A FINITE DIFFERENCE SOLUTION OF THE REGULARIZED LONG-WAVE EQUATION

S. KUTLUAY AND A. ESEN

Received 26 July 2005; Accepted 24 January 2006

A linearized implicit finite difference method to obtain numerical solution of the onedimensional regularized long-wave (RLW) equation is presented. The performance and the accuracy of the method are illustrated by solving three test examples of the problem: a single solitary wave, two positive solitary waves interaction, and an undular bore. The obtained results are presented and compared with earlier work.

Copyright © 2006 S. Kutluay and A. Esen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this study, we will consider the one-dimensional RLW equation

$$
\begin{equation*}
\frac{\partial U}{\partial t}+\frac{\partial U}{\partial x}+\varepsilon U \frac{\partial U}{\partial x}-\mu \frac{\partial}{\partial t}\left(\frac{\partial^{2} U}{\partial x^{2}}\right)=0 \tag{1.1}
\end{equation*}
$$

with the physical boundary conditions $U \rightarrow 0$ as $x \rightarrow \pm \infty$, where t is time, x is the space coordinate, $U(x, t)$ is the wave amplitude, and ε and μ are positive parameters. The RLW equation (1.1) was first introduced by Peregrine [1] to describe the development of an undular bore. This equation is one of the most important nonlinear wave equations which can be used to model a large number of problems arising in various areas of applied sciences [2,3]. The RLW equation has been solved analytically for a restricted set of boundary and initial conditions. Therefore, the numerical solution of the RLW equation has been the subject of many papers. Various numerical techniques particularly including finite difference [4-8], finite element [9-19], and spectral [20-23] methods have been used for the solution of the RLW equation.

In this paper, we have used a linearized implicit finite difference method to investigate the motion of a single solitary wave, development of two positive solitary waves interaction, and an undular bore for the RLW equation (1.1).

2. Method of solution

For the numerical treatment, the spatial variable x of the problem is restricted over an interval $a \leq x \leq b$. In this study, we consider the RLW equation (1.1) with the homogeneous boundary conditions

$$
\begin{equation*}
U(a, t)=0, \quad t>0, \quad U(b, t)=0, \quad t>0 \tag{2.1}
\end{equation*}
$$

and the initial condition

$$
\begin{equation*}
U(x, 0)=f(x), \quad a \leq x \leq b \tag{2.2}
\end{equation*}
$$

where $f(x)$ is a prescribed function.
The solution domain $a \leq x \leq b, t>0$ is divided into subintervals Δx in the direction of the spatial variable x and Δt in the direction of time t such that $x_{i}=i \Delta x, i=0(1) N$ $(N \Delta x=b-a) ; t_{j}=j \Delta t, j=0(1) J$, and the numerical solution of U at the grid point (i $i \Delta x, j \Delta t$) is denoted by $U_{i, j}$.

In the finite difference method, the dependent variable and its derivatives are approximated by the finite difference approximation. This approximation will lead to either a single explicit equation or a system of difference equations. Applying the classical implicit finite difference method to nonlinear problems normally gives nonlinear system of equations which cannot be solved directly.

Equation (1.1) can be written as

$$
\begin{equation*}
\frac{\partial U}{\partial t}+\frac{\partial U}{\partial x}+\frac{\varepsilon}{2} \frac{\partial U^{2}}{\partial x}-\mu \frac{\partial}{\partial t}\left(\frac{\partial^{2} U}{\partial x^{2}}\right)=0 \tag{2.3}
\end{equation*}
$$

Using the forward difference approximation for $\partial U / \partial t$, the Crank-Nicolson difference approximation for $\partial U / \partial x$ and $\partial U^{2} / \partial x$, and the central difference approximation for $\partial^{2} U / \partial x^{2}$ at the point $(i, j+1)$,

$$
\begin{gather*}
\frac{\partial U}{\partial t} \cong \frac{U_{i, j+1}-U_{i, j}}{\Delta t}, \\
\frac{\partial U}{\partial x} \cong \frac{1}{2}\left\{\frac{1}{2 \Delta x}\left(U_{i+1, j+1}-U_{i-1, j+1}\right)+\frac{1}{2 \Delta x}\left(U_{i+1, j}-U_{i-1, j}\right)\right\}, \\
\frac{\partial U^{2}}{\partial x} \cong \frac{1}{2}\left\{\frac{1}{2 \Delta x}\left(U_{i+1, j+1}^{2}-U_{i-1, j+1}^{2}\right)+\frac{1}{2 \Delta x}\left(U_{i+1, j}^{2}-U_{i-1, j}^{2}\right)\right\}, \tag{2.4}\\
\frac{\partial^{2} U}{\partial x^{2}} \cong \frac{1}{(\Delta x)^{2}}\left(U_{i+1, j}-2 U_{i, j}+U_{i-1, j}\right),
\end{gather*}
$$

