ
)
LTT

k
m = Rk

m, (56)

(
T̃k
m + λ

)
LT T̃

k
m = 0. (57)

By Theorem (6), there exists C0 > 0 such that |Rk
m| ≤ C0(τ + h2) for each m ∈ ĪM–1 and

k ∈ ĪK–1. Using the definitions of the discrete operators in equations (56) and (57), we

have that

Tk+1
m =

(
Tk
m + λ

)
exp

(
τRk

m

Tk
m + λ

)
exp

(
ϕT

(
Tk
m

))
– λ, (58)

T̃k+1
m =

(
T̃k
m + λ

)
exp

(
ϕT

(
T̃k
m

))
– λ (59)
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for eachm ∈ ĪM–1 and k ∈ ĪK–1. Subtracting T̃
k
m of Tk

m, we have

∣∣ekm
∣∣ ≤

(
Tk
m + λ

)
exp

[(
τRk

m

Tk
m + λ

)
– 1

]
exp

(
ϕT

(
Tk
m

))
+

∣∣k
m(T) –k

m(T̃)
∣∣

≤ (1 + λ)Dk
m

[
exp

(
τRk

m/λ
)
– 1

]
+Ck

m

∥∥Tk – T̃k
∥∥

∞

≤ DτRk
m +C

∥∥ek
∥∥

∞,

(60)

where

ek =
(
ek0, e

k
1, e

k
2, . . . , e

k
M–1, e

k
M

)
, (61)

Dk
m = max

{
exp

(
ϕT

(
Tk
m

))
: T ∈ [0, 1]M+1

}
(62)

for eachm ∈ ĪM–1 and k ∈ ĪK–1. In addition, we let

C = max
{
Ck
m

√
M + 1 :m = 1, . . . ,M – 1;k = 1, . . . ,K – 1

}
, (63)

D = max

{
2(1 + λ)Dk

m

λ
:m = 1, . . . ,M – 1;k = 1, . . . ,K – 1

}
. (64)

The constants k
m and Ck

m are as in the proof of Theorem 7. Moreover, all the constants

Ck
m are in the interval [0, 1], therefore C is an element of the interval [0, 1]. Theorem 6

implies now that, for each k ∈ ĪK–1,

∥∥ek+1
∥∥

∞ –
∥∥ek

∥∥
∞ ≤

∥∥ek+1
∥∥

∞ –C
∥∥ek

∥∥
∞ ≤ C0Dτ

(
τ + h2

)
. (65)

Taking the sum on both ends of the previous inequality and using the initial data, we have

∥∥el+1
∥∥

∞ =
∥∥el+1

∥∥
∞ –

∥∥e0
∥∥

∞ ≤ C0DT
∗(τ + h2

)
= CT

(
τ + h2

)
, (66)

where l ∈ ĪK–1 and CT = C0DT
∗. The conclusion of this result has been reached now when

W = T . Analogously, we may easily prove the inequality of the conclusion when W = U

andW = V . �

4 Application

In this section, we show some computer simulations obtained using the finite-difference

scheme (8). Beforehand, notice that the discrete model is an explicit scheme. To describe

its computational implementation, for each k ∈ ĪK+1, we redefine the real vectors T
k , Uk ,

and V k as follows:

Tk =
(
Tk
1 ,T

k
2 , . . . ,T

k
M–2,T

k
M–1

)
, (67)

Uk =
(
Uk

1 ,U
k
2 , . . . ,U

k
M–2,U

k
M–1

)
, (68)

V k =
(
V k
1 ,V

k
2 , . . . ,V

k
M–2,V

k
M–1

)
. (69)

These vectors belong to the set RM+1
+ , where R+ is the system of positive numbers. Also,

we define the vectors of initial conditions φT,φU,φV ∈R
M–1
+ as follows:

φT =
(
φT (x1),φT (x2), . . . ,φT (xM–2),φT (xM–1)

)
, (70)
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φU =
(
φU (x1),φU (x2), . . . ,φU (xM–2),φU (xM–1)

)
, (71)

φV =
(
φV (x1),φV (x2), . . . ,φV (xM–2),φV (xM–1)

)
. (72)

Meanwhile, for each k ∈ ĪK , we define the vectors ψk
T
,ψk

U
,ψk

V
∈ R

M+1
+ of the boundary

conditions through

ψk
T
=

(
ψT (x0, tk), 0, . . . , 0,ψT (xM, tk)

)
, (73)

ψk
U
=

(
ψU (x0, tk), 0, . . . , 0,ψU (xM, tk)

)
, (74)

ψk
V
=

(
ψV (x0, tk), 0, . . . , 0,ψV (xM, tk)

)
. (75)

With the previous definitions and for each k ∈ ĪK , we express the discrete model (8) in

vector form as follows:

Tk+1 =
(
Tk + λ

)
exp

[
τ (β – (κV k + d + 2

h2
)Tk + γUk + akT + ekT )

Tk + λ

]
– λ,

Uk+1 =
(
Uk + λ

)
exp

[
τ (κV kTk – (γ + δ + 2

h2
)Uk + akU + ekU )

Uk + λ

]
– λ,

V k+1 =
(
V k + λ

)
exp

[
τ (NδUk – (c + 2

h2
)V k + akV + ekV )

V k + λ

]
– λ

such that

⎧
⎪⎪⎨
⎪⎪⎩

T0 = φT,

U0 = φU,

V 0 = φV.

