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A FINITE DIFFERENCE
DOMAIN DECOMPOSITION ALGORITHM

FOR NUMERICAL SOLUTION OF THE HEAT EQUATION

CLINT N. DAWSON, QIANG DU, AND TODD F. DUPONT

Abstract. A domain decomposition algorithm for numerically solving the heat
equation in one and two space dimensions is presented. In this procedure,

interface values between subdomains are found by an explicit finite difference

formula. Once these values are calculated, interior values are determined by

backward differencing in time. A natural extension of this method allows for

the use of different time steps in different subdomains. Maximum norm error

estimates for these procedures are derived, which demonstrate that the error

incurred at the interfaces is higher order in the discretization parameters.

1. Introduction

There are two motivations for the use of domain decomposition in the pro-

cesses defined and analyzed here. First, domain decomposition is a natural way

to develop methods for numerically approximating solutions to partial differen-

tial equations on parallel computers. Second, even on sequential computers, it

is useful to be able to use different time steps on different subdomains.

A natural way to solve partial differential equations in parallel is to divide

the domain over which the problem is defined into subdomains, and solve the

subdomain problems in parallel. The major difficulties with such procedures

involve defining values on the subdomain boundaries and piecing the solutions

together into a reasonable approximation to the true solution. It is almost a

side effect of dividing the problem into subproblems that one can approximate

the parts of the solution with greater independence, and this leads naturally to

methods that allow different time steps on different subdomains.

Much of the work on domain decomposition has been directed at elliptic

equations (see, for example, [1, 2, 4, 6] and the references therein). Such al-

gorithms could quite easily be applied to parabolic equations, giving domain

decomposition iterative methods for the solution of the equations at each time

step.   Another approach has been given in [5] and adapted in [7, 8]; these
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64 C. N. DAWSON, QIANG DU, AND T. F. DUPONT

methods use overlapping subdomains to approximately solve the implicit equa-

tions arising from a standard finite difference discretization.

In this paper, we present a finite difference method which utilizes domain

decomposition to allow us to divide the work of solving the heat equation. The

method differs from the methods mentioned above in that it uses nonoverlap-

ping subdomains and is noniterative. Our purpose here is to introduce and

analyze a fairly simple algorithm in one and two space dimensions. We restrict

attention to intervals and squares, and derive maximum norm error estimates.

In a separate article [3], two of the authors develop Galerkin formulations of

analogous algorithms, and give energy-norm error estimates.

The rest of this paper is organized as follows. In the next section, we define a

domain decomposition process for a one-space-dimensional problem and prove

a convergence result for it. An interesting aspect of the error bound is that

the error associated with the interface between the subdomains is higher order

in the discretization parameters; this reflects the fact that this truncation error

is confined to a small set. In §3, we give a straightforward generalization of

the one-dimensional results to two space dimensions, state an error bound, and

remark on further extensions.

2. ONE-SPACE-DIMENSIONAL DOMAIN DECOMPOSITION

Let u(x, t) be the solution of the heat equation

(!) !?-ir4 = 0>       *e(0,l), te(0,T],
dt     dxl

(2) u(x,0) = u(x),       x e(0,l),

(3) «(0,0 = «(l,i) = 0,       te(0,T].

2.1. Basic 1-d method. For simplicity, we will consider first a numerical method

which involves decomposing  (0, 1)  into only two subdomains,   (0,x)  and

(*, 1).
For a positive integer A^, let h = X/N, and take x¡ = ih, i = 0, ... , N.

Assume that x and N are such that x = xK > 0 for some integer K. A

related parameter is H > 0, which is an integral multiple of h and does not

exceed minpc, 1 - x). Take Ai = T/M, where M is a positive integer, and

let t" = nAt. For a function f(x, t) defined at mesh points (x¡, t"), let

f" = f(x¡, tn). Define the difference operators

(4) WM - MzM

and

,« ,2   ,,  .     f(x-h)-2f(x) + f(x + h)
(5) 3*. */(*) =-p-•

We will refer to points (xt, t") as boundary points if i - 0 or N, or if

n = 0. Similarly, we refer to them as interface points if xi = x and n > 0.

Otherwise, they are interior points.
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The numerical approximation U" to u" is defined by

(6) U" = u"   at boundary points,

(7) dt AlU" -dx HU"~  =0     at interface points,

(8) dt &tU" - d2 h U" = 0     at interior points.