respectively, (2.3) yields the system of algebraic equations

$$
\begin{align*}
& \frac{U_{i, j+1}-U_{i, j}}{\Delta t}+\frac{1}{4 \Delta x}\left(U_{i+1, j+1}-U_{i-1, j+1}+U_{i+1, j}-U_{i-1, j}\right) \\
& \quad+\frac{\varepsilon}{8 \Delta x}\left(U_{i+1, j+1}^{2}-U_{i-1, j+1}^{2}+U_{i+1, j}^{2}-U_{i-1, j}^{2}\right) \tag{2.5}\\
& \quad-\frac{\mu}{\Delta t(\Delta x)^{2}}\left(U_{i+1, j+1}-2 U_{i, j+1}+U_{i-1, j+1}-U_{i+1, j}+2 U_{i, j}-U_{i-1, j}\right)=0
\end{align*}
$$

for $i=1(1) N-1$ and $j=0(1) J$ with a truncation error of $O(\Delta t)+O(\Delta x)^{2}$. The scheme is a nonlinear system of equations in $U_{i, j+1}$ and it needs to use an iteration technique to evaluate the solution.

Using the central difference operator δ defined by $\delta_{x} U_{i, j}=U_{i+1, j}-U_{i-1, j}$, (2.5) can be written as

$$
\begin{align*}
& \frac{U_{i, j+1}-U_{i, j}}{\Delta t}+\frac{1}{4 \Delta x}\left(U_{i+1, j+1}-U_{i-1, j+1}+U_{i+1, j}-U_{i-1, j}\right) \\
& \quad+\frac{\varepsilon}{8 \Delta x}\left\{\delta_{x}\left(U_{i, j+1}^{2}\right)+\delta_{x}\left(U_{i, j}^{2}\right)\right\} \tag{2.6}\\
& \quad-\frac{\mu}{\Delta t(\Delta x)^{2}}\left(U_{i+1, j+1}-2 U_{i, j+1}+U_{i-1, j+1}-U_{i+1, j}+2 U_{i, j}-U_{i-1, j}\right)=0 .
\end{align*}
$$

By Taylor expansion of $U_{i, j+1}^{2}$ about the point (i, j) we obtain

$$
\begin{equation*}
U_{i, j+1}^{2}=U_{i, j}^{2}+\Delta t \frac{\partial U_{i, j}^{2}}{\partial t}+\cdots=U_{i, j}^{2}+\Delta t \frac{\partial U_{i, j}^{2}}{\partial U_{i, j}} \frac{\partial U_{i, j}}{\partial t}+\cdots . \tag{2.7}
\end{equation*}
$$

Hence in terms of order $\Delta t, U_{i, j+1}^{2} \cong U_{i, j}^{2}+2 U_{i, j}\left(U_{i, j+1}-U_{i, j}\right)$, and taking

$$
\begin{equation*}
W_{i}=U_{i, j+1}-U_{i, j}, \tag{2.8}
\end{equation*}
$$

(2.6), with some manipulations, leads to

$$
\begin{align*}
\left(\frac{\varepsilon}{4 \Delta x}\right. & \left.U_{i-1, j}+\frac{\mu}{\Delta t(\Delta x)^{2}}+\frac{1}{4 \Delta x}\right) W_{i-1}-\left(\frac{1}{\Delta t}+\frac{2 \mu}{\Delta t(\Delta x)^{2}}\right) W_{i} \\
& +\left(\frac{\mu}{\Delta t(\Delta x)^{2}}-\frac{1}{4 \Delta x} U_{i+1, j}-\frac{1}{4 \Delta x}\right) W_{i+1} \tag{2.9}\\
= & \frac{1}{2 \Delta x}\left(U_{i+1, j}-U_{i-1, j}\right)+\frac{\varepsilon}{4 \Delta x}\left(U_{i+1, j}^{2}-U_{i-1, j}^{2}\right),
\end{align*}
$$

