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Abstract

In this paper, we propose an efficient numerical scheme for the approximate solution

of a time fractional diffusion-wave equation with reaction term based on cubic

trigonometric basis functions. The time fractional derivative is approximated by the

usual finite difference formulation, and the derivative in space is discretized using

cubic trigonometric B-spline functions. A stability analysis of the scheme is conducted

to confirm that the scheme does not amplify errors. Computational experiments are

also performed to further establish the accuracy and validity of the proposed scheme.

The results obtained are compared with finite difference schemes based on the

Hermite formula and radial basis functions. It is found that our numerical approach

performs superior to the existing methods due to its simple implementation,

straightforward interpolation and very low computational cost. A convergence

analysis of the scheme is also discussed.

Keywords: time fractional diffusion-wave equation; trigonometric basis functions;

cubic trigonometric B-splines method; stability

1 Introduction

1.1 Problem description

For T >  and � = [a,b], we consider the following model of the time fractional diffusion-

wave equation with reaction term:

∂γ

∂tγ
u(x, t) + αu(x, t) =

∂

∂x
u(x, t) + f (x, t),  < γ ≤ ,x ∈ �,  ≤ t ≤ T ()

with initial conditions

⎧

⎨

⎩

u(x, ) = φ(x),

ut(x, ) = φ(x),
x ∈ �, ()

and the following boundary conditions:

⎧

⎨

⎩

u(a, t) = ψ(t),

u(b, t) = ψ(t),
 ≤ t ≤ T , ()
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where a, b, φ(x), φ(x), ψ(t) and ψ(t) are given, α >  is the reaction coefficient and
∂γ

∂tγ
u(x, t) represents the Caputo fractional derivative of order γ given by []

∂γ

∂tγ
u(x, t) =

⎧

⎨

⎩


Ŵ(–γ )

∫ t


∂u(x,s)

∂s
(t – s)–γ ds,  < γ < ,

∂u(x,s)

∂s
, γ = .

()

To obtain the time fractional diffusion-wave equation from the standard diffusion or wave

equation, we replace the ordinary first or second time derivative by a fractional derivative

of order γ , where  < γ <  or  < γ < . As γ changes from  to , the process trans-

forms from slow diffusion to classical diffusion and from diffusion-wave to classical wave

phenomenon. We consider, in this paper, the case of diffusion-wave, i.e.,  < γ < . It can

be used to deal with viscoelastic problems and disordered media to examine structures,

semiconductors and dielectrics.

1.2 Applications and literature review

The subject of fractional calculus [–] in its modern form has a history of at least three

decades and has developed rapidly due to its wide range of applications in fluidmechanics,

plasma physics, biology, chemistry, mechanics of material science and so on [, ]. Other

applications include system control [], viscoelastic flow [], hydrology [, ], tumor devel-

opment [] and finance [–]. Since the fractional models in certain situations tend to

behavemore appropriately than the conventional integer ordermodels, several techniques

have been developed to study thesemodels. These techniques have been continuously im-

proved and modified to achieve more and more accuracy.

Since exact analytical solutions of only a few fractional differential equations exist, the

search for approximate solutions is a concern ofmany recently published articles.Many re-

search publications have been devoted to numerical techniques for solving time fractional

diffusion-wave equations. Zeng [] proposed two second order stable and one condition-

ally stable finite difference schemes for the time fractional diffusion-wave model. Using a

class of finite differencemethods based on the Hermite formula, Khader and Adel [] ob-

tained numerical solutions of a fractional diffusion-wave equation. Avazzadeh et al. []

obtained numerical solutions of a fractional diffusion-wave equation by using the radial

basis function method. Pskhu [] obtained fundamental solutions of a fractional order

diffusion-wave equation. It has been shown that this fundamental solution gives the cor-

responding solutions for diffusion andwave equationswhen the fractional order is equal to

one or approaches two. Povstenko [] discussed Neumann boundary-value problems for

a time-fractional diffusion-wave equation in a half-plane. Numerical solutions to the frac-

tional diffusion-wave equation under Dirichlet and Neumann boundary conditions were

obtained by Povstenko. Liemert and Kienle [] discussed a time fractional wave-diffusion

equation in an inhomogeneous half-space. Ren and Sun [] obtained efficient numerical

solutions of the multi-term time fractional diffusion-wave equation by using a compact fi-

nite difference scheme with fourth-order accuracy. Jin et al. [] utilized a Galerkin finite

element method to find approximate solution for a multi-term time-fractional diffusion

equation. Jianfei et al. [] presented two efficient finite difference schemes to approximate

solutions of time fractional diffusion equations. A second order BDF alternating direction

implicit difference scheme for the two-dimensional fractional evolution equation was dis-

cussed in [].
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An efficient numerical scheme based on trigonometric cubic B spline functions is pre-

sented in this paper to find the approximate solutions of a time fractional diffusion-wave

