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Finite Difference Interuretation of the Lattice 

Boltzrnan~ Method 

Michael Junk* 

Abstract 

Compared to conventional techniques in computational fluid dynamics, the 
lattice Boltzmann method (LBM) seems to be a completely different approach 
to solve the incompressible Navier-Stokes equations. The aim of this article is 
to correct this impression by showing the close relation of LBM to two standard 
methods: relaxation schemes and explicit finite difference discretizations. As a 
side effect, new starting points for a discretization of the incompressible Navier- 
Stokes equations are obtained. 

Keywords. discrete velocity models, lattice Boltzmann method, low Mach number 

limit, incompressible Navier-Stokes equations, finite difference method, relaxation 

systems, pseudo-compressibility methods 
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1 Introduction 

In recent years, the lattice Boltzmann method has been proposed as a potential 

alternative to conventional methods in computational fluid dynamics. The basic 

idea of LBM is to use a very simple microscopic model of a gas which is nevertheless 

capable of correctly describing the macroscopic flow behavior. The microscopic 

approach of LBM has its origins in the theory of lattice gas automata (see [l]) and is 

closely related to discrete velocity models of the Boltzmann equation [2]. Essentially, 

the velocities of t,he gas particles are restricted in such a way, that, microscopic 
movement can only take place between the nodes of a regular space lattice, However, 

since the density of particles per direction can vary continuously, the average velocity 

of the gas is not discrete. If the collision process among the gas particles is modeled 

appropriately and if the system is in a particular asymptotic situation (diffusion 
-- 
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limit), the average velocity approximates a solution of the incompressible Navier- 

Stokes equations. 

In its standard form, LBM is an explicit finite difference approximation of a velocity- 

discrete Boltzmann equation with a collision operator of relaxation type. The vari- 

ables in the kinetic description are the particle densities per discrete velocity (so 

called occupation numbers). They always outnumber the macroscopic flow variables 

which are obtained as averages based on the occupation numbers (see [3, 41 for 

detailed reviews and references on LBM). 

Since LBM reduces complicated macroscopic phenomena to a simple microscopic 

dynamics, it is an interesting object for many researchers. However, if LBM is 
considered mainly as a numerical method for macroscopic equations, like the in- 

compressible Navier-Stokes system, it is natural to ask for its relation to already 

existing schemes. The answer to this question is complicated by the fact that LBM 

is formulated in kinetic terms and not directly in terms of the target equations. 

Nevertheless, the closeness of LBM to finite difference methods has already been 

mentioned. For example, in the interesting article [5], lattice Boltzmann methods 

are presented as subclass of so called f&y Lagrungian schemes which are shown to 

be directly related to standard finite difference methods for some particular cases. 

In the present article, we investigate the frequently used lattice Boltzmann model for 

two-dimensional Navier-Stokes flow based on nine discrete velocities and a regular 

square lattice with the aim to show the close relation to standard methods. It turns 

out that the lattice Boltzmann algorithm can be viewed as a non-standard way of 

writing an explicit finite difference approximation of either the Navier-Stokes equa- 

tions directly or of some relaxation system for the Navier-Stokes equations. The close 

relation between the kinetic approach of LBM and finite difference methods rests 

on the basic observation presented in Section 5: discrete microscopic transport plus 

velocity averaging is equivalent to a finite difference approximation. Since transport 

and averaging are always ingredients of LBM, the observations in Section 5 can be 

used to translate other lattice Boltzmann methods into finite difference schemes so 

that the presented results are not restricted to the example under consideration. 

In contrast to the standard treatment, which is based on a two-scale Chapman- 

Enskog expansion to relate LBM and Navier-Stokes equations, we use the diffusion 

scaling of the Boltzmann equation (see Section 3) which seems to be a simpler 

approach. 

In Section 6, it is shown that for a special choice of the collision parameter in 

LBM, the method can be rewritten as explicit finite difference approximation of a 

compressible Navier-Stokes system (which reduces to the incompressible case in low 

Mach number flows). In this reformulation, all aspects of the kinetic approach have 

disappeared or, more precisely, are condensed in the structure of the finite difference 

stencils for the differential operators in the compressible Navier-Stokes equations. 

As a common feature, these stencils involve diagonal neighbors and can be viewed 
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as convex combinations of usual central differences. It is interesting to note that the as convex combinations of usual central differences. It is interesting to note that the 

derivatives in the pressure gradient, for example, are discretized different from those derivatives in the pressure gradient, for example, are discretized different from those 
in the nonlinear convective terms. Despite the unusual size of the stencils, their eval- in the nonlinear convective terms. Despite the unusual size of the stencils, their eval- 

uation is very efficient in the original lattice-Boltzmann formulation. We also find, uation is very efficient in the original lattice-Boltzmann formulation. We also find, 

that the scheme contains no special treatment of the stiff velocity-pressure coupling that the scheme contains no special treatment of the stiff velocity-pressure coupling 

which arises in nearly incompressible situations. In fact, LBM in its standard form which arises in nearly incompressible situations. In fact, LBM in its standard form 

works in the stability constellation At/Ax’ = (3(I) known from the explicit scheme works in the stability constellation At/Ax’ = (3(I) known from the explicit scheme 

for advection diffusion equations. The approximate divergence-free condition is au- for advection diffusion equations. The approximate divergence-free condition is au- 

tomatically assured by a pseudo-compressibility approach which contains a pressure tomatically assured by a pseudo-compressibility approach which contains a pressure 

stabilization, Chorin’s idea of artificial compressibility, as well as convective terms stabilization, Chorin’s idea of artificial compressibility, as well as convective terms 

which are usually not considered. which are usually not considered. 

For choices of the collision parameter different from the one in Section 6, the situation For choices of the collision parameter different from the one in Section 6, the situation 

is slightly more complicated and leads to an interpretation of LBM as superposition is slightly more complicated and leads to an interpretation of LBM as superposition 

of finite difference schemes (Section 7) or as finite difference approximation of a of finite difference schemes (Section 7) or as finite difference approximation of a 

relaxation system for the incompressible Navier-Stokes equations (Section 8). relaxation system for the incompressible Navier-Stokes equations (Section 8). 

It is a general observation that an interpretation of a new method in terms of other It is a general observation that an interpretation of a new method in terms of other 

approaches can have two advantages: First, the new method is better understood approaches can have two advantages: First, the new method is better understood 

and further research can take advantage frorn the knowledge already available. Sec- and further research can take advantage frorn the knowledge already available. Sec- 

ondly, new developments can be triggered in already established fields. In this ondly, new developments can be triggered in already established fields. In this 

respect, it is important to note that LBM leads to stable and reliable results so that respect, it is important to note that LBM leads to stable and reliable results so that 

it is worthwhile to investigate the mechanisms leading to this behavior. it is worthwhile to investigate the mechanisms leading to this behavior. 

