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The finite-difference time-domain !FDTD" method is a numerical technique that makes no explicit
physical approximations to the underlying problem. The quality of a FDTD-based solution typically
is determined by the discretization of the computational domain—the smaller the spacing, the more
accurate the solution. Unfortunately, for large computational domains, i.e., ones spanning many
wavelengths, the small spatial step size needed to obtain a high-fidelity solution may lead to a
prohibitively large number of unknowns. Here it is shown how the FDTD method can be used to
model accurately scattering from pressure-release surfaces above a homogeneous water column. To
keep the computational cost manageable, a number of enhancements to the standard FDTD
algorithm are employed. These enhancements include correcting for numerical dispersion along the
specular direction of the incident insonification, using locally conformal cells at the pressure-release
boundary, and propagating the field through the homogeneous water column via an analytic method.
The accuracy of the FDTD approach is demonstrated by comparison with an integral equation-based
reference solution to the same rough surface scattering problem #Thorsos, Proceedings of the
Reverberation and Scattering Workshop, pp. 3.2–3.20 !1994" Naval Research Laboratory Book
Contribution NRL/BE/7181-96-001$. © 1997 Acoustical Society of America.
#S0001-4966!97"03912-X$
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INTRODUCTION

The finite-difference time-domain !FDTD" method is a
numerical technique that has been used to solve a wide range
of problems for electromagnetic, acoustic, and elastic wave
propagation !see, for example, Refs. 1–3". While the FDTD
method does not use any explicit physical approximations to
the underlying problem, implicit approximations are inherent
to any numerical method. For the FDTD method, these ap-
proximations include homogeneity of the material over indi-
vidual cells and a ‘‘staircase’’ approximation to the interface
between materials. One strength of a numerical method is
that errors introduced by these implicit approximations can,
in theory, be made vanishingly small. However, there is a
trade-off between accuracy and computational cost. To ob-
tain an accurate solution to a large problem using standard
FDTD techniques, the number of unknowns required may be
prohibitively large.

In this paper, it is shown that the FDTD method can be
used to predict accurately the fields scattered from one-
dimensional rough pressure-release surfaces spanning 200,
or more, wavelengths of the insonification. This problem
naturally lends itself to the use of several algorithm enhance-
ments that permit an accurate solution at a reasonable cost
and hence that make the solving of large problems feasible.

In a previous paper, the FDTD method was used in a
Monte Carlo technique to obtain scattering cross sections for
randomly rough surfaces satisfying the Dirichlet boundary

condition.4 Both single-scale Gaussian and multiscale
Pierson–Moskowitz surface roughness spectra were consid-
ered. The FDTD results agreed with those obtained by Thor-
sos using an integral equation !IE" technique.5 However, the
calculation of a scattering cross section, or scattering
strength, requires the determination of fields far from the
scatterer. Also, Monte Carlo studies, such as the ones used in
Refs. 4 and 5, require averaging of results over many surface
realizations. Since near fields are typically more complicated
than far fields, and since averaging may mask small errors, it
is possible that the FDTD method might not provide accurate
results in the near-field for any single surface realization. To
address this concern, this paper examines FDTD-based re-
sults for a reference problem for which an accurate IE-based
solution exists.6 For this problem, near-field pressures are
obtained for a single surface realization. Excellent agreement
between the two solutions is obtained. Stephen has published
a FDTD solution to the same problem, and his results agree
well with the reference solution.7 The work presented here
differs from Stephen’s in that the number of unknowns and
the computational time are reduced by more than an order of
magnitude. In addition, greater accuracy is obtained.

The FDTD method can be used to yield a full wave,
time-domain solution to the surface scattering problem with-
out placing restrictions on the underlying physical geometry.
This allows the direct study of the scattering physics, but
also permits benchmarking of approximate methods such as
the small slope8 and parabolic equation approximations.9 Ad-
ditionally, exact methods can be used to benchmark other
less computationally expensive numerical methods. The ref-
erence problem considered here is a rigorous test of numeri-
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cal accuracy; by comparing results in the near field, it is
possible to detect small discrepancies that might not be evi-
dent in a far-field comparison. The results presented in this
paper, in conjunction with those presented in Ref. 4 verify
the accuracy of the FDTD method for the Dirichlet rough
surface scattering problem.