equation with reaction term. First, we discretize the Caputo time fractional derivative by

the usual finite difference formula and then use trigonometric cubic B-spline basis to ap-

proximate derivatives in space. Trigonometric cubic B-spline functions provide better ac-

curacy than the usual finite difference schemes due to theirminimal support andC conti-

nuity. Numerical experiments are carried out, and the obtained results are compared with

those of [] and []. The comparison shows that the presented scheme has accuracy up

to –, whereas the scheme discussed in [] has accuracy of –. The scheme is shown

to be unconditionally stable using a procedure similar to Von-Neumann stability analysis,

whereas the scheme of [] is conditionally stable. Convergence analysis of the presented

scheme is also discussed. Numerical experiments confirm the validity and efficiency of the

algorithm.

The outline of this paper is as follows. In Section , we give temporal discretization using

a forward finite difference scheme of Eq. (). In Section , we present the derivation of the

scheme for the fractional diffusion-wave equation using the trigonometric cubic B-spline

functions. The stability analysis of the proposed scheme is given in Section . Section 

discusses convergence analysis of the scheme. Computational experiments are conducted

to check the efficiency and validity of the scheme, and the numerical results are reported

in Section . The last section is devoted to the concluding remarks of the study.

2 Temporal discretization

To find time discretization of Eq. (), we discretize the Caputo time fractional derivative
∂γ u(x,t)

∂tγ
appearing in the equation using the usual finite difference method. Following the

standard notations, we let tn = n	t, n = , , . . .M, where 	t = T
M

is the time step. First

we approximate the second order differential operators using a forward finite difference

method as follows:

∂u(x, s)

∂t
=
u(x, tn+) – u(x, tn) + u(x, tn–)

(	t)
+O(	t), ()

where s ∈ [tn, tn+]. Using (), we can obtain an efficient approximation to the fractional

derivative ∂γ u(x,t)
∂tγ

as follows:

∂γu(x, tn+)

∂tγ

=


Ŵ( – γ )

∫ tn+



∂u(x, s)

∂s

ds

(tn+ – s)–γ

=


Ŵ( – γ )

n
∑

j=

∫ tj+

tj

∂u(x, s)

∂s

ds

(tn+ – s)–γ

=


Ŵ( – γ )

n
∑

j=

u(x, tj+) – u(x, tn) + u(x, tn–)

	t

∫ tj+

tj

ds

(tn+ – s)–γ
+ en+	t

=


Ŵ( – γ )

n
∑

j=

u(x, tj+) – u(x, tn) + u(x, tn–)

	t

∫ tn+–j

tn–j

dr

r–γ
+ en+	t
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=


Ŵ( – γ )

n
∑

j=

u(x, tj+) – u(x, tn) + u(x, tn–)

	t

∫ tj+

tj

dr

r–γ
+ en+	t

=


Ŵ( – γ )

n
∑

j=

u(x, tn+–j) – u(x, tn–j) + u(x, tn––j)

	tγ

(

(j + )–γ – j–γ
)

+ en+	t

=


Ŵ( – γ )

n
∑

j=

bj
u(x, tn+–j) – u(x, tn–j) + u(x, tn––j)

	tγ
+ en+	t , ()

where en+	t is the truncation error, r = (tn+ – s) and bj = (j + )–γ – j–γ . The reader may

verify that

• bj > , j = , , , . . . ,n,

•  = b > b > b > · · · > bn and bn →  as n → ∞,

•
∑n

j=(bj – bj+) = ( – b) +
∑n–

j= (bj – bj+) + bn = .

Substituting () into (), we obtain the following temporal discretization:

⎧

⎨

⎩


Ŵ(–γ )

∑n
j= bj

u(x,tn+–j)–u(x,tn–j)+u(x,tn––j)

	tγ
+ αu(x, tn+)

= ∂u(x,tn+)

∂x
+ f (x, tn+).

()

Letting α =


(	t)γ Ŵ(–γ )
, un+ = u(x, tn+), the last equation can be rewritten as

⎧

⎨

⎩

α(u
n+ – un + un–) + α

∑n
j= bj(u

n+–j – un–j + un––j) + αun+

= ∂un+

∂x
+ f (x, tn+),

()

where n = , , . . .M. It is observed that the term u– will appear when n =  or j = n. To

eliminate u–, we utilize the initial condition to obtain

ut =
u – u–

	t
. ()

It follows then that u– = u – 	tut or u
– = u – 	tφ(x).

3 Description of the numerical scheme

In this section, we derive the cubic trigonometric B-spline collocationmethod (CuTBSM)

for finding the numerical solution of time fractional diffusion-wave equation problem ().

The solution domain a ≤ x ≤ b is uniformly partitioned by knots xi into N subintervals

[xi,xi+] of equal length h = b–a
N
, i = , , , . . . ,N – , where a = x < x < · · · < xn– < xN = b.