$(i=1(1) N-1)$ a system of linear equations for W_{i}. This approximation is second order in both space and time as regards truncation error. Obviously, the solution at the $(j+$ 1)th time level is obtained from (2.8) as $U_{i, j+1}=U_{i, j}+W_{i}$. Since the stability parameter $\Delta t /(\Delta x)^{2}$ depends not only on the form of the finite difference scheme (2.9) but also generally upon the solution $U(x, t)$ being obtained, the complications and difficulties may arise in the analysis of stability. In order to show how good the numerical solutions are in comparison with the exact ones, we will use the L_{2} and L_{∞} error norms defined by

$$
\begin{gather*}
L_{2}=\left\|U^{\text {exact }}-U^{\text {num }}\right\|_{2}=\left[\Delta x \sum_{i=1}^{N}\left|U_{i}^{\text {exact }}-U_{i}^{\text {num }}\right|^{2}\right]^{1 / 2}, \tag{2.10}\\
L_{\infty}=\left\|U^{\text {exact }}-U^{\text {num }}\right\|_{\infty}=\max _{i}\left|U_{i}^{\text {exact }}-U_{i}^{\text {num }}\right|
\end{gather*}
$$

3. Numerical examples and results

All computations were executed on a Pentium 4 PC in the Fortran code using double precision arithmetic. The RLW equation (1.1) satisfies only three conservation laws given as

$$
\begin{gather*}
I_{1}=\int_{-\infty}^{+\infty} U d x \simeq \Delta x \sum_{i=1}^{N} U_{i, j}, \\
I_{2}=\int_{-\infty}^{+\infty}\left[U^{2}+\mu\left(U_{x}\right)^{2}\right] d x \simeq \Delta x \sum_{i=1}^{N}\left[\left(U_{i, j}\right)^{2}+\mu\left(\left(U_{x}\right)_{i, j}\right)^{2}\right], \tag{3.1}\\
I_{3}=\int_{-\infty}^{+\infty}\left[U^{3}+3 U^{2}\right] d x \simeq \Delta x \sum_{i=1}^{N}\left[\left(U_{i, j}\right)^{3}+3\left(U_{i, j}\right)^{2}\right]
\end{gather*}
$$

which respectively correspond to mass, momentum, and energy [24]. In the simulations the invariants I_{1}, I_{2}, and I_{3} are monitored to check the conservation of the numerical scheme. For the computation of U_{x} in (3.1), we used a central finite difference approximation.

To implement the performance of the method, three test problems will be considered: the motion of a single solitary wave, the interaction of two positive solitary waves, and the undular bore.
3.1. The motion of a single solitary wave. We first consider (1.1) with the boundary conditions $U \rightarrow 0$ as $x \rightarrow \pm \infty$ and the initial condition

$$
\begin{equation*}
U(x, 0)=3 c \sec h^{2}\left(k\left(x-x_{0}\right)\right) . \tag{3.2}
\end{equation*}
$$

The exact solution of this problem is

$$
\begin{equation*}
U(x, t)=3 c \operatorname{sech} h^{2}\left(k\left(x-v t-x_{0}\right)\right) . \tag{3.3}
\end{equation*}
$$

This solution corresponds to the motion of a single solitary wave with amplitude $3 c$ and width k, initially centered at x_{0}, where $v=1+\varepsilon c$ is the wave velocity and $k=(1 /$ $2)(\varepsilon c / \mu v)^{1 / 2}$. This solution will also be used over an interval $a \leq x \leq b$. For this problem the theoretical values of the invariants are [14]

$$
\begin{equation*}
I_{1}=\frac{6 c}{k}, \quad I_{2}=\frac{12 c^{2}}{k}+\frac{48 k c^{2} \mu}{5}, \quad I_{3}=\frac{36 c^{2}}{k}+\frac{144 c^{3}}{5 k} \tag{3.4}
\end{equation*}
$$

which are recorded throughout the simulations. For the purpose of comparing with the earlier work, all computations are done for the parameters $\varepsilon=1, \mu=1$, and $x_{0}=0$.