This numerical approximation is given by an explicit forward difference formula

on the interface, while in the interior of the subdomains it satisfies an implicit

backward difference equation. One would expect that there will be a constraint

of the form

(9) At<\H2,

but that Ai will not be constrained by the size of h ; this turns out to be correct.

Notice that in advancing the solution from time level t = t"~l to t = tn one

first computes the value of U at the interface. This step requires a small

amount of information from each subdomain. After the interface value has

been computed, there are two completely separate backward difference problems

to solve, which can be done in parallel.

The approximate solution U satisfies the following a priori error estimate:

Theorem 1. Suppose that \\d2u/dt2\ and -^d^u/dx*] are bounded by C0 on

[0, 1] x [0, T]. Suppose also that At <H2/2. Then

(10) max |«(*,, t")-U-\ < ^-(h2 + H* + At).
i,n 4

Since the difference operators used to define U are second-order-correct in

space and first-order-correct in time, the result is perhaps surprising only because

of the presence of the H   term.

Asymptotically one would expect to choose At ,h , and H so as to balance the

terms in (10); i.e., At « h2 « /f3. If such choices are made, then At = o(H2)

and (9) is automatically satisfied in the range of small errors.

The proof of Theorem 1 relies on the following maximum principle.

Lemma 1. Suppose that At < H2/2 and that z" satisfies the following relations:

(11) z" < 0   at boundary points,

(12) dt A/z"- dx Hz"~  <0   at interface points,

(13) dt Atz" - dx hz" < 0   at interior points.

Then, for each i and n,

(14) z"<0.

Proof of Lemma X. Note that (14) holds for n = 0. Now suppose the conclusion

holds up to some level n - X. Then the interface value z"K < 0 ; it is bounded

above by an average of values of z"~ , and the weights in the average are

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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nonnegative because of the constraint on At. This observation is, of course, just

the usual one used to prove the maximum principle for the explicit difference

formula for the heat equation.

Next, z" < 0 at interior points by the maximum principle for the backward

difference equation applied to the two subdomains. Note that this does not

require that At be constrained in any way based on the size of h .   D

Proof of Theorem X. Let e" = u" - U" . Then

(15) e" = 0   at boundary points,

(16) dt Ate" - d2 He"~l = K*(At + H2)   at interface points,

(17) dt Ate" - dx he" = K"(At + h )   at interior points,

where

(18) \K?\ <C0.

Let 60 = 6N = 0, and suppose that for 0 < i < N,

(19) -»,V,-1.
Then

(20) 0; = ix,(l-x,)

and, in particular,

(21) O<0;<I.

Choose fi¡, i = 0, ... , N ,to satisfy ß0 = ßN = 0 and

(22) d2xJt = 0,        0<i<N,  i¿K,

(23) ~dxußK = l.

Then

(24) B. =
Hx^X - x),    0 < x( < xK = x,

H(X - x¡)x,    xK < x¡ < X ;

hence,

(25) 0 < ßi < H/4.

Let

(26) Í, = Co[0,(A/ + h2) + ß.(At + H2)],

and set

(27) zX-tr

Since z" satisfies the conditions of Lemma 1, we see that z" < 0 ; hence,

(28) el <i,..
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Similarly, by taking z" = -e" - ^ , we see that -e" is also bounded above by

C¡. Hence we conclude that

«i
(29) \e,\<ir

Finally, by the construction of C¿ we see that

(30) 0<i,< C0[¡(At + h2) + \H(At + H2)]

< \C0(h2 + At + H3).   D

Note that x can vary with N, since the exact value of x does not change

the error bound.

2.2. Spatially varying time and space steps. Now suppose that At¡ > 0 is a time

step associated with the interface and that AtL and AtR are obtained from At¡

by dividing it by two, possibly different, positive integers, mL and mR. To

advance the solution from (n - X)At¡ to nAt,, first take an explicit step of the

form (7) using At¡ and H. Then on the left and right subdomains take mL

and mR steps of the backward difference equation. The boundary values on

the interface at intermediate times are obtained by linear interpolation of the

interface values.

We can use different A's on the left and right of 3c, but the H for the

interface will be assumed to be an integral multiple of each. Denote by hL

and hR the space steps in the left and right subdomains, respectively. If we

let C0L and C0R be bounds for \\d2u/dt2\ and ^\d4u/dx4\ on the left and

right regions and let C¡ be a similar bound for \x — x\ < H, then we can get

an error bound analogous to that in Theorem 1.