Our numerical approach for solving () using trigonometric cubic B-splines is to seek an

approximate solution U(x, t) to the exact solution u(x, t) in the following form [, ]:

U(x, t) =

N–
∑

i=–

ci(t)TB

i (x), ()

where ci(t) are to be required for the approximate solution U(x, t) to the exact solution

u(x, t). The twice differentiable trigonometric basis functions TB
i (x) [] at the knots xi
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are given by

TB
i (x)

=


w

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

p(xi), x ∈ [xi,xi+],

p(xi)(p(xi)q(xi+) + q(xi+)p(xi+)) + q(xi+)p
(xi+), x ∈ [xi+,xi+],

q(xi+)(p(xi+)q(xi+) + q(xi+)p(xi+)) + p(xi)q
(xi+), x ∈ [xi+,xi+],

q(xi+), x ∈ [xi+,xi+],

()

where

p(xi) = sin

(

x – xi



)

, q(xi) = sin

(

xi – x



)

, w = sin

(

h



)

sin(h) sin

(

h



)

.

Since there are three non-zero terms at each knot, notably TB
j–(x), TB


j (x) and TB

j+(x),

therefore the approximation unj at the grid point (xj, tn) to the exact solution at nth time

level is given as

unj =

i+
∑

j=i–

cnj (t)TB

j (x). ()

The time dependent unknowns cnj (t) are to be determined by making use of the initial and

boundary conditions, and the collocation conditions on TB
i (x). As a result, we obtain the

approximations unj together with their necessary derivatives as given below:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

unj = ac
n
j– + ac

n
j + ac

n
j+,

(ux)
n
j = –ac

n
j– + aσ

n
j+,

(uxx)
n
j = ac

n
j– + ac

n
j + ac

n
j+,

()

where

a = csc(h) csc

(

h



)

sin


(

h



)

, a =


 +  cos(h)
, a =




csc

(

h



)

,

a =
 +  cos(h)

 cos( h

) –  cos( h


)
, a = –

 cot
( h


)

 +  cos(h)
.

To obtain full discretization which relates the successive time levels and the unknowns

cn+j , we plug in the approximations unj and their derivatives () into Eq. (). After some

simplifications, we arrive at the following recurrence relation:

(

(α + α)a – a
)

cn+j– +
(

(α + α)a – a
)

cn+j +
(

(α + α)a – a
)

cn+j+

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

α(ac
n
j– + ac

n
j + ac

n
j+) – α(ac

n–
j– + ac

n–
j + ac

n–
j+ )

–
∑n

k= bk[a(c
n+–k
j– – cn–kj– + cn––kj– ) + a(c

n+–k
j – cn–kj + cn––kj )

+ a(c
n+–k
j+ – cn–kj+ + cn––kj+ )] + αf (xj, t

n+).

()
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System () contains (N + ) linear equations in (N + ) unknowns. To obtain two addi-

tional equations, the boundary conditions () are utilized to obtain a unique solution of

the problem. Consequently, a matrix system of dimension (N +)× (N +), which is a tri-

diagonal system, is obtained. The Thomas algorithm [] is then used to uniquely solve

this system.

3.1 Initial vector c0

In order to commence the iteration process, it is required to find the initial solution vector

c = [c–, c

, . . . , c


N+]

T . The process of finding the initial vector involves the computation

of initial condition and its derivatives at the two boundaries as explained below []:

(i) (uj )x =
d
dx

φ(xj), j = ,

(ii) uj = φ(xj), j = , , . . .N ,

(iii) (uj )x =
d
dx

φ(xj), j =N .

The above tri-diagonal system consists of (N + ) linear equations in (N + ) unknowns

whose matrix form is given as

Ac = b, ()

where

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

–a  a · · · · · · · · · · · · 

a a a
. . .

...

 a a a
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . a a a

 · · · · · · · · · · · · –a  a

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and b = [φ′
(x),φ(x), . . . ,φ(xN ),φ

′
(xN )]

T .

4 Stability analysis

By Duhamel’s principle [], it follows that the solution to an inhomogeneous problem is

the superposition of the solutions to homogeneous problems. As a consequence, a scheme

is stable for the inhomogeneous problem if it is stable for the homogeneous one. It is suf-

ficient to present the stability analysis for scheme () for the force-free case (f = ) only.