The FDTD method is a time-domain method that can
provide results over a broad frequency spectrum by means of
a single simulation. However, since the reference problem
and the corresponding IE reference solution were posed in
the frequency domain, the FDTD solution presented here is
restricted to a single frequency. Thus, we demonstrate the
accuracy of the FDTD method, but do not concentrate on
exploiting its full power.

In the next section, we describe the reference problem
and present a comparison of the FDTD and IE results. In
Sec. II we discuss the details of implementing the FDTD
method and the enhancements employed.

I. REFERENCE PROBLEM AND SOLUTION

The reference problem considered !Fig. 1" consists of a
one-dimensional, rough pressure-release sea surface, an is-
ovelocity water column, and harmonic tapered-beam
insonification.6 The rough surface is a single realization from
a set of surfaces generated using a Pierson–Moscowitz wave
number spectrum for a wind speed of 15 m/s.10 The surface
height is specified over a range of 750 m. The incident har-
monic pressure is given at zero range, x!0, by

p inc!x!0,z "!exp! "
!z"z0"2

g2 " exp! ikz sin % i", !1"

where % i!10° is the mean grazing angle, g!27.55 m is the
half-power width, z0!"66.12 m is the location of the pres-
sure maximum, and k!2& f /c m"1 is the wave number. The
frequency f is 400 Hz and the sound speed in water c is 1500
m/s. Depth increases in the negative z direction. The FDTD
simulation requires that the incident field be specified on the
surface and also at the receiver. Using Green’s second theo-
rem, one can express the incident field at any point in the
water column in terms of the field at zero range,

p inc!x ,z "!2#
"'

'

p inc!x!!0,z!"

#
(G0!x ,z;x!,z!"

(x! $
x!!0

dz!, !2"

where G0(x ,z;x!,z!) is the two-dimensional free-space
Green’s function given by

G0!x ,z;x!z!"!
i
4 H0

!1 "!k!!x"x!"2$!z"z!"2". !3"

The maximum value of p inc(x!0,z) is unity and occurs at a
depth of z!z0 . As written, !2", with the upper limit of inte-
gration at infinity, is for an infinite water column and is not
directly applicable to the problem at hand. However,
p inc (x!0, z" is small for z)0 m, so the integration can be
truncated at an upper limit of zero without introducing sig-
nificant error.

The goal of the reference problem is to find the total
pressure at a range of 750 m over a 200-m depth starting at
the surface !i.e., x!750 m and "200*z*0 m". The refer-
ence solution was obtained using an IE technique.6 Careful
analysis was done to ensure that numerical errors were small.

Figure 2 shows a plot of the magnitude of the pressure
over the 200-m depth for the reference solution and the
FDTD solution. The two curves are nearly identical except
near depths of 10 and 160 m, where there are slight differ-
ences. Adjusting the location of the absorbing boundary con-
dition relative to the surface affected the error at 10 m.
Hence, the discrepancy at this location is attributed to arti-
facts introduced by the absorbing boundary condition. This is
discussed further in Sec. II F. No obvious explanation was
found for the discrepancy in the data at 160 m; it is most
likely due to the differences between the FDTD and IE
implementations. !For example, for the FDTD solution the
elevation of the pressure-release surface was sampled every
1
16 of a wavelength, whereas for the IE solution the surface
was sampled every 1

10 of a wavelength." It should be noted
that these differences and the resulting discrepancies in the
data are well within practical limits.

FIG. 1. Reference problem geometry. The surface is drawn to scale. The
expanded view shows a segment of the surface and lines with lengths equal
to one wavelength of the insonification. The incident field is specified at a
range of zero !identified as the transmitter". The goal is to determine the
scattered pressure at a range of 750 m over a depth of 200 m !identified as
the receiver". The terms transmitter and receiver are used logically and are
not meant to imply the existence of a physical device at these locations.