Table 3.1 displays a comparison of the values of the invariants and error norms obtained by the present method with those obtained using the cubic finite difference method developed by Jain et al. [6] and implemented by Gardner et al. [10] for $c=0.1$. As it is seen from the table, the numerical values of invariants obtained from (3.1) are in very good agreement with their analytical values obtained from (3.4). The quantities in the invariants remain almost constant during the computer run. For the proposed finite difference

Table 3.1. Invariants and error norms for the single soliton with $c=0.1, \Delta x=0.1, \Delta t=0.1$, and over the region $-40 \leq x \leq 60$.

t	I_{1}	I_{2}	I_{3}	$L_{2} \times 10^{3}$	$L_{\infty} \times 10^{3}$
Present method					
0	3.97992	0.810459	2.57901	0.00	0.00
4	3.97995	0.810459	2.57901	0.12	0.05
8	3.97997	0.810459	2.57901	0.23	0.09
12	3.97999	0.810459	2.57901	0.34	0.14
16	3.97999	0.810459	2.57901	0.45	0.18
20	3.97997	0.810459	2.57901	0.55	0.21
Finite difference cubic method [6,10]					
0	3.97992	0.810459	2.57901	0.00	0.00
4	4.42017	0.899873	2.86339	39.82	13.74
8	4.41822	0.899236	2.86106	79.46	27.66
12	4.41623	0.898601	2.85863	118.8	41.35
16	4.41423	0.897967	2.85613	157.7	54.60
20	4.41219	0.897342	2.85361	196.1	67.35

method at times $t=0$ and $t=20$, change in I_{1} is 0.5×10^{-4}, and I_{2} and I_{3} are exact up to the last recorded digit, whereas for the cubic finite difference method, they are 0.43227 , 0.086883 , and 0.2746 , respectively. The error norms at each time obtained by the present method are smaller than those given in [6, 10]. For the present method at $t=20$, the error norms are $L_{2}=0.55 \times 10^{-3}$ and $L_{\infty}=0.21 \times 10^{-3}$, whereas they are $L_{2}=196.1 \times 10^{-3}$ and $L_{\infty}=67.35 \times 10^{-3}$ for the cubic finite difference method. In Table 3.2 the time evolution of the invariants I_{1}, I_{2}, and I_{3}, and of the error norms L_{2} and L_{∞} for $c=0.03$, is compared with the cubic finite difference method $[6,10]$. Again the present method produces good results.

The rates of convergence for the proposed numerical method in space sizes Δx_{m} and time steps Δt_{m} can be calculated by

$$
\begin{align*}
& \text { Order }=\frac{\log _{10}\left(\left|U^{\text {exact }}-U_{\Delta x_{m}}^{\text {num }}\right| /\left|U^{\text {exact }}-U_{\Delta x_{m+1}}^{\text {num }}\right|\right)}{\log _{10}\left(\Delta x_{m} / \Delta x_{m+1}\right)}, \\
& \text { Order }=\frac{\log _{10}\left(\left|U^{\text {exact }}-U_{\Delta t_{m}}^{\text {num }}\right| /\left|U^{\text {exact }}-U_{\Delta t_{m+1}}^{\text {num }}\right|\right)}{\log _{10}\left(\Delta t_{m} / \Delta t_{m+1}\right)}, \tag{3.5}
\end{align*}
$$

respectively [18].
The convergence rates computed by the present method for values of space size Δx_{m} and a fixed value of the time step Δt are recorded in Table 3.3. It is clearly seen that the scheme provides remarkable reductions in convergence rates for the smaller space sizes.

6 Regularized long-wave equation

Table 3.2. Invariants and error norms for the single soliton with $c=0.03, \Delta x=0.1, \Delta t=0.1$, and over the region $-40 \leq x \leq 60$.

t	I_{1}	I_{2}	I_{3}	$L_{2} \times 10^{3}$	$L_{\infty} \times 10^{3}$
Present method					
0	2.107	0.127301	0.388804	0.000	0.000
4	2.108	0.127302	0.388806	0.150	0.123
8	2.109	0.127302	0.388807	0.321	0.166
12	2.110	0.127302	0.388807	0.467	0.179
16	2.110	0.127302	0.388808	0.567	0.185
20	2.109	0.127302	0.388807	0.638	0.233
		Finite difference cubic method [6, 10]			
0	2.107	0.127301	0.388804	0.000	0.000
4	2.340	0.141322	0.431621	2.928	0.786
8	2.339	0.141195	0.431231	5.816	1.582
12	2.337	0.141067	0.430834	8.698	2.384
16	2.336	0.140940	0.430440	11.58	3.190
20	2.333	0.140815	0.430052	14.45	3.996