The growth factor of a Fourier mode is assumed to be ρn
j , and let ρ̃n

j be its approxima-

tion. Define En
j = ρn

j – ρ̃n
j which on substitution in () gives the following roundoff error

equation:

(

(α + α)a – a
)

En+
j– +

(

(α + α)a – a
)

En+
j +

(

(α + α)a – a
)

En+
j+

= α

(

aE
n
j– + aE

n
j + aE

n
j+

)

– α

(

aE
n–
j– + aE

n–
j + aE

n–
j+

)

–

n
∑

k=

bk
[

a
(

En+–k
j– – En–k

j– + En––k
j–

)

+ a
(

En+–k
j – En–k

j + En––k
j

)

+ a
(

En+–k
j+ – En–k

j+ + En––k
j+

)]

. ()
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The error equation satisfies the boundary conditions

Ek
 = ψ(tk), Ek

N = ψ(tk), k = , , . . . ,M, ()

and the initial conditions

E
j = φ(xj), (Et)


j = φ(xj), j = , , . . .N . ()

Define the grid function

Ek(x) =

⎧

⎨

⎩

Ek
j , xj –

h

< x≤ xj +

h

, j = , . . . ,N – ,

, a < x≤ h

or b – h


< x≤ b.

Note that the Fourier expansion of EK (x) is

Ek(x) =

∞
∑

m=–∞
ak(m)e

iπmx
(b–a) , k = , , . . . ,M,

where ak(m) = 
(b–a)

∫ b

a
Ek(x)e

–iπmx
(b–a) dx. Let

Ek =
[

Ek
 ,E

k
 , . . . ,E

k
N–

]T

and introduce the norm

∥

∥Ek
∥

∥


=

(

N–
∑

j=

h
∣

∣Ek
j

∣

∣



)



=

[∫ b

a

∣

∣Ek(x)
∣

∣


dx

]



.

By Parseval’s equality, it is observed that

∫ b

a

∣

∣Ek(x)
∣

∣


dx =

∞
∑

m=–∞

∣

∣ak(m)
∣

∣


,

so that the following relation is obtained:

∥

∥Ek
∥

∥




=

∞
∑

m=–∞

∣

∣ak(m)
∣

∣


. ()

Suppose that Eqs. ()-() have a solution of the form En
j = ξne

iβjh, where i =
√
– and β

is real. Substituting this expression in Eq. () and dividing by eiβjh, we obtain

(

(α + α)a – a
)

ξn+e
–iβh +

(

(α + α)a – a
)

ξn+ +
(

(α + α)a – a
)

ξn+e
iβh

= α

(

aξne
–iβh + aξn + aξne

iβh
)

– α

(

aξn–e
–iβh + aξn– + aξn–e

iβh
)

–

n
∑

k=

bk
[

a
(

ξn+–ke
–iβh – ξn–ke

–iβh + ξn––ke
–iβh

)

+ a(ξn+–k – ξn–k + ξn––k)

+ a
(

ξn+–ke
iβh – ξn–ke

iβh + ξn––ke
iβh

)]

. ()
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Using the relation e–iβh + eiβh =  cos(βh) and grouping like terms, we obtain the following

relation:

ξn+ =


ν
ξn –



ν
ξn– –



ν

n
∑

k=

bk(ξn+–k – ξn–k + ξn––k), ()

where ν =  + (aα–a) cos(βh)+(aα–a)
α(a cos(βh)+a)

. Obviously, ν ≥ .

Proposition  If ξn is the solution of Eq. (), then |ξn| ≤ |ξ|, n = , , . . . ,T ×M.

Proof Mathematical induction is used to prove the result. For n = , we have from Eq. ()

that ξ =

ν
ξ. Since ν ≥ , we have

|ξ| =


ν
|ξ| ≤ |ξ|.

Now suppose that |ξn| ≤ |ξ|, n = , . . . ,T ×M – , so that from () we obtain

|ξk+| ≤ 
|ξn|
ν

–
|ξn–|

ν
–


ν

n
∑

k=

bk
(

|ξn+–k| – |ξn–k| + |ξn––k|
)

≤ 
|ξ|
ν

– 
|ξ|
ν

–


ν

n
∑

k=

bk
(

|ξ| – |ξ| + |ξ|
)

≤ |ξ|. ()

�

Theorem  The collocation scheme () is unconditionally stable.

Proof Using formula () and Proposition , we obtain

∥

∥Ek
∥

∥


≤ 

∥

∥E
∥

∥


, k = , , . . .M,

which establishes that the scheme is unconditionally stable. �

5 Convergence analysis

First we introduce some usual notations and a lemma due to Lopez-Marcos [] that play

a crucial role in convergence analysis of the scheme.

Let �h = {xj| ≤ i ≤ N} and �τ = {tn| ≤ n ≤ M} be uniform partitions of the intervals

[a,b] and [,L], respectively, where xi = ih and tn = nτ with τ = T
M
. Let unj be approximation

to exact solution at the point (xj, tn) and V = {vj| ≤ j ≤ M} and W = {wj| ≤ j ≤ M} be
two grid functions defined on �h. Introduce

δV = vi+ – vi + vi–, (V ,W ) =

M
∑

i=

hviwi,

‖V‖ = (V ,V ), (Vxx,V ) = –(Vx,Vx).