2 The Lattice Boltzmann Method 2 The Lattice Boltzmann Method 

The basic kinetic model is given by the Boltzmann equation The basic kinetic model is given by the Boltzmann equation 

g + VOf = J(f) g + VOf = J(f) (1) (1) 

which describes the evolution of a particle density f(x,v, t). The left hand side which describes the evolution of a particle density f(x,v, t). The left hand side 

of (1) represents free transport of the particles while the right hand side describes of (1) represents free transport of the particles while the right hand side describes 

interactions through collisions. Continuous and discrete velocity models only differ interactions through collisions. Continuous and discrete velocity models only differ 
in the structure of the phase space X x V. In the classical Boltzmann equation, the in the structure of the phase space X x V. In the classical Boltzmann equation, the 

velocity domain V is the full space IPI velocity domain V is the full space IPI while discrete models are based on while discrete models are based on 

v = {co,. . . ,C,~-~~} v = {co,. . . ,C,~-~~} ci E IEd. ci E IEd. 

The space part X is continuous in both cases. In the following, we will consider a The space part X is continuous in both cases. In the following, we will consider a 

two-dimensional model (G! = 2) with nine velocities (N = 9) two-dimensional model (G! = 2) with nine velocities (N = 9) 

Cl = (,:I Cl = (,:I c2 = (7) c2 = (7) CR = ( ;’ ) CR = ( ;’ ) c4 = ( -01) c4 = ( -01) 

c5 = (i, c5 = (i, % = ( 1”) % = ( 1”) c7= (7:) c7= (7:) cs = ( -‘I) cs = ( -‘I) 
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and CO = 0 which point to the corners and edges of the unit square. However, our 

observations are not limited to this special situation and we will formulate most 

steps in a general notation. 

We start by introducing the discrete velocity integral for functions II, : V I-+ W 

N-l 

NJ) = c ti(Ci)= 

i=o 

Note that T/J can be identified with the N-vector of its values $(~a), . . . , $(cN-1). 

For particle distributions f(x, v, t), the N functions 

fi(X, t) = m, cir t) i=O,...,iv-1 

are usually called occzlpation numbers. Macroscopic quantities like mass density p 

and momentum density pu are obtained by taking velocity moments of f 

Pb, t> = (f (x, v, a 9 PU(X, t) = (vf (x7 v, t)> (2) 

In many lattice Boltzmann applications, the collision operator J(f) in (1) is of 

BGK-type 

J(f) = -$f - feqb, 4). (3) 

where r > 0 is called relaxation time and feq is the equilibrium distribution, which 

depends on f through the parameters p and u in (2). Other models are based on 

J(f)(w) = be, w - feq)w> 

which can be viewed as linearizations of general nonlinear collision operators. Con- 

servation of mass and momentum in the collision process translates into 

(J(f)) = 0 and (vJ(f)) = 0 

which puts additional conditions on the kernel A. In (3), it is a direct consequence 

of the construction, since f and f”Q have identical mass and momentum densities. 

In the following, we assume the simple structure (3) but the considerations can also 

be applied to collision matrices. 

In the standard D2&9-model [6], the equilibrium distribution has the form 

f”Q(p, u; v) = p 
> 

f*(v) (4 

where Einstein’s summation convention is used for the indices k, 2 (taking values 

(5) 



The actual lattice Boltzmann evolution is obtained from (1) by a discretization in The actual lattice Boltzmann evolution is obtained from (1) by a discretization in 

space and time. First, (1) is split into a collision step &f = J(f) and a free flow space and time. First, (1) is split into a collision step &f = J(f) and a free flow 

step &f -I- vOf = 0. Then, the time derivative in the collision part is approximated step &f -I- vOf = 0. Then, the time derivative in the collision part is approximated 

by an explicit Euler step by an explicit Euler step 

f”(x, v, t + 6t) = f(x,v, t) + &J(f)(x, v, t). f(x,v, t + 6t) = f(x,v, t) + &J(f)(X,V, t). 

Finally, the free flow equation is solved explicitly with f(x, v, t + dt) as initial value, Finally, the free flow equation is solved explicitly with f(x, v, t + dt) as initial value, 

giving rise to the lattice Boltzmarm evolution giving rise to the lattice Boltzmarm evolution 

f(x + vSt, v, t + a) = f(x, v, t) - !(f - f”Q)(x, v, t). f(x + vSt, v, t + a) = f(x, v, t) - !(f - f”Q)(x, v, t). (6) (6) 

The space discretization is obtained by simply restricting x to the nodes of a regular The space discretization is obtained by simply restricting x to the nodes of a regular 

square lattice with side length Sz = St. Due to the structure of the discrete veloc- square lattice with side length Sz = St. Due to the structure of the discrete veloc- 
ities co,..., ities co,..., cs! the shifted positions x + vbt are then automatically nodes of the cs! the shifted positions x + vbt are then automatically nodes of the 

same grid and (6) is completely discretized. Apart from this regular discretization, same grid and (6) is completely discretized. Apart from this regular discretization, 

which makes (6) a finite difference approximation of (l), other approaches including which makes (6) a finite difference approximation of (l), other approaches including 

curvilinear and unstructured meshes, have been discussed (see [7, 81). curvilinear and unstructured meshes, have been discussed (see [7, 81). 

If the simple updating rule (6) is used iteratively, while obeying certain conditions If the simple updating rule (6) is used iteratively, while obeying certain conditions 

which we detail in the next section, it turns out that p = (f) and u = (vf) /p which we detail in the next section, it turns out that p = (f) and u = (vf) /p 

corresponding to f give rise to an approximate solution of the incompressible Navier- corresponding to f give rise to an approximate solution of the incompressible Navier- 

Stokes equations with Reynolds number related to the relaxation parameter r Stokes equations with Reynolds number related to the relaxation parameter r 

1 1 1 7 1 1 7 1 

Re= Re= 3 6t 2 3 6t 2 ( > ( > 
--- * --- * (7) (7) 

Usually, this surprising fact is explained by an asymptotic closeness of Boltzmann Usually, this surprising fact is explained by an asymptotic closeness of Boltzmann 

and Navier-Stokes description. However, as we will show in the following, the dis- and Navier-Stokes description. However, as we will show in the following, the dis- 

crete evolution (6) can also be interpreted directly as finite difference approximation crete evolution (6) can also be interpreted directly as finite difference approximation 

of the Navier-Stokes system. of the Navier-Stokes system. 

3 The diffusion scaling 3 The diffusion scaling 

In order to use the lattice Boltzmann evolution as approximation method for the In order to use the lattice Boltzmann evolution as approximation method for the 

incompressible Navier-Stokes equations, several side conditions have to be observed. incompressible Navier-Stokes equations, several side conditions have to be observed. 

First, 6:r has to be small compared to the typical length scale L of the problem First, 6:r has to be small compared to the typical length scale L of the problem 

to obtain a reasonable space resolution. In other words, &C = t: = &E/L should be to obtain a reasonable space resolution. In other words, &C = t: = &E/L should be 

small. Secondly, the typical flow speed U should be small to ensure incompressibility. small. Secondly, the typical flow speed U should be small to ensure incompressibility. 