FIG. 2. Pressure magnitude over a depth of 200 m at a range of 750 m.
Reference solution and FDTD solution.
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Figure 3 shows the phase of the pressure for the refer-
ence solution and the FDTD solution. !The branch cut was
taken at 180° and, for the sake of clarity, the segments are
not connected across the cut." Again, the reference solution
and FDTD solution exhibit excellent agreement except near
a depth of 10 m. The difference seen in the magnitude at 160
m is not present in the phase.

II. FDTD IMPLEMENTATION
A. Basic equations

The governing acoustic equations in two dimensions are

(p
(t !"+c2! (vx

(x $
(vz
(z " , !4"

(vx
(t !"

1
+

(p
(x , !5"

(vz
(t !"

1
+

(p
(z , !6"

where p is pressure, v! !vxâx$vzâz is velocity, and + is den-
sity. For the reference problem the isovelocity water column
has a density of 1000 kg/m3. The updated equations for the
FDTD method are obtained by replacing the derivatives in
!4"–!6" by finite differences and solving for ‘‘future’’ fields
in terms of present and past fields. To obtain a fully explicit
scheme the points at which the fields are evaluated must be
offset spatially and temporally. Second-order accurate cen-
tral differences can be used to approximate all the derivatives
if the fields are discretized so they are defined at the follow-
ing evaluation points:

p!x ,z ,t "!p! i,x , j,z ,n,t "!pn! i , j ", !7"

vx!x ,z ,t "!vx„! i$1/2",x , j,z ,!n$1/2",t…
!vx

n$1/2! i , j ", !8"

vz!x ,z ,t "!vz„i,x ,! j$1/2",z ,!n$1/2",t…
!vz

n$1/2! i , j ", !9"

where ,x and ,z are the range and depth spatial step sizes,
respectively, and ,t is the temporal step size. A portion of

the FDTD grid is shown in Fig. 4. In this work ,x!,z!-.
On the right-hand side of !7"–!9", the fields are specified by
their spatial and temporal indices, i.e., the arguments and the
superscripts, respectively. For the vx and vz components of
velocity, the spatial offsets are implied by the field compo-
nent #i.e., vx(i , j) is not collocated with vz(i , j)$. The tempo-
ral offset between the fields is explicitly retained in the tem-
poral index. Replacing the derivatives in !4"–!6" with finite
differences and using the discretization of !7"–!9" yields the
following update equations:

pn! i , j "!pn"1! i , j ""+c
c,t
-

#vx
n"1/2! i , j "

"vx
n"1/2! i"1,j "$vz

n"1/2! i , j "

"vz
n"1/2! i , j"1 "$ , !10"

vx
n$1/2! i , j "!vx

n"1/2! i , j ""
1
+c

c,t
-

##pn! i$1,j ""pn! i , j "$ , !11"

vz
n$1/2! i , j "!vz

n"1/2! i , j ""
1
+c

c,t
-

##pn! i , j$1 ""pn! i , j "$ . !12"
These equations are used in a leap-frog scheme to obtain the
unknown future fields in terms of the known past and current
fields. This explicit scheme, unlike many implicit schemes, is
not unconditionally stable. To obtain a stable solution in two
dimensions, the factor c,t/- , known as the Courant number,
must be less than or equal to 1/& . !For more information on
the Courant number and stability of the FDTD method the
reader is referred to Ref. 1."

In the remainder of this paper we discuss the application
of these equations to solving the reference problem. Several
enhancements that are not found in ‘‘traditional’’ FDTD-
based solutions are presented. Collectively, these enhance-
ments enable the FDTD method to produce accurate results
at a reasonable computational cost.

FIG. 3. Pressure phase over a depth of 200 m at a range of 750 m. Reference
solution and FDTD solution.