From [], we have the following important lemma regarding the nonnegative nature of

some real quadratic forms possessing a convolution structure.
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Lemma . Let {wn}∞n= be a monotonically decreasing sequence of nonnegative real num-

bers with the property an+ + an– ≥ an (n ≥ ), then for any positive integer K and real

vector (V, v, . . . ,VK ) ∈ RK , we have

K–
∑

n=

(

n
∑

p=

wpVn+–p

)

Vn+ ≥ .

Let C be a positive number which assumes different values at different locations and is

independent of i, n, h and τ such that

|utt| ≤ C, |uxxxx| ≤ C for (x, t) ∈ �h × �τ . ()

Then, for scheme (), we have

α

n
∑

k=

bk
(

u(xj, tn+–k) – u(xj, tn–k) + u(xj, tn––k)
)

+ αu
(

xj, t
n+

)

=
∂u(xj, t

n+)

∂x
+ f

(

xj, t
n+

)

+O
(

τ  + τh
)

()

and

α

n
∑

k=

bk
(

un+–kj – un–kj + un––kj

)

+ αun+j =
∂un+j

∂x
+ f n+j , ()

where u(xj, tn) is exact and u
n
j is approximate solution at the point (xj, tn) and f

n+
j = f (xj, tn).

Theorem  Let u(x, t) and uni be solutions of () and (), respectively, and u(x, t) satisfies

the smoothness condition (), then for sufficiently small h and τ , it holds that

∥

∥en+
∥

∥ ≤ O
(

τ  + τh
)

, ()

where en+i = u(xi, t
n+) – un+i .

Proof To obtain the error equation, we subtract () from () to get

α

n
∑

k=

bkδ
en+–kj + αen+j =

(

en+j

)

xx
+ rn+j , ()

where rn+j =O(τ  + τh).

Multiplying both sides of () by hen+j and summing up for j from  toM, we obtain

∥

∥en+
∥

∥


= –

α

α

n
∑

k=

bk
(

δen+–k , en+
)

+


α

((

en+
)

xx
, en+

)

+


α

(

rn+, en+
)

= –
α

α

n
∑

k=

bk
(

δen+–k , en+
)

–


α

((

en+
)

x
,
(

en+
)

x

)

+


α

(

rn+, en+
)

= –
α

α

n
∑

k=

bk
(

δen+–k , en+
)

–


α

∥

∥

(

en+
)

x

∥

∥


+



α

(

rn+, en+
)

.
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Rearranging terms, we obtain

∥

∥en+
∥

∥


+

α

α

n
∑

k=

bk
(

δen+–k , en+
)

+


α

∥

∥

(

en+
)

x

∥

∥


=



α

(

rn+, en+
)

.

Since 
α
‖(en+)x‖ ≥ , therefore

∥

∥en+
∥

∥


+

α

α

n
∑

k=

bk
(

δen+–k , en+
)

≤


α

(

rn+, en+
)

.

Then

∥

∥en
∥

∥


+

α

α

n–
∑

k=

bk
(

δen–k , en
)

≤


α

(

rn, en
)

,

∥

∥en–
∥

∥


+

α

α

n–
∑

k=

bk
(

δen––k , en–
)

≤


α

(

rn–, en–
)

,

...

∥

∥e
∥

∥


+

α

α


∑

k=

bk
(

δe–k , e
)

≤


α

(

r, e
)

,

∥

∥e
∥

∥


+

α

α


∑

k=

bk
(

δe–k , e
)

≤


α

(

r, e
)

.

Adding up all the above inequalities gives

n
∑

k=

∥

∥ek+
∥

∥


+

α

α

n
∑

p=

p
∑

k=

bk
(

δep+–k , ep+
)

≤


α

n
∑

k=

(

rk+, ek+
)

.

Using Lemma (.), it follows that
∑n

p=

∑p
k= bk(δ

ep+–k , ep+) ≥  so that we obtain from

the last inequality

n
∑

k=

∥

∥ek+
∥

∥

 ≤


α

n
∑

k=

(

rk+, ek+
)

.

So

∥

∥ek+
∥

∥

 ≤


α

(

rk+, ek+
)

.

By the Cauchy-Schwarz inequality, we obtain

∥

∥ek+
∥

∥

 ≤


α

(

rk+, ek+
)

≤


α

∥

∥rk+
∥

∥

∥

∥ek+
∥

∥.
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Then

∥

∥ek+
∥

∥ ≤


α

∥

∥rk+
∥

∥,

from where () can be very easily deduced. �

6 Numerical results and discussion

In this section, numerical experiments are carried out for the time fractional diffusion-

wave equation () with initial () and boundary conditions (). The efficiency and accuracy

of the method are checked by calculating the error norms L and L∞ given by

L =
∥

∥Uexact –UN

∥

∥


≃

√

√

√

√h

N
∑

j=

∣

∣Uexact
j – (UN )j

∣

∣

and

L∞ =
∥

∥Uexact –UN

∥

∥

∞ ≃ max
j

|Uexact
j – (UN )j‖,

respectively. We compare the numerical solutions obtained by CuTBSM for one-

dimensional fractional diffusion equations () with known exact solutions. Numerical

calculations are carried out by using Mathematica  on an Intel®Core™ i-M CPU

@. GHz with  GB RAM and -bit operating system (Windows ).