Table 3.3. The order of convergence at $t=20, \Delta t=0.1, c=0.1(-40 \leq x \leq 60)$, and $c=0.03(-80 \leq$ $x \leq 120$).

c	Δx_{j}	$L_{2} \times 10^{3}$	Order	$L_{\infty} \times 10^{3}$	Order
0.1	1	33.66668	-	12.74833	-
	0.5	8.767886	1.941021	3.381133	1.914730
	0.25	2.358203	1.894541	0.910513	1.892755
	0.125	0.744691	1.662974	0.286720	1.667037
	0.025	0.229367	0.731713	0.086429	0.745094
	0.0125	0.213601	0.102739	0.080163	0.108579
0.03	1	2.620662	-	0.794513	-
	0.5	0.667923	1.972178	0.202298	1.973589
	0.25	0.177379	1.912847	0.053656	1.914671
	0.125	0.054606	1.699704	0.016471	1.703811
	0.025	0.015359	0.788127	0.004569	0.796742
	0.0125	0.014146	0.118690	0.004198	0.122176

Table 3.4 displays the computed convergence rates for various values of time step Δt_{j} and a fixed value of the space size Δx. Again a noticeable decrease in convergence rates is observed when the time step decreases.

Table 3.4. The order of convergence at $t=20, \Delta x=0.1, c=0.1(-40 \leq x \leq 60)$, and $c=0.03(-80 \leq$ $x \leq 120$).

c	Δt_{j}	$L_{2} \times 10^{3}$	Order	$L_{\infty} \times 10^{3}$	Order
0.1	1	20.292460	-	7.618319	-
	0.5	5.461549	1.893562	2.062621	1.884994
	0.25	1.631432	1.743171	6.197000	1.734837
	0.125	0.666724	1.290977	0.255439	1.278591
	0.025	0.358400	0.385679	0.138568	0.380022
	0.0125	0.348799	0.039175	0.134914	0.038554
0.03	1	1.380075	-	0.411315	-
	0.5	0.367151	1.910301	0.109469	1.909721
	0.25	0.111587	1.718205	0.033363	1.714201
	0.125	0.047558	1.230409	0.014296	1.222637
	0.025	0.027068	0.350183	0.008194	0.345821
	0.0125	0.026428	0.034521	0.008003	0.034027

The profiles of the solitary waves at times $t=0$ and $t=20$ and the error distributions of the analytical and numerical solutions at $t=20$ for $c=0.1$ with the range $-40 \leq x \leq 60$ and for $c=0.03$ with the range $-80 \leq x \leq 120, \Delta x=0.125$ and $\Delta t=0.1$ are shown in Figure 3.1. For $c=0.1$, the amplitude is 0.3 at time $t=0$ while it is 0.299919 at time $t=20$ (Figure 3.1(a)) and so the relative change in the amplitude is about 0.027%. It is seen that the maximum error is about between -4×10^{-3} and 4×10^{-3} (Figure 3.1(b)). For $c=$ 0.03 , the amplitude is 0.09 at time $t=0$ while it is 0.089997 at time $t=20$ (Figure 3.1(c)) and so the relative change in the amplitude is about 0.0033%. It is observed that the maximum error is about between -6×10^{-4} and 6×10^{-4} (Figure 3.1(d)).
3.2. The interaction of two positive solitary waves. We secondly consider (1.1) with the boundary conditions $U \rightarrow 0$ as $x \rightarrow \pm \infty$ and the initial condition [17]

$$
\begin{equation*}
U(x, 0)=\sum_{j=1}^{2} 3 A_{j} \sec h^{2}\left(k_{j}\left(x-x_{j}\right)\right) \tag{3.6}
\end{equation*}
$$

where $A_{j}=4 k_{j}^{2} /\left(1-4 k_{j}^{2}\right)(j=1,2)$.
For the simulation, all computations are done for the parameters $k_{1}=0.4, x_{1}=15$, $k_{2}=0.3, x_{2}=35, \varepsilon=1, \mu=1, \Delta x=0.3$, and $\Delta t=0.1$ over the region $0 \leq x \leq 120$. The experiment was run from $t=0$ to $t=25$ to allow the interaction to take place. Figure 3.2 shows the interaction of two positive solitary waves. As it is seen from the figure, at $t=0$ a solitary wave with larger amplitude is on the left of the other solitary wave with smaller amplitude. The larger wave catches $u p$ with the smaller one as the time increases. At $t=0$,