In [9], it is shown that U = C?( .) In [9], it is shown that U = C?( .) F is required to get a consistent approximation. Since F is required to get a consistent approximation. Since 
U is only a scale for the speed, we set U = E, absorbing possible factors in the scaled U is only a scale for the speed, we set U = E, absorbing possible factors in the scaled 

velocity field ii = U/F. Together wit,11 the length scale L, the speed U determines the velocity field ii = U/F. Together wit,11 the length scale L, the speed U determines the 



relevant time scale T = L/U for the Navier-Stokes problem. Taking into account 

that SZ = ]crbt] = at, we find 

Finally, the relaxation time r is typically chosen of the order of St so that + = r/St = 

e)(l). Introducing scaled quantities ji = x/L, t^ = t/T, f^(?, v, 6 = f(LP, v, Ti) and 

similar definitions for b and ir = U/E, we obtain the scaled version of (6) 

f”(lz + EV, v, t^ + c2) = f(k, v, t”) - ; (f(k, v, i) - f”Q@(5i, i), Elqji, i); v)) , 
” \ / 

In the following, we will always work in the described scaling and therefore skip the 

hat-superscripts again. Also, the relations Ax = E and At = e2 will frequently be 

used. In the new notation, LBM has the form 

f(x + VAX, v, t + At) = f( x,v,t) - ;(f(wt) - f’a(p(x,t),ru(x,t);v)) (8) 

where x is a point on a regular square lattice with spacing Ax. Since (8) has 

been obtained by a discretization of the Boltzmann equation (l), we also expect 

consistency to (1). However, this is only true if At and AZ are of the same order. 

Due to the relation At = Ax2, we find that (8) is consistent to a modification of 

the Boltzmann equation which can be calculated by applying a Taylor expansion 

around AZ = At = 0. To get first order consistency in At = Ax2, space derivatives 

have to be considered up to third order. It turns out that (8) is first order consistent 

(in At) to 

8.f 1 8.f 
y$+;“k--=-2 

dxk 
,lT f - feq(i44 + ;vkvlm 

( > 

a2.f 

+ &kL 
dxk 

(f - f”‘W) + i”.*vlvmaxk;~~axm. (9) 

The space derivative of the collision operator is due to a term Evka2f /&&k in the 
expansion of f(x + VAX, v, t + At). Replacing the time part ofthis derivative with 

the help of the modified Boltzmann equation then leads to derivatives of the collision 

term. Moreover, equation (9) contains additional second and third order derivatives 

compared to the Boltzmann equation (1) in the difl~sion scaling x -+ x/e, t -+ t/e2, 

u + EU 

8.f 1 5 + ;v”f = --& (10) 

A formal expansion (similar to the much more detailed approach in [lo] and [ll]) 

shows that, in lowest e-order, the velocity u is a solution of the incompressible 

Navier-Stokes equations with the pressure related to c2-fluctuations of p. 
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In the following section, we discuss the limit E -+ 0 for a system of velocity moments 

which is equivalent to the velocity-discrete Boltzmann equation. While (10) leads 
to the Navier-Stokes equations with Re = 3/r, the additional term in (9) involving 

second order derivatives modifies the viscosity. It turns out, that (9) is related to 

the Navier-Stokes system with Reynolds number 

1 1 

( > 

1 
Re=Yj 7-2 (11) 

which is the scaled version of (7). 

4 Equivalent moment systems 

Generally speaking, equation (10) consists of a linear hyperbolic differential operator 

and a nonlinear, stiff relaxation term on t>he right hand side. Obviously, this behavior 

does not change under a linear transformation of variables. In particular, if we choose 

an invertible linear mapping which includes the components 

f I-“+ (($f,) = (ipu) 02) 

the resulting system contains mass and momentum equations as a subsystem (see 

also [12] and [13] for a similar reformulation of LBM). The new system will again be 
hyperbolic with stiff relaxation terms which suggests the interpretation as relaxation 

system. To make these ideas more precise, we extend (12) to an invertible mapping 

by considering additional velocity moments. Apart from 

QdV) = 1, &r(v) = V/E, &z(v) = e/c 

we take 

Q3(v) = $ (u: - ;) , Q4(v) = -$m, Qdv) = f (7~: - ;) 

and 

Q6(v) = (31v/2 - 4h Q7(v) = (+I2 - 4b2 9lvI” - 151v12 + 2 
Qs(v) = 

t3 6 64 

The polynomials Q, are chosen in such a way that they are mutually f* orthogonal, 

i.e. (P$‘jf*) = 0 for pi # j. Since also (QTf*) > 0 for all i, one can show that 

&f = W,>of) >. . > KA3.m’ 
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is a linear, invertible mapping. Indeed, given M E ll@, we have 

Q-In/r = a 
c 

M&i f*, 8 (&if) 

i=,, (Q”f*) 
or f =$jqgQif*. (13) 

z 

Taking into account that 

(Q;f*)--’ = 1 

(Q;f *)-1 = 9:“/2 

(Off*)-’ = 3e2, (Q:f*)-’ = 3c2 

7 (&if”)-’ = 9c4 , (&if*)-’ = 9t4;2 

we see that f ‘q(P, EU; v) in (4) is precisely of the form (13) with 

Meq = Qf eq(p, 4 = (P, ~~11, ~2, ~4, ~41~2, P& O,O, 0)‘. (14) 

BY applying Q to (1% a system of equations for the moments M = Qf is obtained 

8M 1 
dt f ;QQQ- 

1dM ~ = --$M - M”Q) 
dxk 

(15) 

(where ?& is used as abbreviation for the product operator f(v) I++ vkf (v)). To 

get (15) in a more convenient form, we introduce auxiliary names for the variables. 

Apart from (&of) = p and (&if) = p u i f or i = 1,2, the second order moments form 
a symmetric tensor 0, the third order polynomials lead to a vector q and Qs gives 

rise to a scalar quantity s 

o = 
( 
(Qsf) (Q4f) 
(Q4f) (855)) ’ ‘= (::$) ’ s=(Q8f)- 

In these variables, the first two equations of (15) are related to mass and momentum 

conservation 

dP 
t+ divpu=O 

8P-l 
(16) 

--+ dive+ 
at 

j$vp=o 

Here, the divergence is applied to the rows of 0. The equation for 0 is 

=--+pu33u++l]) 

Finally, the third and fourth order moments satisfy 

as 
dt= -&(s+4rdivq) 

8 

(17) 

(18) 



x x 

The diffusion limit c -+ 0 of the system (16), (17) and (18) is easily determined. The diffusion limit c -+ 0 of the system (16), (17) and (18) is easily determined. 