Example  As a first experiment, we consider the following fractional diffusion-wave

equation for α = :

∂γ

∂tγ
u(x, t) =

∂

∂x
u(x, t) + f (x, t), (x, t) ∈ [, ]× [,T],

u(x, ) = , ut(x, ) = – sin(πx),

u(, t) = u(, t) = ,

()

where the source term is f (x, t) = t–γ
sin(πx)

Ŵ[–γ ]
+ (t – t) sin(πx)π. The exact solution of the

problem is u(x, t) = sin(πx)(t – t) [].

Figure  compares the graphs of the exact and approximate solutions with different val-

ues of γ , h and 	t at different time levels. The graphs show excellent agrement between

the solutions. In Figure , we exhibit the absolute error profiles at different time levels

from where high accuracy of the method can be observed. Figure  compares the graphs

of the exact and approximate solutions using our scheme with those obtained in [] at

time t = . It is observed that our scheme gives much better accuracy. Figure  shows a

very close comparison of D plots of the exact and approximate solutions at time t = ..

In Tables -, the maximum errors obtained are compared with those of Hermite formula

(HF) [] for different values of γ to demonstrate that our scheme is more accurate and

gives accuracy of –. In Tables -, error norms are computed for various values of pa-

rameters to further confirm the accuracy and efficiency of the presented scheme.
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Figure 1 The comparison of exact (solid lines) and numerical solutions (stars, bullets and triangles)

for Example 1 when h = 1
80
, �t = 1

100
and γ = 1.75 at different time levels.

Figure 2 Error profiles for γ = 1.5, h = 1
150

,

�t = 1
120

at different time levels for Example 1.

Figure 3 Behavior of numerical solutions for Example 1 when h = 1
150

, �t = 1
120

and t = 2.

Figure 4 A 3D comparison of exact (left) and numerical solutions (right) for Example 1 when h = 1
64
,

�t = 1
100

and γ = 1.5 at t = 1.
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Table 1 The maximum error for Example 1 at different values of h,�t for γ = 1.5 and t = 0.2

h
1
5

1
10

1
20

1
30

1
30

1
40

1
40

1
45

�t
1
50

1
100

1
150

1
150

1
200

1
200

1
210

1
220

HF [14] 0.01149 0.00361 0.00120 0.00115 0.00021 0.00019 0.00006 0.00004

Present method 6.410E–04 8.203E–05 1.027E–05 3.049E–06 3.035E–06 1.281E–06 1.280E–06 8.989E–07

Table 2 The maximum error for Example 1 at different values of h,�t for γ = 1.7 and t = 0.4

h
1
10

1
20

1
30

1
50

1
50

1
60

1
60

1
70

�t
1
50

1
100

1
200

1
250

1
300

1
400

1
450

1
480

HF [14] 0.01396 0.01064 0.00736 0.00653 0.00586 0.00494 0.00460 0.00443

Present method 2.490E–04 3.113E–05 9.178E–06 1.982E–06 1.980E–06 1.149E–06 1.443E–06 7.202E–07

Table 3 Error norms and order of convergence for Example 1

when �t = 1
120 , γ = 1.5 for different N

N L2 Norm L∞ Norm Order

10 5.8885E–04 1.1194E–04 . . .

20 1.4794E–04 2.9588E–04 1.4023

40 3.7034E–05 7.4070E–05 1.9981

80 9.2619E–06 1.8524E–05 1.9995

160 2.3157E–06 4.6314E–06 1.9999

Table 4 Error norms for Example 1 when h = 1
60 ,

�t = 1
120 , γ = 1.5 at different time levels

t L2 Norm L∞ Norm

0.2 3.6622E–06 7.3244E–06

0.4 1.3860E–05 2.77120E–05

1 1.6464E–05 6.2983E–05

2 1.4790E–04 2.9581E–04

Example  As a second experiment, consider the time fractional diffusion-wave equation

∂γ

∂tγ
u(x, t) + u(x, t) =

∂

∂x
u(x, t) + f (x, t), (x, t) ∈ [, ]× [,T],

u(x, ) = , ut(x, ) = ,

u(, t) = u(, t) = ,

()

where the forcing term f (x, t) is supposed to be

f (x, t) =
t–γ x( – x)

Ŵ[ – γ ]
+ tx( – x) + t.

The exact solution of problem () is u(x, t) = tx( – x).