Figure 3.1. Solitary wave profiles at $t=0,20$ and error (error $=$ exact-numerical) distributions at $t=20$.
the amplitude of the larger solitary wave is 5.33338 while the amplitude of the smaller one is 1.68598 , whereas at $t=25$, the amplitude of the larger solitary wave is 5.30235 at the point $x=86.7$ while the amplitude of the smaller one is 1.67157 at the point $x=69.9$. An oscillation of small amplitude trailing behind the solitary waves was observed. In order to see this oscillation occurring behind the waves in Figure 3.2 at time $t=25$, the scale of the figure is magnified as in Figure 3.3. It is clearly seen that an oscillation of amplitude $\sim 2.2 \times 10^{-2}$ is trailing behind the solitary waves.

Table 3.5 displays a comparison of the values of the invariants obtained by the present method with those obtained in [17]. It is observed that the obtained values of the invariants remain almost constant during the computer run. At times $t=0$ and $t=25$, the relative changes in the invariants I_{1}, I_{2}, and I_{3} for the present method are respectively $2.558 \times 10^{-3} \%, 6.647 \times 10^{-3} \%$, and $9.797 \times 10^{-3} \%$ whereas they are $0.352 \%, 0.570 \%$, and 2.237% for the cubic B-spline collocation finite element method given in [17]. It is clearly seen that each of the conserved quantities obtained by the present method is very well preserved.

Figure 3.2. The interaction of two positive solitary waves at different times.
3.3. The undular bore. As our last test problem, we consider (1.1) with the physical boundary conditions $U \rightarrow 0$ as $x \rightarrow \infty$ and $U \rightarrow U_{0}$ as $x \rightarrow-\infty$, and the initial condition

$$
\begin{equation*}
U(x, 0)=\frac{U_{0}}{2}\left[1-\tanh \left(\frac{x-x_{0}}{d}\right)\right], \tag{3.7}
\end{equation*}
$$

Figure 3.3. The interaction of two solitary waves at $t=25$ in Figure 3.2 (magnified).
where $U(x, 0)$, denotes the elevation of the water surface above the equilibrium level at time $t=0, U_{0}$ represents the magnitude of the change in water level which is centered on $x=x_{0}$, and d measures the steepness of the change. Under the above physical boundary conditions, the invariants I_{1}, I_{2}, I_{3} are not constant but increase linearly throughout the simulation at the following rates [14]:

$$
\begin{gather*}
M_{1}=\frac{d}{d t} I_{1}=\frac{d}{d t} \int_{-\infty}^{+\infty} U d x=U_{0}+\frac{1}{2} U_{0}^{2}, \\
M_{2}=\frac{d}{d t} I_{2}=\frac{d}{d t} \int_{-\infty}^{+\infty}\left\{U^{2}+\mu\left(U_{x}\right)^{2}\right\} d x=U_{0}^{2}+\frac{2}{3} U_{0}^{3}, \tag{3.8}\\
M_{3}=\frac{d}{d t} I_{3}=\frac{d}{d t} \int_{-\infty}^{+\infty}\left(U^{3}+3 U^{2}\right) d x=3 U_{0}^{2}+3 U_{0}^{3}+\frac{3}{4} U_{0}^{4},
\end{gather*}
$$

respectively.
For the simulation, all computations are done for the parameters $\varepsilon=1.5, \mu=1 / 6$, $U_{0}=0.1, x_{0}=0, \Delta x=0.24, \Delta t=0.1$, and $d=2,5$ in the region $-36 \leq x \leq 300$. The simulation is run until time $t=250$, and the values of the quantities I_{1}, I_{2}, I_{3} with the position and amplitude of the leading undulation for the steep slope $d=2$ and the gentle slope $d=5$ are recorded in Table 3.6. The numerical values of variations in quantities I_{1}, I_{2}, I_{3} are obtained as $M_{1}=0.107500, M_{2}=0.010992, M_{3}=0.034096$ for $d=2$ and $M_{1}=0.107500, M_{2}=0.010992, M_{3}=0.034101$ for $d=5$ which are in good agreement with the theoretical values $M_{1}=0.105000, M_{2}=0.010667, M_{3}=0.033075 \mathrm{ob}-$ tained from (3.8). The values of I_{1}, I_{2}, and I_{3} increase linearly according to the values of M_{1}, M_{2}, and M_{3}, respectively. The amplitudes of the leading undulation for $d=5$ and $d=2$ are 0.17710 and 0.18158 , respectively.