FIG. 4. Staircase and contour path models of the surface are shown. Part !a"
shows the actual surface !black solid line" with staircase approximation
!gray solid line" and conformal cells !dashed lines". The conformal cells are
bounded on the top by the actual surface. Conformal cells are shown for vx
and vz in parts !b" and !c", respectively.
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B. Incident field and scattered-field formulation

Insonification of the FDTD grid was accomplished using
a scattered-field approach for which the field at the pressure-
release surface is set to the negative of the incident field.
Hence, it was necessary to calculate the incident field at the
surface. Incident field data were available from Thorsos in a
format suitable for the IE method.6 However, since the el-
evations of the pressure-release surface were sampled at dif-
ferent ranges for the FDTD solution, it was necessary to use
an independent calculation of the incident field. For the IE
solution, !2" was integrated using a single-precision Riemann
sum over the limits "150 *z*0 m. For the FDTD solution,
a semi-infinite, double-precision integral was used. Integra-
tion was performed with an adaptive quadrature routine from
the QUADPACK integration package.11

To exploit fully the power of the FDTD technique, the
incident insonification should be transient, allowing informa-
tion to be obtained over a band of frequencies. However,
when results are needed for only a single frequency, as for
the case here, one can either use transient insonification and
extract the information at the desired frequency or, alterna-
tively, use ‘‘quasi-harmonic’’ illumination and wait for the
transients to die out. By ‘‘quasi-harmonic’’ we mean the
excitation is zero at the start of the simulation but then, after
a gradual ramp in magnitude as described below, varies har-
monically. Each approach requires approximately the same
number of time steps. With the first approach, the simulation
must be run until all energy has propagated out of the com-
putational domain to prevent frequency aliasing. With the
second approach, the simulation must be run until all tran-
sients dissipate and steady state is obtained. Since the refer-
ence problem specified the insonification at a single fre-
quency and a suitable analytic expression for transient
illumination was not readily available, we used a quasi-
harmonic incident field.

For a point (xs ,zs) on the surface, !2" can be used to
obtain the scattered field phasor As exp("i.s) !the scattered
field is the negative of the incident field as reflected in the
phase of .s". In the time domain this becomes As cos(/t
$.s). Use of this time-domain representation for all surface
points throughout the computational domain would cause an
exceedingly large transient since all the surface fields would
switch on simultaneously. An excessive number of time
steps would then be required to dissipate this transient. The
transient associated with the introduction of the incident field
can be reduced significantly by gradually turning on the
field. This can be accomplished by weighting the amplitude
of the surface fields in accordance with a temporally ramped
plane wave. Specifically, for points on the surface the scat-
tered pressure is

ps!xs ,zs ,t "!As cos!/t$.s"u!0"#1"exp!"02/12"$ ,
!13"

where 0!ct"xs cos %i"zs sin %i , u is the unit step function,
and % i is the incident angle. The time constant 1 controls the
rate at which the surface fields ramp up to their final values;
for this work, it was set to approximately ten periods of the
harmonic insonification. This modified form of the incident

field affects only the transient and not the steady-state behav-
ior.

C. Near-field to near-field transformation

As shown in Fig. 1, the reference problem requires cal-
culation of the scattered field over a 200-m depth at a range
of 750 m, i.e., over the line labeled ‘‘receiver.’’ A FDTD
grid can be constructed to span the entire receiver. After
steady state has been obtained, the scattered field at the re-
ceiver is then recorded directly from the grid. However, this
is not the most efficient approach. Since the water column is
homogeneous, it is possible to calculate analytically the scat-
tered field at any point in the water column using a near-field
to near-field !NFNF" transformation. This approach has two
important advantages over a direct FDTD solution: !i" the
computational domain is much smaller and !ii" the effects of
numerical dispersion are reduced. As a result, the computa-
tional cost is reduced while, at the same time, the accuracy is
improved.

Implementation of the NFNF transformation is straight-
forward. Once steady state is reached, the scattered fields are
recorded over an imaginary boundary three cells below the
lowest point of the surface. This boundary is referred to as
the data collection zone and is shown in Fig. 5. Again em-
ploying an analytic expression, similar to !2", the scattered
fields at the ‘‘receiver’’ are calculated from the measured
fields.

Steady state was defined to exist when the magnitudes
and phases no longer changed significantly from one period
of the incident field to the next. The simulation was termi-
nated when the average relative change in magnitudes was
less than 0.001 and the average change in phase was less
than 0.05°. To obtain the values of the magnitudes and
phases, the required fields were sampled twice each period
along the data collection zone. With harmonic oscillation
assumed, the two samples were sufficient to determine the
magnitude and phase of the signal.