First we assunre that p is of the form First we assunre that p is of the form 

p = p(1 f 3&) p = p(1 -I- 3Gp) (19) (19) 

with a constant p > 0 and an order one function p. Relation (19) is motivated by with a constant p > 0 and an order one function p. Relation (19) is motivated by 

(16). Indeed, since all terms are scaled to order one, VP/E’ can only be balanced if (16). Indeed, since all terms are scaled to order one, VP/E’ can only be balanced if 

Vp = 0(e2). Using (19), equation (16) transforms into Vp = 0(e2). Using (19), equation (16) transforms into 

aP aP 
dt + & div u = - divpu dt + & div u = - divpu 

$ + div ;G + Vp = $ + div ;G + Vp = 
2 3pu 2 3pu ( 20) ( 20) 

-3~ -3~ - - 
at at 

and for E + 0, equation (17) yields in lowest order and for E + 0, equation (17) yields in lowest order 

$O=u!u-?S[u]. $O=u@u-?S[u]. (21) (21) 

Since (18) decouples completely from the other equations (in lowest order) and since Since (18) decouples completely from the other equations (in lowest order) and since 

divS[u] = (A + Vdiv)u/2, divS[u] = (A + Vdiv)u/2, we obtain from (20) and (21) as limiting system the we obtain from (20) and (21) as limiting system the 

incompressible Navier-Stokes equations incompressible Navier-Stokes equations 

div n = 0 div n = 0 

$+divu@u+Vp==~Au $+divu@u+Vp==~Au 
(22) (22) 

The Reynolds number is related to the relaxation time by l/Re = r/3. We remark The Reynolds number is related to the relaxation time by l/Re = r/3. We remark 

that (16), (17), that (16), (17), and (18) is a relazntion system for (22) as described for nonlinear and (18) is a relazntion system for (22) as described for nonlinear 

hyperbolic systems in [14]. Moreover, the equations for q and s are not relevant hyperbolic systems in [14]. Moreover, the equations for q and s are not relevant 

in lowest e-order. This indicates that the original discrete velocity equation carries in lowest e-order. This indicates that the original discrete velocity equation carries 

too much information if the only aim is to approximate the limiting Navier-Stokes too much information if the only aim is to approximate the limiting Navier-Stokes 

system. In fact, one can set up a lattice Boltzmanxl method based on only six discrete system. In fact, one can set up a lattice Boltzmanxl method based on only six discrete 

velocities which is compatible with a regular hexagonal space grid [15]. In this case, velocities which is compatible with a regular hexagonal space grid [15]. In this case, 

the equivalent moment system just consists of equations for mass, momentum and the equivalent moment system just consists of equations for mass, momentum and 

0 which obviously is the minimal requirement in view of the underlying relaxation 0 which obviously is the minimal requirement in view of the underlying relaxation 

system. Thus, the overhead of three variables in the nine-velocity model is only due system. Thus, the overhead of three variables in the nine-velocity model is only due 

to the interplay between the required symmetries of the velocity space U and the to the interplay between the required symmetries of the velocity space U and the 

condition that the grid should be a square lattice. (Note that storing three extra condition that the grid should be a square lattice. (Note that storing three extra 
variables per nocle on a fiue grid is mimerically quite expensive.) variables per nocle on a fiue grid is mimerically quite expensive.) 

The basic idea of relaxation schemes, to replace nonlinear conservation systems by The basic idea of relaxation schemes, to replace nonlinear conservation systems by 

linear equations with nonlinear relaxation terms, comes with the price of introducing linear equations with nonlinear relaxation terms, comes with the price of introducing 

new variables. If the extended system is solved in a bounded domain, this leads new variables. If the extended system is solved in a bounded domain, this leads 

to the problem of prescribing boundary conditions for the extra variables. In the to the problem of prescribing boundary conditions for the extra variables. In the 

system (IG), (17), system (IG), (17), and (18) ) some of the variables still have a clear physical meaning and (18) ) some of the variables still have a clear physical meaning 

(for example, 0 is t,he momentum flux up to the pressure term). This kind of (for example, 0 is t,he momentum flux up to the pressure term). This kind of 
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interpretation is lost for higher moments (like s) so that it is difficult to find suitable 

boundary conditions for particular physical situations. A similar problem appears 

in the classical theory of moment systems derived from the Boltzmann equation and 

is yet unsolved [16, 171. Translated back into the original kinetic formulation, the 

problem to determine boundary values for higher moments is recovered in the sense 

that now occupation numbers have to be prescribed for all directions which enter 

the domain at a boundary. 

As we have seen in the previous section, the discrete Lattice Boltzmann evolution 

with At = Ax2 is consistent to (9) which is a modification of the original Boltzmann 

equation. Repeating the above argument for (9) instead of (lo), we just have to 

consider additional contributions due to 

adding to the first order derivatives in (15), as well as 

1 a2 
imQwlQ-'M + z 

a” 

3 &kdx&, 
QwwmQ-lM 

which adds second and third order derivative terms to the moment system. Intro- 

ducing w = l/~- and CY“ = (1 - w)O + wpu @ u, mass and momentum equation (16) 

now have the form 

9. 1 

ot b 

%u 
at + divW + &VP = :(A + 2Vdiv)pu - &VAp. 

now have the form 

dP 
z+ divpu= 6 LAP 

%u 
at + divW + &VP = :(A + 2Vdiv)pu - &VAp. 

(23) (23) 

Equation (17) is modified to Equation (17) is modified to 

83 l-w 

dt+3 ( 

8x&2 ax,q1 + ax,q2 

~x3c241+ @c,q2 a x,q1 > 

= -5 (0 - pu @J u) - $ (SS[pu] - $V 8 VP) + B’ (24) 

where (V 18 Vp)ij = &6&p and B@ contains third derivatives of momentum and 

second derivatives of 0 and pu @ u. Since B’ is irrelevant in the lowest e-order, we 

omit details. Similarly, the additional terms Aq, J3q and AS, B’ in 

8s l-w 

?%+ 6 
-Vs= -$q-? drv ,’ ( . (zg2 ;;) - A’I) +P 

dS 

(25) 

dt= 
-$s - -$ (4(1 -w) divq - AS) + BS 

are not important in the limit E -+ 0 and need not be specified. As before, we can 

show that (23), (24) and (25) lead to the incompressible Navier-Stokes equations in 

10 



lowest r-order. Indeed, inserting the assumption (19) into the equation for p leads 

to divu = O(E”) and (23) turns into 

divu = O(e”) 

2 -I- div 
( 

Cl- 4 
po+mlml 

> 
+vp= ;Au+o(r2). 

Moreover, from (24) we see that 

so that with 

$3 = u El u - @u] + O(E2) (26) 

“‘(‘3- W, div S[u] = q(Au + V divu) = ~Au + O(c2), 

the velocity u in (23), (24), and (25) satisfies 

divu = O(At) 

$+divu@u+Vp=i r-f 
( > 

Au + O(At). 

From this result we can draw three conclusions. First, since the discrete lattice 

Boltzmanrr evolution with At = Az2 is consistent to (23), (24), and (25), it is also 

consistent to the incompressible Navier-Stokes equation with Reynolds number given 

in (11) (consistency is of order At). Secondly, the equations (23), (24)) and (25) 

form a relaxation-type system for the incompressible Navier-Stokes equations. Note, 

however, that the nonlinearity in the convective part of the momentum equation is 

not completely replaced by a new variable. Instead, we find the linear combination 

div (( 1 - w)O f wpu t% u) so that the equations are a combination of a direct and 
a relaxation system. Another difference to usual relaxation systems is the coupling 

between the relaxation parameter ~-6~ and the space and time steps. Finally, if LBM 

is considered only as numerical method to approximate the Navier-Stokes equations, 

the information contained in the highest order moments is not needed. If we rewrite 

f in terms of its moments using the unique representation (13) 

(with Ps = c4Q s we can use the fact that q and s are not required in the limit and ) 

that the only relevant information in 0 is relation (26), Setting q = 0 and s = 0 in 
(27) and replacing 0 with f)(u @ u - %S[u]), as suggested by (26), we obtain the 



where S[u] has to be calculated by taking derivatives of U. In [18], a distribution 

function similar to F has been used to set up suitable boundary and initial values 

for the lattice Boltzmann method. Since the higher moments q and s are negligible 

and 0 is given essentially through p and u, F can be viewed as an approximate 

inverse of the moment map f E+ ((f) , (vf) /E). This observation can be used to 

translate initial and boundary conditions which are given in terms of p and u into 

corresponding conditions for the occupation numbers (see [18] for details), In [19], 

a scheme has been introduced which is similar to the lattice Boltzmann method but 

which is based on F and avoids the high memory consumption in LBM which results 

from the necessity to store all occupation numbers. 