(76)

For each k ∈ ĪK andW ∈ {T ,U ,V }, the vectors akW and ekW are defined as follows:

akW =
1

h2

(
W k

2 ,W
k
3 , . . . ,W

k
M–1,W

k
M

)
, (77)

ekW =
1

h2

(
W k

0 ,W
k
1 , . . . ,W

k
M–3,W

k
M–2

)
. (78)

Using the boundary conditions, we readily have thatW k
M = ψW (xM, tk) andW

k
0 = ψW (x0, tk)

for each k ∈ ĪK+1 and W ∈ {T ,U ,V }. So, for all k ∈ ĪK , the vector form of the finite-

difference scheme (8) is defined as follows:

T
k =

(
ψT (x0, tk),T

k
1 ,T

k
2 , . . . ,T

k
M–2,T

k
M–1,ψT (xM, tk)

)
, (79)

U
k =

(
ψU (x0, tk),U

k
1 ,T

k
2 , . . . ,U

k
M–2,U

k
M–1,ψU (xM, tk)

)
, (80)

V
k =

(
ψV (x0, tk),V

k
1 ,T

k
2 , . . . ,V

k
M–2,V

k
M–1,ψV (xM, tk)

)
. (81)

The next experiments employ variations of the computer code in the Appendix, which

is a basic computational implementation of our finite-difference scheme. The parameter

values and the type of initial conditions are motivated by data used in the literature for

similar models but without diffusion [9, 14].
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Figure 1 Snapshots of the approximate solutions T , U, and V of (1) for each row at the time t = 0, t = 1, t = 3,

and t = 5. The parameters employed are λ = 0.1, β = 2, d = 5.05, κ = 0.03, δ = 0.016, γ = 3.0, c = 20.4, and

N = 1000. We let φT (x), φU(x), and φV (x) be as in Example 9. The approximations were calculated using our

implementation of (76) in the Appendix, with τ = 0.00001 and h = 1

Example 9 In this example, we let B = (0, 100) and define the initial conditions φT , φU ,

and φV as φT (x) = x2, φU (x) = 0, and φV (x) = 1 for each x ∈ B. These initial data describe

an initial state in which no infected CD4+T cells are present, and the entire medium is

formed from free HIV-1 infection particles. In turn, the normal density of the uninfected

CD4+T cells increases in the linear medium considered herein. Let λ = 0.1, β = 2, d = 5.05,

κ = 0.03, δ = 0.016, γ = 3.0, c = 20.4, and N = 1000. Under this situation, Fig. 1 provides

snapshots of the normalized solutions T , U , and V at the times t = 0, t = 1, t = 3, and

t = 5. The graphs show that the solutions are positive and bounded in accordance with

the results obtained in the previous sections. In our simulations, we used the following

computational parameters τ = 0.00001 and h = 1.

Example 10 Let B = (0, 100) be as in the previous example, and use the initial conditions

φT (x) = –x2 + 100x, φU (x) = 0, and φV (x) = 1 for each x ∈ B. Set the model and computa-

tional parameter values as before. Under these circumstances, Fig. 2 provides snapshots
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Figure 2 Snapshots of the approximate solutions T , U, and V of (1) for each row at the time t = 0, t = 1, t = 3,

and t = 5. The parameters employed are λ = 0.1, β = 2, d = 5.05, κ = 0.03, δ = 0.016, γ = 3.0, c = 20.4, and

N = 1000. We let φT (x), φU(x), and φV (x) be as in Example 10. The approximations were calculated using our

implementation of (76) in the Appendix, with τ = 0.00001 and h = 1

of the normalized solutions T , U , and V at the times t = 0, t = 1, t = 3, and t = 5. Once

again, the results show that the numerical solutions are positive and bounded.

Before closing this section, we would like to point out the biological meaningfulness of

the figures obtained in the previous examples. To start with, graphs (a), (d), (g), and (j) of

Fig. 1 represent the evolution with respect to the time of the quantity of the uninfected

CD4+T cells. Biologically, the quantity of these cells tends to decrease since there is a sig-

nificant interaction of theHIV-1 infection with the CD4+T cells, resulting in an increment

of them. The respective increments of the infected CD4+T cells with respect to the time

are shown in graphs (b), (e), (h), and (k). Moreover, the quantity of the infected CD4+T

cells could decrease since an infected cell could die or return to being an uninfected cell.

Obviously, this phenomenon is biologically possible. In turn, graphs (c), (f ), (i), and (l) rep-

resent the evolution of the HIV-1 infection. From these graphs, it is easy to see that the
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infection is decreasing with respect to the time due to the presence of an active death rate.