Specifically, define

t(x) = CQL6L(x)(AtL + h\) + C0ReR(x)(AtR + h2R)

+ C,ß(x)(At, + H2),

where 6L is a continuously differentiable function, defined by 8L(0) = 6L(X) =

0 and

fin a", \     / l>    0<x<x,
(32) -dr(x) = <,
K    ' iV  '     1 0,    jc<x< 1.

6R is defined analogously, and ß(x) satisfies (24). Note that 6L and 6R are

nonnegative functions whose sum is bounded by ¿x(X - x) < |. Then, by an

argument that is very similar to the proof of Theorem 1 we see that

(33) \U" - u"\ < £,. = (9(h\ + h2R + H3+ AtR + AtL + H At,).

One point in the proof of (33) that we found to be subtle is the way interface

values at intermediate times are viewed. Computationally, the recipe was given
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in the first paragraph of this section; advance the solution by At, and linearly

interpolate. However, if one involves the interpolant in time of the true solution

u in the analysis, there are problems with the truncation error at interior points

next to the interface. The solution to this difficulty is very simple: one views

the intermediate-time interface values as having been computed by a first-order-

correct explicit scheme. The maximum principle used is stated as Lemma 2; its

proof is very similar to that of Lemma 1.

Lemma 2. Suppose that z is a grid function defined on the (hL, AtL) and

(hR, AtR) grids of the left and right regions, respectively, including those grid

points on the boundary and interface. Suppose that z < 0 at all boundary

points, and that dt Atz - dx hz < 0 at all interior points, with At = AtL or

AtR and h = hL or hR, as appropriate. Also suppose that for t = nAt, and

X < m < mL,

(34) ^■'+W^"^'"-<^^0;

suppose the analogous inequality holds for mAtR as well. Then z < 0 at each

grid point, provided At, < H2/2.

Note that the approximate solution U satisfies (34), with inequality replaced

by equality, when the linear interpolant is used to define values at t + mAtL ,

m = X, ... , mL.

2.3. Many subdomains. In §§2.1 and 2.2, we used only two subdomains; how-

ever, the arguments employed are sufficiently simple that they can easily be

extended to the case of multiple subdomains. Suppose that we use a single time

step and a uniform mesh spacing h as in §2.1. Suppose that

(35) 0<//<x1<x2<-<x7<l-//

are all multiples of h ; that is, x, = jh = x for some j . Take U" to be defined

as in § 1 except that at each point x¡ we use an explicit difference formula for

U at the advanced time level. It is clear that the analogue of Lemma 1 remains

valid. This gives a bound very similar to that in Theorem 1. Specifically, with

At < H /2 and C0 as in Theorem 1,

(36) max \u" -U"\< %/z2 + At + 2JH(H2 + Ai)].
i, n 8

Unless JH is small, the interface error dominates this expression; but when

only a few subdomains are used (that is, J is small), the interface error can be

quite small.
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3. TWO-SPACE-DIMENSIONAL DOMAIN DECOMPOSITION

In this section, u(x, y, t) will be a solution of the heat equation on fi =

(0, 1) x (0, 1). Specifically, u satisfies

(37) ^-Au = 0,       (x,y)ec¿, re (0,71,

(38) u(x,0) = u°(x),       (x,y)eQ,

(39) u(x,t) = 0,       (x,y)edCl.

Here, Au = d2u/dx2 + d2u/dy2.

3.1. A basic 2-d method. We start with a simple two-domain scheme. Take

Çix = {(x, y) e Q: x <x},       Q2 = {(x, y) e Í2: x < x}.

Let x¡ = ih just as in §2, and let y• = jh, j = 0,..., N. Suppose that x and

H are integral multiples of h , that 0 < x < X, and that 0 < H < minpc, X-x).

In analogy with §2 we will call a point (x¡, y., t") a boundary point if n = 0 or

if (x¡, yj) 6 dSî. Such a point with xi = x will be an interface point if it is not

a boundary point. The remaining points (x;, y , t") are in (Qx U Q2) x (0, T]

and are interior points.