The proposed scheme is applied to solve this problem. Figure  shows the graphs of the

exact and approximate solutions at different time levels with γ = ., 	t = . and t = 

for N = . An excellent agrement between the exact and approximate solutions can be

observed. To exhibit the accuracy of the scheme, the absolute error profile is plotted at

different time levels in Figure  (with N = , 	t = .). The D plot approximate and
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Figure 5 The comparison of exact (lines) and

approximate solutions for Example 2 when

γ = 0.5, at t = 0.5 (triangles), t = 0.75 (circles)

and t = 1 (stars) with N = 80, �t = 0.01.

Figure 6 Error profiles for Example 2 at different

time levels when N = 60, �t = 0.01.

Figure 7 3D space-time graphs of exact (right) and numerical solutions (left) for Example 2.

Table 5 Absolute errors of Example 2 for many values of γ at different points

(x, t) γ = 1.1 γ = 1.3 γ = 1.5 γ = 1.7 γ = 1.9

(0.1, 0.1) 9.5133E–09 6.6004E–09 4.4920E–09 2.9885E–09 1.9326E–09

(0.2, 0.2) 1.0530E–07 7.9127E–08 5.7844E–08 4.1404E–08 2.8903E–08

(0.3, 0.3) 9.6665E–07 3.3461E–07 2.5678E–07 1.9243E–07 1.4105E–07

(0.4, 0.4) 1.0813E–06 9.1574E–07 7.3594E–07 5.7117E–07 4.3402E–07

(0.5, 0.5) 2.2190E–06 1.6516E–06 1.6516E–06 2.2190E–06 1.0367E–06

(0.6, 0.6) 3.9341E–06 3.1570E–06 3.1570E–06 3.9341E–06 2.1091E–06

(0.7, 0.7) 6.3114E–06 5.3801E–06 5.3809E–06 6.3114E–06 3.8408E–06

(0.8, 0.8) 9.4176E–06 8.4176E–06 8.4176E–06 9.4176E–06 6.4421E–06

(0.9, 0.9) 1.3302E–05 1.2877E–05 1.2324E–05 1.3302E–05 1.3302E–05

exact solutions are shown in Figure  by fixing values of different parameters. A tremen-

dous similarity can be seen between the solutions. The absolute errors at different points

(xj, tj) ∈ [, ]× [, ] for different values of γ chosen in the range  < γ ≤  are tabulated in

Table . FromFigure  andTable , it is clear that the proposed scheme is very accurate and

efficient. It is worthwhile to note that the numerical solutions are in excellent agreement

with the exact solutions for many values of γ .



Yaseen et al. Advances in Difference Equations  ( 2017)  2017:274 Page 15 of 18

Example  As the last example, consider the time fractional diffusion-wave equation

∂γ

∂tγ
u(x, t) + u(x, t) =

∂

∂x
u(x, t) + f (x, t), (x, t) ∈ [, ]× [,T],

u(x, ) = , ut(x, ) = ,

u(, t) = , u(, t) = t sinh(),

()

where the source term is

f (x, t) = π
 sinh(x)t–γ

Ŵ[ – γ ]
+ ( – π )t sinh(x).

The exact solution of problem () is u(x, t) = t sinh(x) [].

The above problem is solved by using the proposed scheme. Figure  exhibits the graphs

of the exact and approximate solutions at different time levels with γ = ., 	t = . and

t =  for N = . By taking N = , 	t = ., the absolute error profile is plotted at

different time levels in Figure . Figures  and  show a very close comparison between

the exact and approximate solutions. The D exact and numerical solutions are shown

in Figure  by fixing values of different parameters. In Table , we present the absolute

Figure 8 The comparison of exact (lines) and

approximate solutions for Example 3 when

γ = 0.5, at t = 0.5 (triangles), t = 0.75 (circles)

and t = 1 (stars) with N = 80, �t = 0.01.

Figure 9 Error profiles for Example 3 at different

time levels when N = 60, �t = 0.01.

Figure 10 3D space-time graphs of exact and numerical solutions for Example 3.
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Table 6 Absolute errors of Example 3 for several values of γ at different points

(x, t) γ = 1.1 γ = 1.3 γ = 1.5 γ = 1.7 γ = 1.9

(0.1, 0.1) 1.2498E–09 6.0892E–10 2.9307E–10 1.3992E–10 6.6457E–11

(0.2, 0.2) 2.0339E–08 1.1879E–08 6.5709E–09 3.5960E–09 1.9547E–09

(0.3, 0.3) 9.7339E–08 6.6352E–08 4.0629E–08 2.4101E–08 1.4186E–08

(0.4, 0.4) 2.8201E–07 2.1618E–07 1.4732E–07 9.3061E–08 1.7977E–08

(0.5, 0.5) 6.2459E–07 5.1997E–07 3.9209E–07 2.6549E–07 1.7292E–07

(0.6, 0.6) 1.1728E–06 1.0335E–06 8.4665E–07 6.2213E–07 4.2256E–07

(0.7, 0.7) 1.9709E–06 1.8065E–06 1.5758E–06 1.2559E–06 8.9991E–07

(0.8, 0.8) 3.0599E–06 2.8817E–06 2.6324E–06 2.2492E–06 1.7266E–06

(0.9, 0.9) 4.4761E–06 4.4761E–09 4.0559E–06 3.6618E–06 3.0216E–06

Table 7 The comparison of results for Example 3 when N = 50 and γ = 1.5 at t = 1

x N = 10 N = 20 N = 50 Exact

Present RBF [15] Present RBF [15] Present RBF [15]