While the system (23), (24), and (25) is obtained by applying Q to the continuous 

version (9) of the lattice Boltzmann evolution (8), a discretization of the moment 

system follows by applying Q directly to (8). In fact, since Q is an invertible 

mapping, this discretization of the moment system is equivalent to LBM. To simplify 

notation, we first rewrite (8) as in [6] by using w = l/7., changing x to x - VAX and 

denoting the number of the time step by an upper index 

fn+l(x, v) = (1 - w)fn(x - VAX, v) + wfeq(pn(x - VAX), eun(x - VAX); v). (28) 

Applying Q to (28) amounts to multiplying the equation by Qi and integrating over 

V. On the left hand side, we obtain immediately the i-th component of the moment 

vector at the new time step 

M;+‘(x) = (Q#+l(x, v)) . 

To treat the terms on the right hand side, we use the unique representation (13) of 
distribution functions in terms of their moments 

(1 - w)f”(x - VAX, v) + wfeq(p”(x - vA~)@(x - VAX); v) 

= * Qj(v) c 
j=o QTf* ( > 

((1 - w)M,JJ + wM;“~) (x - vA~)f*(v) 

where we have set Mn = Qf” and Mn,eq = Qfeq(pn,eun). Altogether, we obtain 

the equivalent form of (28) 

8 * 

Mt?+w = c , ._,’ ^ \ (~~8~ ((1. w)Nl”jn + wM~?)“~ (29) 
j=O (Uyl*) ’ ’ - 

) (x - vAz)f*) 

with i = 0,. . . ,8. Again, x is restricted to a regular square lattice with spacing AZ. 

In the next section, we show that (29) is, in fact, a compact way of writing a finite 



5 Microscopic transport and finite difference stencils 

In order to interpret the discretization (29), we analyze expressions of the form 

($(x - vAZ)P$*) w-9 

where $ is a smooth function, f* is defined in (C;), and F is a function in v (typically 

a polynomial). Note that g(x, v, t) = $(x - tv/e)JC*(v) is the exact solution of the 

transport problem 

ag 1 
y& -I” ;v ’ vg = 0, 9(x, v, 0) = d+4f*w 

Hence, (30) is the P-moment of the solution of the transport problem at time At = e2 

(taking into account, that AX = e). 

Introducing the notation xij = (iA%, DAZ:) and using the definition of (b), we find 

Mxij - vA4(Pf*)(v)) = 5 $(xij + cn,A#Yf*)(-cm) = $ wll/(xi+k,j+l) 
m==O k&=-l 

so that (30) is, in fact, a finite difference expression. Usually, the coefficients (~kl are 

arranged in a table (t,he so called stencil), Here, we have 

[ 

a-11 (201 (111 w*(Q) W(C4) w*(C7) 

Q-10 a00 QlO = w*(cl) W’(co) w*(Q) (31) a-1-1 Qo-1 w-1 1 i Pf*(C5) Pf*(C2) Pf*(C6) 1 
If f* is kept fixed, we can thus identify polynomials with finite difference approxi- 

mations. 

To find out the approximation properties of the stencil belonging to a particular 

polynomial, we replace +(x - VAX) by a Taylor expansion 

(Q(x - vA:+‘f*) = (Pf*) T/J(X) - Ax (v$‘f*) &$(x) 

+ 5 (lyujPf*) &, a,j?/(x) - $ (~~i7~~j~)~Pf*) c?~;~~,;,~c?~~$J(x) + C?(AX’)* 

Note that the coefficients in front of the derivatives are just velocity moments of f*. 

An immediate consequence of the symmetry 

.f*w = f”(-VI vv E v 

is that all odd derivatives iu the Taylor expansion vanish if P(-v) = Y(v) and, vice 

versa, all cvm derivatives disappear provided I]( -v) = -P(v). Hence, polynomials 

P involving only even (odd) orders are related to second order approximations of 



even the discretization 

(29) because all polynomials Qi are either even or odd. 

The following examples are given in the form 

polynomial t) stencil +-+ approximated operator. 

We begin with P = QaQo/ (Qgf*) = 1 w rc essentially describes the nine-point h’ h 

formula for the Laplacian 

1 4 1 

l*& 4 16 4 Al+ [ 1 %A + C'(Ax4). (32) 
1 4 1 

Our next example is based on P = &o&i/ (Qpf*) = 3cq for i = 1,2 which gives 

rise to first derivatives 

and 

374 1 
-1 0 1 

-- - 
Arc * 12Ax -1 o 1 [ 1 -4 0 4 t) & + O(Ax') (33) 

3~2 -- 
Ax 

2 -I- C’(Ax’). (34 

We remark that both stencils can be viewed as convex combinations of standard 

central difference approximations. For example, the &,-stencil in (33) can be written 

as 

This observation applies to many stencils found in (29). However, the convex com- 

binations are not always those of (33) and (34). Related to the odd polynomial binations are not always those of (33) and (34). Related to the odd polynomial 

P = Q2Q4/ (Qzf*) = 9cvlv$ we get 

9v& -- 

Ax 
+) -+(Ax2). (35) 

and similarly for P = &l&b/ (Qzf*) = 9cuyv2 

9vfv2 
-- 

Ax 
+) & +O(Ax2). (36) 



The third approximation of first derivat,ives is obtained, for example, from the com- The third approxirnation of first derivat,ives is obtained, for example, from the com- 

bination P = QsQs/ (Qif*) = 3/2~q(‘11/j - 1/3)(3vf + 3~; - 4) bination P = QsQs/ (Qif*) = 3/2~vr(‘11~ - 1/3)(3vf + 3~; - 4) -1 0 1 -1 0 1 
-&(““: - 1)(37/T + 3~; - 4) +-+ & -1 0 1 t) & -t ~(Ax’). -&(3”: - 1)(37/T + 3~; - 4) +-+ & -1 0 1 t) & -t ~(Ax’). i 1 i 1 (37) (37) 

-1 0 1 -1 0 1 

The corresponding approximation of &.. follows by exchanging the roles of the coor- The corresponding approximation of &.. follows by exchanging the roles of the coor- 

dinates. For the stencil, this exchange amounts to a reflection of the weights at the dinates. For the stencil, this exchange amounts to a reflection of the weights at the 

diagonal and, in view of (31), leads to the transformation P(vi,vz) -+ P(v~, wr) of diagonal and, in view of (31), leads to the transformation P(vi,vz) -+ P(v~, wr) of 

the polynomial. Note that all polynomials Qi respect this symmetry, i.e. (q, ~2) I-+ the polynornial. Note that all polynomials Qi respect this symmetry, i.e. (q, ~2) I-+ 

Q(v~, ~1) is again some Qj. Q(v~, ~1) is again some Qj. 