The values Í/" will approximate «" = u(x¡, y., í"). With the natural ex-

tension of the notation of (4) and (5), we define U" by the following relations:

(40) U"j = u"j   at boundary points,

(41) d,,AtU"j - dx,HU"P - tf,hUv = °      at interface points,

(42) dttatU?j - d2xhU?j - dlfllj = 0     at interior points.

Notice that the computation of U along the interface x = x requires the

solution of a tridiagonal set of equations; this is a small amount of work when

compared to the work to solve the subdomain problems (42). The two subdo-

main problems (42) are entirely separate, once the values on the interface have

been computed. If we use the techniques of the proof of Theorem 1, we can

derive an error estimate of the following form.

Theorem 2. Suppose that

hd2u/dt2\,\d3u/dtdx2\,    and   ^A\d\/dx\ + \d\/dyA\]

are bounded by C0. Suppose also that At < H2/2. Then

(43) max \uu - C/"| < -£[h2 +At + 2H(2At + H2)].
i,j,n      J J ö

A proof of this theorem uses the analogue of Lemma 1 and even uses exactly

the same one-dimensional functions 8 and ß as in §2.1. The cross-derivative
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term comes into the error bound because the spatial operator on the interface

is evaluated at two different time levels.

3.2. Spatially varying time steps. In this subsection, we consider the effect of

using different time steps on the interface and the left and right subdomains.

We do not discuss the changes that come about from changing the spatial mesh.

Take At,, AtL, and AtR as in §2.2; that is, for positive integers mL and mR ,

0 < At, = mLAtL = rnRAtR . To advance the solution from (n - X)At, to nAt,,

first compute the interface values at the new time by solving the tridiagonal

system (41), and interpolate linearly in time to obtain the interface values at

the intermediate times. These interface values then decouple the subdomain

problems; using them, one takes mL or mR steps to advance the solution at

the interior points.

Under the hypotheses of Theorem 2, one can prove the following error bound:

(44) max |C/". - u",\ = (f(h2 + H3 + At, + AtR + H At,).
i     i    yi J J

Here, as in §2.2, the way that the intermediate-time interface points are

viewed is important. The analogue of (34) in this context is (with At = mAtL ,

y = jh, t = nAt,, 0 < m < mL)

(45) dtAtz(x, y, t + At) - dxHz(x, y, t) - dlhzm(x, y) < 0,

where
m

(46) zm(x,y) = z(x,y, t) + -^(z(x, y, t + At) - z(x, y, t)).

Note that U(x, y, t) satisfies (45) with equality instead of inequality, and u
2 2

satisfies (45) up to a truncation error which is (f(At + H + h ).

In §2.2, the relation (34) made it immediately clear that if all the z's at

time level / = nAt, were nonpositive, then all the interface values at times

t + mAtL were also nonpositive. However, (45) does not have the property that

it gives z(x, y, t + At) as a nonnegatively weighted average of the other values

involved. A way to see that z(x, y, t + At) < 0, provided z < 0 at t = nAt,

and appropriate boundary conditions hold, is to extrapolate the change in z

out to t + At, and look at the difference equation satisfied by the extrapolated

function. One can conclude that even after extrapolation the function is still

nonpositive, and that implies that z(x, y, t + At) is nonpositive. Specifically,

(46) and (45) give

(47)    ^•^-^^■"-^vP,y,,)-a;Ag,yl<o.

Since this relation gives an upper bound for ¿m(x, y) that is a nonnegatively

weighted average of the other values involved, it is easy to see that zm(x,y)

< 0, provided that z(x, y, t) < 0 and the boundary values zm(x, 0) and

zm(x, X) are nonpositive. To assure that the boundary values are nonpositive,

we need more than the fact that z < 0 at boundary points. In our application of

the maximum principle, z = -Ç±(u- U), a function which is both nonpositive
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on the boundary and independent of time at each boundary point. Thus, we

conclude that zm(x, y) < 0, and in particular, this holds for m = mL, which

gives the desired result.

3.3. Remarks on extensions. It is straightforward to extend the two-dimensional

results to allow for many subdomains, at least if one restricts attention to the

case of dividing the square into vertical strips. The error estimate is very similar

to that discussed in §2.3, but it needs to be modified just as Theorem 1 was

modified to get Theorem 2.

The procedure and the error estimate of §3.1 is clearly generalizable to n-

dimensional space. The interface problem now involves the solution of an "el-

liptic" equation on an (n - 1)-dimensional domain.
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