Table 3.5. Invariants for the interaction of two positive solitary waves.

t	I_{1}	I_{2}	I_{3}	$I_{1}[17]$	$I_{2}[17]$	$I_{3}[17]$
0	37.91648	120.35150	744.08140	37.91652	120.52280	744.08150
2	37.91682	120.35710	744.03870	37.91596	119.17830	725.54580
4	37.91697	120.35840	744.01100	37.91170	121.16020	736.94430
5	37.91704	120.35860	743.99850	-	-	-
6	37.91709	120.35830	743.97960	37.89662	118.12660	714.05840
8	37.91719	120.35700	743.86790	37.85975	119.73170	728.51730
10	37.91727	120.36380	743.42020	37.79221	119.73430	726.68790
12	37.91733	120.39150	742.33870	37.69667	119.63340	725.72360
14	37.91736	120.41560	741.57810	37.59553	119.23590	724.70020
15	37.91738	120.40600	741.89150	-	-	-
16	37.91740	120.38860	742.48890	37.52916	119.41850	725.83990
18	37.91741	120.36530	743.47520	37.54027	119.82760	727.08860
20	37.91744	120.35990	743.86380	37.64730	119.80410	727.19480
22	37.91745	120.35940	743.97500	37.82237	119.79820	727.25420
24	37.91746	120.35950	744.00370	37.99313	119.89230	727.49210
25	37.91745	120.35950	744.00850	38.05010	119.83550	727.43920

Table 3.6. Invariants, position, and amplitude of the leading undulation for $d=2,5$.

d	t	I_{1}	I_{2}	I_{3}	x	Amplitude
2	0	3.58800	0.35081	1.08078	-	-
	50	8.96300	0.89905	2.78584	48.96000	0.13940
100	14.33799	1.44901	4.49069	102.48000	0.15831	
150	19.71301	1.99896	6.19543	156.72000	0.17013	
200	25.08799	2.54892	7.90013	211.20000	0.17713	
	250	30.46299	3.09887	9.60482	265.68000	0.18158
5	0	3.58800	0.33565	1.03353	-	-
	50	8.96300	0.88391	2.73902	48.24000	0.11067
	100	14.33801	1.43389	4.44424	102.24000	0.13683
150	19.71300	1.98385	6.14918	156.24000	0.15714	
	200	25.08802	2.53381	7.85395	210.48000	0.16990
	250	30.46305	3.08376	9.55868	264.96000	0.17710

Figure 3.4. Undulation profiles for the gentle slope $d=5$ and steep slope $d=2$ at $t=100$ and $t=250$.

Figure 3.4 illustrates the undular bore profiles at $t=100$ and $t=250$ for the gentle slope $d=5$ and the steep slope $d=2$. As it can be seen that from the figure, the number of undulations formed increases with the decrease of d from $d=5$ to $d=2$. The number of undulations also increases with the increase of t, as expected.

4. Conclusion

A linearized implicit finite difference method was presented to obtain numerical solutions of the RLW equation. The efficiency of the method was tested on three numerical experiments of wave propagation: the motion of a single solitary wave, the development of two positive solitary waves interaction, and an undular bore, and its accuracy was examined by the error norms L_{2} and L_{∞}. The obtained results show that the error norms are reasonably small and the conservation properties are all very good. The results also suggest that the present method whose application is easier than many other numerical techniques such as finite element and spectral methods can be applied to a large number of physically important nonlinear wave problems with success.