Continuing with the even polynomials Continuing with the even polynomials 

QoQd (Q:f*) 620&d (&if*) QoQd (Q:f*) 620&d (&if*) $ - l/3 $ - l/3 2~1’u2 2~1’u2 

620&d (Q&f*) QoQd (Q;f*) 620&d (Q&f*) QoQd (Q;f*) 2VlV2 2VlV2 vI$ - l/3 vI$ - l/3 

we find the second order derivative we find the second order derivative 

&(+;) H--& [ ;i ;] ti&+o(ar”) &(+;) H--& [ ;i ;] ti&+o(ar”) (38) (38) 

and the reflected version for 9(vz and the reflected version for 9(vz - l/3). A mixed derivative is given by - l/3). A mixed derivative is given by 

9VlV2 9VlV2 1 1 
-1 0 1 -1 0 1 

- ~ - ~ 
A:c2 ++ A:c2 ++ [ I [ I 0 0 0 +Q&- 0 0 0 +Q&- 

4Az2 1 o -1 4Az2 1 o -I 
+ 0(A;c2). + 0(A;c2). (39) (39) 

1 1 ,2 ,2 

We remark that the size of the stencils is directly related to the number of discrete We remark that the size of the stencils is directly related to the number of discrete 

velocities in the lattice Boltzmann model. In particular, usual central differences velocities in the lattice Boltzmann model. In particular, usual central differences 

and the five point stencil for the Laplacian are obtained with a model consisting and the five point stencil for the Laplacian are obtained with a model consisting 

onlyofco,..., onlyofco,..., ~4. Standard lattice Boltamann methods with this particular choice ~4. Standard lattice Boltamann methods with this particular choice 

of discrete velocities, however, are not consistent to the Navier-Stokes equations (see of discrete velocities, however, are not consistent to the Navier-Stokes equations (see 

PO PO 

6 6 LBM as finite difference scheme LBM as finite difference scheme 

For the special case 7 = 1, the lattice Mtzmann evolution (8) simplifies to For the special case 7 = 1, the lattice Mtzmann evolution (8) simplifies to 

f(x + VAX, t -t At) = f”“(p(x, t), EU(X, t); v). f(x + VAX, t -t At) = f”“(p(x, t), EU(X, t); v). (40) (40) 

Since w = l/r = 1, the equivalent moment system (29) has the form Since w = l/r = 1, the equivalent moment system (29) has the form 

(Q~Q~hf~~eq(x - vAx)~“) . (Q~Q~hf~~eq(x - vAx)~“) . (41) (41) 

15 15 
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Note that feq, and thus also Meg, depend only on p and u so that the lattice 

Boltzmann evolution (with r = 1) is formulated completely in terms of the flow 

variables. In particular, (41) only has to be considered for i = 0, 1,2 and since 

iU,,Fq = 0 for i 2 6 (see (14)) we can rewrite (41) as 

(42) 

(( 9;) QjM;>eq(x - vAz)j*) 

In [21] it has been shown that (42) falls into the class of kinetic schemes which are 

routinely used in CFD (see [22]). The particular version (42) is a finite difference 

realization of the general concept of kinetic schemes which easily follows from the 

considerations of the previous section. Indeed, using the identification of the poly- 

nomials &c&j/ (Qjf*) with finite difference stencils as presented in Section 5, we 

can rewrite the equation for pnS1 and get 

n+l = pn - eAxDkpnu; + 
A22 GA22 

P +-$f’ + --yj--&&uI’ (43) 

where Dl, 02 are the stencils (33) and (34), L is the discretization of the Laplacian 

based on (32), and Dkl are the second order derivatives given by (38) and (39). 

Similarly, we can write the momentum equation in (42) as 

(pwr+l = ,PuT - ~Ax(D~p%~u~ + &p%~u;) - $%pn 

+ $(Lp’“u; f 2Dlkpnu;) (44) 

where 02 is the stencil (36) (for the second component of momentum, Dr given by 

(35) and 02 are used correspondingly). Since EAX = e2 = At, we see that (43) 

and (44) are indeed approximations of (23). (The discretization of VAp/18 in the 

momentum equation (23) is contained in $Dkp which has a leading factor l/e2 

after division by At. Hence, the third order parts in the discretizations Dk appear 
in relevant order.) While (44) essentially approximates the Navier-Stokes equations, 

(43) assures the approximate divergence-free condition. Basically, it is a pseudo- 

compressibility method [23, 241 which can be seen by setting pn = j?(l -t- 3e2pn) in 

(43) which leads to 

P 
n+l_ n 

’ 
E2 

At 
+ &Diu: + Di(pnu;) = ;Lp” + xD/@$u~. 

2P 

This equation for the pressure contains elements of Chorin’s artificial compressibility 

method [25] to replace divu = 0 by the equation 

8P 1 ilt+t2divu=0 
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and of the pressure stabilization method 

$divu-Ap=O 

which was originally used in [26]. However, the convection term divpu as well as 

the higher order nonlinear terms t2&~&jpuiuj, which appear in the discretization, 

are usually not considered. 

Thus, in the case w = 1, the lattice Boltzmann method is nothing but a direct * 
finite difference discretization of the Navier-Stokes equations (based on second order 

accurate nine-point stencils) together with a pseudo-compressibility approach. 

As far as the structure of the stencils is concerned, it is interesting to note that 

first order derivatives are discretized differently (by Dk or &), depending on the 

term they appear in (similarly, the discretization of the Laplacian L differs from the 

combination Dll + 022 of the other second order derivatives). We also remark that 

the original lattice Boltzmann evolution (40) together with the averaging (fns’) 

and (v/c,“+‘) is an efficient way to evaluate the relatively large stencils. The eval- 

uation mechanism can be described as follows: first, information about the old data 

pn and u” is preprocessed at each node by multiplication with weights and summa- 

tion. Then, each node receives preprocessed data from its neighbors (eight values 

are communicated per node) and calculates new quantities for p and u by averaging. 

Compared to that, an equivalent, direct implementation of the stencils needs more 

communication. Indeed, just to calculate Vp with the stencils (33) and (34), p has 

to be obtained from all neighbors which already amounts to a communication of 

eight values. On top of that, 111 and 212 are needed from the neighboring sites which 

increases communication by a factor three. Even if standard central differences 
are used to discretize the Navier-Stokes equations, at least three values from four 

neighboring sites have to be exchanged which amounts to a higher load of commu- 

nication compared to LBM (despite the fact that LBM is based on larger stencils). 