The interpretation of the graphs in Fig. 2 is analogous.

5 Conclusions

In this manuscript, we numerically studied a coupled model consisting of three diffu-

sive nonlinear partial differential equations. The system under investigation is a biological

model which describes the interaction of the HIV-1 infection with the CD4+T cells. One

of the equations of the model describes the rate of change of the density of the uninfected

CD4+T cells, the second describes the rate of change of the infected CD4+T cells, and

the third governs the rate of change of the free HIV-1 infection. The differential system

was discretized using finite differences to estimate the analytical solutions. The technique

that we used in this work is an exponential type that maintains the most important char-

acteristics of the solutions of the continuous model. More concretely, the method was

motivated by the well-known family of Bhattacharya exponential-type schemes [22–24].

Bhattacharya’s discretizations have been employed to derive computational techniques to

solve various nonlinear partial differential equations [25–28]. As it is well known, themain

advantage of this family of models is its computational efficiency.

The scheme presented in this work was analyzed to study its most important proper-

ties. Themost important structural features proved in this workwere related to the unique

solvability of the discrete model. We also established that the scheme is able to preserve

the nonnegativity and the boundedness of the estimations. These properties are highly

relevant in light that the functions under investigation represent densities which are pos-

itive and bounded. From the numerical point of view, we proved the consistency of the

scheme. Moreover, the method is stable, and it converges to the exact solutions with first

order in the temporal variable and second order in the spatial. Finally, we provided some

computational simulations to illustrate the capability of the scheme to preserve the pos-

itivity and the boundedness of the numerical solutions. A Matlab implementation of the

method is provided in the Appendix for reproducibility purposes. It is worth pointing out

that a study of the mathematical model (1) in two dimensions can be easily performed by

extending the theoretical results of this work. Also, an implementation of our scheme in

two dimensions is also easily feasible.

Before we close this work, there are various important comments that require to be

thoroughly addressed. To start with, it is important to point out that there are some works

in the literature where fractional-type models like (1) without diffusion have been investi-

gated [9, 14]. Naturally, one would wonder which are the effects of considering a fractional

diffusion in such HIV-1 systems. At this point, it is important to mention that one of the

authors of the present manuscript has devoted part of his efforts to develop numerical

methods for Riesz space-fractional partial differential equations [29, 30]. In that context,

the differentiation order of the diffusion terms affect the speed of propagation of the spread

of effects into the medium. Of course, it would be interesting to propose and analyze nu-

merical models for fractional forms of the system under current investigation. However,

themeaningfulness of the use of fractional derivatives in the realistic investigation of HIV-

1may be still questionable. Indeed, notmanymedical journals employ fractional operators

to model the propagation of HIV-1, though the problem is mathematically interesting and

challenging.
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Appendix: Matlab code

The following is a Matlab implementation of (8). This code was used to approximate the

solutions of problem (76) with different initial conditions. Some variations in the coding

were performed to obtain the computer results in this manuscript. A commented ver-

sion of this code and a two-dimensional extension of this algorithm are available from the

authors upon request.

function [T,U,V,x]=vihFDB

N=1000;

delta=0.016;

kappa=0.03;

gamma=3.0;

c=20.4;

beta=2;

d=5.05;

a=0;

b=100;

K=5;

h=1;

tau=0.00001;

lambda=0.1;

x=a:h:b;

M=length(x);

T=-1*x(1,1:M-1).^2 + 100*x(1,1:M-1);

U=zeros(1,M-1);

V=ones(1,M-1);

aT=(1/h^2)*[T(1,2:M-1),T(1,M-1)];

eT=(1/h^2)*[T(1,1),T(1,1:M-2)];

aU=(1/h^2)*[U(1,2:M-1),U(1,M-1)];

eU=(1/h^2)*[U(1,1),U(1,1:M-2)];

aV=(1/h^2)*[V(1,2:M-1),V(1,M-1)];

eV=(1/h^2)*[V(1,1),V(1,1:M-2)];

I=floor(K/tau);

for k=1:I

WT=beta-(kappa*V+d+(2/h^2)).*T+gamma*U+aT+eT;

T=(T+lambda).*exp((tau*WT)./(T+lambda))-lambda;

WU=kappa*(V.*T)-(gamma+delta+(2/h^2))*U+aU+eU;

U=(U+lambda).*exp((tau*WU)./(U+lambda))-lambda;

WV=N*delta*U-(c+(2/h^2))*V+aV+eV;

V=(V+lambda).*exp((tau*WV)./(V+lambda))-lambda;

aT=(1/h^2)*[T(1,2:M-1),T(1,M-1)];

eT=(1/h^2)*[T(1,1),T(1,1:M-2)];

aU=(1/h^2)*[U(1,2:M-1),U(1,M-1)];

eU=(1/h^2)*[U(1,1),U(1,1:M-2)];
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aV=(1/h^2)*[V(1,2:M-1),V(1,M-1)];

eV=(1/h^2)*[V(1,1),V(1,1:M-2)];

end

end
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