0.1 0.10016466 0.09950933 0.10016467 0.09951043 0.10016467 0.09951107 0.10016675

0.2 0.20133195 0.20079972 0.20133195 0.20080174 0.20133195 0.20080291 0.20133600

0.3 0.30451450 0.30402685 0.30451450 0.30402960 0.30451450 0.30403116 0.30452029

0.4 0.41074514 0.41029949 0.41074514 0.41030268 0.41074515 0.41030448 0.41075232

0.5 0.52108721 0.52065615 0.52108721 0.52065950 0.52108722 0.52066138 0.52109530

0.6 0.63664520 0.63621617 0.63664520 0.63621936 0.63664520 0.63622115 0.63665358

0.7 0.75857580 0.75812244 0.75857580 0.75812517 0.75857580 0.75812672 0.75858370

0.8 0.88809951 0.88761746 0.88809951 0.88761947 0.88809951 0.88762062 0.88810598

0.9 1.02651281 1.02593218 1.02651281 1.02593326 1.02651281 1.02593389 1.02651672

1.0 1.17520119 1.17520119 1.17520119 1.17520119 1.17520119 1.17520119 1.17520119

Table 8 The comparison of results for Example 3 when N = 50 and γ = 1.25 at t = 1

x N = 10 N = 50 Exact

Present RBF [15] Present RBF [15]

0.1 0.10016466 0.09950226 0.10016465 0.09950368 0.10016675

0.2 0.20133193 0.20078691 0.20133193 0.20078954 0.20133600

0.3 0.30451447 0.30400968 0.30451448 0.30401323 0.30452029

0.4 0.41074511 0.41027962 0.41074512 0.41028373 0.41075232

0.5 0.52108717 0.52063540 0.52108718 0.52063970 0.52109530

0.6 0.63664516 0.63619639 0.63664517 0.63620048 0.63665358

0.7 0.75857577 0.75810541 0.75857578 0.75810893 0.75858370

0.8 0.88809948 0.88760481 0.88809949 0.88760740 0.88810598

0.9 1.02651280 1.02592522 1.02651280 1.02592662 1.02651672

1.0 1.17520119 1.17520119 1.17520119 1.17520119 1.17520119

errors at different points (xj, tj) ∈ [, ]× [, ] for different values of γ chosen in the range

 < γ ≤ . The comparison between the obtained results and those of radial basis functions

(RBF) [] is given inTables -. FromFigure  andTables -, it is clear that the proposed

scheme is very accurate and efficient. It is noticed that the numerical solutions are in close

agreement with the exact solutions for many values of γ .

7 Concluding remarks

This study presents a finite difference scheme with a combination of cubic trigonomet-

ric B-spline basis for the time fractional fractional diffusion-wave equation with reaction

term. This algorithm is based on a discretization using finite difference formulation for

the Caputo sense. The cubic trigonometric B-spline basis functions have been used to ap-

proximate derivatives in space. The scheme provides accuracy of –, and the obtained

numerical results are in superconformity with the exact solutions. A special attention has
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Table 9 The comparison of results for Example 3 when N = 50 and γ = 1.75 at t = 1

x N = 10 N = 50 Exact

Present RBF [15] Present RBF [15]

0.1 0.10016466 0.09951844 0.10016464 0.09952297 0.10016675

0.2 0.20133194 0.20081683 0.20133192 0.09952297 0.20133600

0.3 0.30451449 0.30405039 0.30451445 0.30406191 0.30452029

0.4 0.41074513 0.41032718 0.41074509 0.41034071 0.41075232

0.5 0.52108720 0.52068530 0.52108715 0.52069953 0.52109530

0.6 0.63664519 0.63624390 0.63664514 0.63625745 0.63665358

0.7 0.75857579 0.75814606 0.75857575 0.75815761 0.75858370

0.8 0.88809950 0.88763465 0.88809947 0.88764309 0.88810598

0.9 1.02651281 1.02594135 1.02651279 1.02594589 1.02651672

1.0 1.17520119 1.17520119 1.17520119 1.17520119 1.17520119

been given to study the stability of the scheme by using a procedure similar to Von Neu-

mann stability analysis. The scheme is shown to be unconditionally stable, whereas the

scheme of [] is conditionally stable. A convergence analysis of the scheme is also pre-

sented.
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