Thus, LBM takes advantage of structural properties of the Navier-Stokes equations 

(i.e. the connect,ion to the Boltzmann equation) which are neglected by standard 

schemes. In fact, LBM benefits two-fold: first, the exchange of data among grid 

points is reduced because the discretization of a scalar equation obviously requires 

less communication than the discretization of a system of equations. Secondly, a 

simple (and therefore fast) splitting schcrx~e can be chosen as cliscretization of the 

Boltzmann equation without taking care of stiff terms because discretization errors 

have the correct structure t,o be incorporated in the viscous terms of the Navier- 

Stokes equations. Of course, these advantages can easily turn into disadvantages if 

the lattice Boltzmann approach should be applied to modifications of the Navier- 

Stokes equations for which no natural kinetic counterpart is available. (In such cases, 

finding a suitable Boltzmann equation which is related to the modified system can 
84 be very difficult or even impossible.) 

Before we go over too the case w # 1, let us mention an auxiliary result which we 
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need later: if (40) is replaced by 

f(x i- V&AZ), v, t + kAt) = feq(p(x, t), EU(X, t); v) 

with some fixed k E N, the resulting finite difference scheme is again consistent to 

the incompressible Navier-Stokes system but now with Reynolds number Re = 6/lc. 

This is easily seen by replacing Ax and At with IcAa: and kAt in (43) and (44). 

Obviously, k factors out in all approximations of first order derivatives but remains 

in front of the second order ones. Note that the corresponding finite difference 

stencils have width 21c + 1. 

7 LBM as combination of finite difference schemes 

In the previous section, we have investigated the lattice Boltzmann evolution in the 

case w = 1. Now, we extend the interpretation to the neighboring cases w = 1+0(e). 

The basic idea is to write the lattice Boltzmann evolution operator (given by (28)) 

as linear combination of two extreme cases as linear combination of two extreme cases 

J&d = (1 - 4&o + w&,1 J&d = (1 - 4&o + w&,1 

where LQ is defined as where LQ is defined as 

(L,od(x, 4 = 9(x - EV, v) (L,od(x, 4 = 9(x - EV, v) (45) (45) 

and L,,r is related to the case w = 1 which has been investigated in the previous and L,,r is related to the case w = 1 which has been investigated in the previous 

section section 

(L,ld(X,W) = feq(p& - EW),wJ(X - 4;w), (L,ld(X,W) = feq(p& - EW),wJ(X - 4;w), 

Pg = (9) 7 Pg = (9) 7 ug = h) /(WI)- ug = h) /(WI)- 
(46) (46) 

Note that LE.0 is precisely the solution operator of the collision-less Boltzmann equa- Note that LE.0 is precisely the solution operator of the collision-less Boltzmann equa- 

tion in the diffusion scaling &g + v a Vg/e = 0 (’ 1.e. f$,og yields the solution of the 

transport equation at time At = e2). Formally, w = 0 corresponds to r = co and 

the approximated system of moment equations is obtained from (23), (24), and (25) 
by setting w = 0. In particular, the equations for p, u and 0 are given by 