References

[1] D. H. Peregrine, Calculations of the development of an undular bore, Journal of Fluid Mechanics 25 (1966), 321-330.
[2] T. B. Benjamin, J. L. Bona, and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philosophical Transactions of the Royal Society of London. Series A 272 (1972), no. 1220, 47-78.
[3] J. L. Bona and P. J. Bryant, A mathematical model for long waves generated by wavemakers in non-linear dispersive systems, Proceedings of the Cambridge Philosophical Society 73 (1973), 391-405.
[4] P. C. Jain and L. Iskandar, Numerical solutions of the regularized long-wave equation, Computer Methods in Applied Mechanics and Engineering 20 (1979), no. 2, 195-201.
[5] J. C. Eilbeck and G. R. McGuire, Numerical study of the regularized long-wave equation. II. Interaction of solitary waves, Journal of Computational Physics 23 (1977), no. 1, 63-73.
[6] P. C. Jain, R. Shankar, and T. V. Singh, Numerical solution of regularized long-wave equation, Communications in Numerical Methods in Engineering 9 (1993), no. 7, 579-586.
[7] D. Bhardwaj and R. Shankar, A computational method for regularized long wave equation, Computers \& Mathematics with Applications 40 (2000), no. 12, 1397-1404.
[8] Q. S. Chang, G. B. Wang, and B. L. Guo, Conservative scheme for a model of nonlinear dispersive waves and its solitary waves induced by boundary motion, Journal of Computational Physics 93 (1991), no. 2, 360-375.
[9] L. R. T. Gardner and G. A. Gardner, Solitary waves of the regularised long-wave equation, Journal of Computational Physics 91 (1990), no. 2, 441-459.
[10] L. R. T. Gardner, G. A. Gardner, and I. Dag, A B-spline finite element method for the regularized long wave equation, Communications in Numerical Methods in Engineering 11 (1995), no. 1, 59-68.
[11] I. Dag, Least-squares quadratic B-spline finite element method for the regularised long wave equation, Computer Methods in Applied Mechanics and Engineering 182 (2000), no. 1-2, 205-215.
[12] I. Dag and M. N. Özer, Approximation of RLW equation by least square cubic B-spline finite element method, Applied Mathematical Modelling 25 (2001), no. 3, 221-231.
[13] A. Dogan, Numerical solution of RLW equation using linear finite elements within Galerkin's method, Applied Mathematical Modelling 26 (2002), no. 7, 771-783.
[14] S. I. Zaki, Solitary waves of the splitted RLW equation, Computer Physics Communications 138 (2001), no. 1, 80-91.
[15] I. Dag, B. Saka, and D. Irk, Application of cubic B-splines for numerical solution of the RLW equation, Applied Mathematics and Computation 159 (2004), no. 2, 373-389.
[16] A. A. Soliman and K. R. Raslan, Collocation method using quadratic B-spline for the RLW equation, International Journal of Computer Mathematics 78 (2001), no. 3, 399-412.
[17] K. R. Raslan, A computational method for the regularized long wave (RLW) equation, Applied Mathematics and Computation 167 (2005), no. 2, 1101-1118.
[18] I. Dag, B. Saka, and D. Irk, Galerkin method for the numerical solution of the RLW equation using quintic B-splines, Journal of Computational and Applied Mathematics 190 (2006), no. 1-2, 532547.
[19] B. Y. Guo and W. M. Cao, The Fourier pseudospectral method with a restrain operator for the RLW equation, Journal of Computational Physics 74 (1988), no. 1, 110-126.
[20] B. Y. Guo and V. S. Manoranjan, Spectral method for solving the RLW equation, Journal of Computational Mathematics 3 (1985), no. 3, 228-237.
[21] D. M. Sloan, Fourier pseudospectral solution of the regularised long wave equation, Journal of Computational and Applied Mathematics 36 (1991), no. 2, 159-179.

14 Regularized long-wave equation

[22] K. Djidjeli, W. G. Price, E. H. Twizell, and Q. Cao, A linearized implicit pseudo-spectral method for some model equations: the regularized long wave equations, Communications in Numerical Methods in Engineering 19 (2003), no. 11, 847-863.
[23] P. M. Prenter, Splines and Variational Methods, Wiley-Interscience, New York, 1975.
[24] P. J. Olver, Euler operators and conservation laws of the BBM equation, Mathematical Proceedings of the Cambridge Philosophical Society 85 (1979), no. 1, 143-160.
S. Kutluay: Department of Mathematics, Faculty of Arts and Science, Inonu University, 44280 Malatya, Turkey
E-mail address: skutluay@inonu.edu.tr
A. Esen: Department of Mathematics, Faculty of Arts and Science, Inonu University, 44280 Malatya, Turkey
E-mail address: aesen@inonu.edu.tr