&J 
dt + divpu = ;Ap 

8PU 
dt + dive + &VI, = ;(A + 2Vdiv)pu - ;VAp 

ao 1 

dt+- 

&d2 

3 ( (?I&?1 + &&I2 
~~~q;z~+$cq = -& (25[Pu] - +H7,) +B? 

(47) 

Note that, in the limit E -+ 0, the Navier-Stokes equations are not obtained since 0 

is no longer related to pu @ u. Consequently, the lattice Boltzmann evolution (28) 
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can be viewed as a linear combination of two schemes with only one of them being can be viewed as a linear combination of two schemes with only one of them being 

consistent to the incompressible Navier-Stokes system. The factor (1 - w) in front consistent to the incompressible Navier-Stokes system. The factor (1 - w) in front 

of the inconsistent part G,,o satisfies 11 - ~1 = 11 - l/~j < 1 if 7 > l/2 which is of the inconsistent part G,,o satisfies 11 - WI = 11 - l/~j < 1 if 7 > l/2 which is 

a reasonable assumption in view of the required positivity of the Reynolds number a reasonable assumption in view of the required positivity of the Reynolds number 

w w 

For general w # 1, rz steps of the lattice Boltzmann method ~Cc:l,, can be expressed For general w # 1, rz steps of the lattice Boltzmann method ~Cc:l,, can be expressed 

in terms of the building blocks C,,O and CC,1 in terms of the building blocks C,,O and CC,1 

C& z c (1 - w)l”lwl~l fi &$q C& z c (1 - w)l”lwl~l fi &$q 

OXI,, OXI,, i=l i=l 

where In is the set of all vectors of length rl with components in (0, I}, llrl = x2, ai, where In is the set of all vectors of length rl with components in (0, I}, llrl = x2, ai, 

and the complementary vector ~3 to cy E I, is defined by & = 1 - CX~ for all i. Note and the complementary vector ~3 to cy E I, is defined by & = 1 - CX~ for all i. Note 

that Ial counts the number of free flow steps so that the influence of terms with that Ial counts the number of free flow steps so that the influence of terms with 
many free flow steps is small due to the damping by (1 - w)lal. In particular, if many free flow steps is srnall due to the damping by (1 - w)lal. In particular, if 

w > 1, the factors wldl w > 1, the factors wldl are amplifying so that the behavior of LBM is dominated by are amplifying so that the behavior of LBM is dominated by 

the kinetic scheme. In this case, the free transport part, which is not consistent to the kinetic scheme. In this case, the free transport part, which is not consistent to 

the Navier-Stokes equations, only acts as a correction. We remark that, in typical the Navier-Stokes equations, only acts as a correction. We remark that, in typical 

applications, LBM exactly operates in the range l/2 < 7 < 1 which is related to applications, LBM exactly operates in the range l/2 < 7 < 1 which is related to 

1 < w < 2. The simplest situation, apart from w = 1, is given by w = 1 + CC. In 1 < w < 2. The simplest situation, apart from w = 1, is given by w = 1 + CC. In 

this case, the influence of the pure free transport contribution is damped below the this case, the influence of the pure free transport contribution is damped below the 

truncation error already after two steps. We have truncation error already after two steps. We have 

c:,, = w2c:,, + (1 - W)WC,,&,l + (1 - w)wC,,& + (1 - w)“,C&. c:,, = w2c:,, + (1 - W)WC,,&,l + (1 - w)wC,,& + (1 - w)“,C&. (48) (48) 

To estimate the influence of Cg,,, To estimate the influence of Cg,,, we apply it to a distribution function g which is we apply it to a distribution function g which is 

consistent to our scaling in the sense that Qi moments of 9 are order one quantities. consistent to our scaling in the sense that Qi moments of 9 are order one quantities. 

Then, according to the comments above, (C&g) Then, according to the comments above, (C&g) and (V/CC&~) approxixnate (47) and (V/CC&~) approxixnate (47) 

at time t = 2At = 2~~ with initial values p = (9) and pu = (v/es). Thus, at time t = 2At = 2~~ with initial values p = (9) and pu = (v/es). Thus, 

(( $)i,ig) = (/;) + WAG, (( $)i,ig) = (/;) + WAG, i = 0,l i = 0,l 

(the case i, = 1 has been treated in Section 6). Subtracting the two relations, we (the case i, = 1 has been treated in Section 6). Subtracting the two relations, we 

find LPO - Cz 1 = (0) (Ed), where (0) (c?) find LPO - Cz 1 = (0) (Ed), where (0) (c?) means that values of order e2 are obtained means that values of order e2 are obtained 

after abplicai&n to a distribution fmlction and integration with weights QC), 621, &2. after abplicai&n to a distribution furlction and integration with weights QC), 621, &2. 
Taking into account that (1 - w)~ = O(C?) and setting X = 2(1- w)w, equation (48) Taking into account that (1 - w)~ = O(C?) and setting X = 2(1- w)w, equation (48) 

turns into turns into 

cf;, = (1 - X)GfJ + XC,,OC,,I + ;[c+ C,,o] + (0) (E4) cf;, = (1 - X)GfJ + XC,,OC,,I + ;[c+ C,,o] + (0) (E4) 

where [., .] is the commutator. Due to our remark at the end of Section 6 where [., .] is the commutator. Due to our remark at the end of Section 6 

(&,O&d(X, VI = f’Yp& - 24, q)(x - 24; v) (&,O&d(X, VI = f’Yp& - 24, q)(x - 24; v) 
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yields, after taking mass and momentum integrals, a finite difference scheme (for- 

mulated just in terms of p and u) which is consistent to the Navier-Stokes equations 

with Reynolds number Re = 6/2 = 3. On the other hand, ,C$ corresponds to 

Re = 6 so that the combination 

(1 - X)13$ + &,O~c,,l 

describes a finite difference scheme for the Navier-Stokes equations with 

(49) 

(since r = l/(1 - (1 -w)) = 1 + (1 - w) + O(e2)). This is the known relation (11) 
for LBM up to terms of the order e2 so that the difference between the scheme (49) 

and the lattice Boltzmann method is of the order of the truncation error 

e,, = (1 - w:,, + &,OL,l + 0 k4). 

(This shows that ~[,C,,J, &,o] = (0) (e4) w IC can also be obtained directly.) h’ h 

(5Q) 

Relation (50) extends the result of Section 6 and leads to the following interpretation 

of LBM: For w = 1, LBM is an explicit finite difference scheme in the flow variables 

p and u. For w = 1 + 0(e), two steps of LBM can be identified (in the relevant 

e-order) with the combination of two finite difference schemes which are formulated 

in terms of p and u. Both schemes are consistent to the Navier-Stokes equations 

but with different Reynolds numbers. By combining the schemes, a whole range of 

Reynolds numbers is covered and the combination parameter is directly related to 

the viscosity. 

For w = 1 + O(ek), the influence of the pure free transport contribution is damped 

below the truncation error after m steps. The basic structure, that LBM can be 

viewed as combination of schemes which are formulated directly in terms of the flow 

variables p, u and which approximate Navier-Stokes equations with fixed Reynolds 

numbers, remains the same. However, since this explanation becomes quite com- 

plicated, we use a different approach for the general case w # 1 in the following 

section. 

8 LBM as relaxation scheme 

In the previous sections, we have related LBM directly to the Navier-Stokes system 

which is possible in the case w = 1 and for w = 1 + U(E). In the generic case w # 1, 

however, equation (29) for IM%F+l involves contributions 

j =o,..*,s (51) 



from all moments. Note that 

with 0” = (1 - u)O + wpu @ u. According to Section 5, (51) represents finite 

difference approximations. Moreover, since LBM is c2-consistent to the moment 

system (23), (24), and (25), we can easily find out which of the stencils appears in 

relevant order. In fact, stencils are important in the update rule for Mi if they are 

related to expressions in the corresponding equation of t,he moment system. For 

example, the mass conservation in (23) does not involve W’, q or s from which we 

can conclude that the stencils in (51) with i = 0 and j = 3, . . . ,8 lead to expressions 

which are of the order of the truncation error. The stencils resulting from j = 0, 1,2, 

on the other hand, have already been introduced in Section 6. As in (43), we find 

p+l - p 

At 
+ D,,p”u; = ;Lpn + O(At). 

Similarly, the relevant stencils in the momentum equation are those given in (44) 

and a corresponding relation holds for the second component of momentum. In 

view of the limit E -+ 0, the most important aspect of the O-equation (24) is the 

discretization of the tensor Skl[pu] = (8/3~k/3~+1 + 8pul/&k)/2. Analyzing the 

stencils in (51) with i = 3,2,5 and j = 1,2 we find 

S[pu] = 
( 

Dlcw ;(fizPw+ &Pw?) 
; (Dglu~ f D1pu2) Dzpw > 

Similarly, the mixed terms ijz1q2, &,ql in (24) are discretized with fi,+ given in (35), 

(36) and the remaining first order derivatives E&q1 and &q2 are treated with (37). 

In (25), all first order space derivatives are approximated with the help of (37) 

apart from &,O& in the equation for q which are based on (35) and (36). Again, 

the kinetic formulation (28) is a very efficient way to evaluate the stencils with very 
little communication. 

As we have noted already in Section 4! the moment, system (23), (24), and (25) 

is a relaxation-type system for the incompressible Navier-Stokes equations. Since 

the lattice Boltzmann m&hod is equivalent, to the above explicit finite difference 

approximation of the moment system, LBM cm be regarded as a relaxation scheme. 
Note, however, t,hat relaxation schemes are usually formulated in such a way that, 

they turn into schemes for the limiting equations if the relaxation parameter is set 

to zero which is achieved by an implicit treatment of the stiff terms (see [14]). In 

the case of LBM, however, all terms are t,reated explicitly which forces At to be of 

order c2. 111 particular, setting E t,o zero cannot lead to a new scheme. For a different 

approach based 011 the lattice Boltzmann moment system, see [13, 271. 
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9 Conclusions 

We have investigated a frequently used lattice Boltzmann method for incompressible 

Navier-Stokes flows in two dimensions. The results are also applicable to other 

Lattice Boltzmann models because they rest on the basic observation that discrete 

microscopic transport together with weighted velocity averages is a reformulation 

of finite difference approximations. The investigation of the particular nine-velocity 
model implies: 

0 Standard LBM can be considered as a linear combination of a direct and a 
relaxation scheme. The discretization is based on fully explicit finite difference 

approximations. 

l LBM can also be regarded as a linear combination of finite difference schemes 

for the Navier-Stokes equations with fixed viscosities. 

0 The kinetic aspects of LBM determine the structure of the finite difference 

stencils (transport+averaging=stencil). 

o The kinetic formulation leads to an efficient evaluation of the stencils with 

comparably little communication. 

o The scheme works in the stability constellation At/Az2 = (3(l) known from 

the explicit scheme for advection diffusion equations. 

l In the standard case, there is no special treatment of the stiff velocity-pressure 

coupling which arises in nearly incompressible situations. 

o LBM has a high memory consumption because the kinetic variables outnumber 

the actual flow variables. 

o For relaxation parameters close to one, the extra information in the kinetic 

variables is partly redundant since all occupation numbers are determined by 

p and u (up to corrections of the order of the truncation error). 

o The formulation as relaxation system clearly shows the restricted relevance of 

some of the variables. 

o The often claimed advantage of LBM, to be a simple algorithm which is easily 
parallelizable, is explained by the interpretation as fully explicit, low order 

finite difference method. 
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