In the NFNF approach, the computational domain is
made large enough to accommodate the surface, the data
collection zone, and the absorbing boundary condition. In
comparison with the standard FDTD approach, for which the
computational domain encloses the entire receiver, the verti-
cal dimension of the domain is reduced by approximately
91%. In addition, for the NFNF approach the fields propa-

FIG. 5. Computational domain for the FDTD simulation. The PML ABC
bounds the lower edge and part of the sides of the domain. The measure-
ment boundary is the line over which the pressures and velocities are mea-
sured for transformation to the ‘‘receiver.’’ In this figure the vertical scale
has been expanded by a factor of approximately 15.
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gate only from the surface to the data collection zone before
they are measured, in contrast to the standard FDTD ap-
proach for which the fields propagate from the ‘‘transmitter’’
to the ‘‘receiver.’’ The error introduced by numerical disper-
sion increases with the distance the fields propagate. Hence,
this error is significantly smaller for the NFNF approach as
discussed further in the next section

D. Dispersion correction

Equations !10"–!12" are inherently dispersive. For a
plane wave propagating in the FDTD grid at an angle 2 with
respect to the x axis, the numeric dispersion relation

! -
c,t " 2 sin2! /,t

2 "!sin2! - k̃ cos 2

2 "
$sin2! - k̃ sin 2

2 " , !14"

where k̃ is the wave number for the fields propagated by the
FDTD simulation and / is the frequency.1 This reduces to
the usual continuous-space dispersion relation, i.e., k2
!/2/c2, in the limit as - and ,t approach zero. !Note that
the FDTD scheme used here discretizes the coupled first-
order governing differential equations. However, the disper-
sion relation is the same for the discretized form of the wave
equation.12"

To minimize the memory required for a simulation, the
coarsest possible grid should be used. However, in practice,
certain errors increase as the spatial step size increases, thus
imposing limits on the coarseness of the grid. These errors
are associated with !i" assuming homogeneity for a material
over discrete ‘‘cells,’’ !ii" approximating material boundaries
as ‘‘staircased,’’ and !iii" numeric dispersion. In the problem
under consideration, the water column is homogeneous so
the first source of error is not relevant. The second source of
error is considered in the next section. The error associated
with numeric dispersion, i.e., the amount that k̃ differs from
the true wave number, is a function of the spatial step size,
the angle of propagation, and the Courant number. For a
given spatial step size and propagation angle, the error is at a
minimum at the Courant limit !which is 1/!D where D is the
number of spatial dimensions in the problem".13,14 Thus, the
Courant limit was used for the FDTD solution to the refer-
ence problem. A spatial step size of 1

16 of a wavelength is not
uncommon in FDTD simulations involving objects !scatter-
ers" less than 10 wavelengths in size. This discretization,
though considered large, was found to be acceptable for the
reference problem, provided corrections were made for nu-
meric dispersion as described below.

At 16 points per wavelength !PPW" and the Courant
limit and assuming plane wave propagation at an angle of
10° #i.e., 2!10° in !14"$, the phase velocity in the FDTD
grid is 0.287% slower than the true phase velocity. This dif-
ference in velocity seemingly is small, but the error associ-
ated with it is cumulative. After a wave propagates through a
large computational domain, such as the one considered
here, the total phase error can be quite large. Here the dif-
ference between k and k̃ produces approximately one degree

of phase error per wavelength of propagation. Thus, propa-
gation across the entire 200-wavelength computational do-
main would result in 200 degrees of phase error.

As discussed in Sec. II C, a NFNF transformation was
used to obtain the fields at the receiver. By analytically
‘‘propagating’’ fields whenever possible, a much smaller
computational domain was used than would otherwise have
been required. However, this scheme mixes analytic and nu-
meric wave numbers over a large computational domain, re-
quiring that the two wave numbers agree more closely than
they do when using a discretization of 16 PPW in the stan-
dard FDTD method. Fortunately, this problem can be solved
in one of two ways: !i" the analytic wave number can be
increased to agree with the numeric one or !ii" the material
parameters in the simulation can be adjusted to make the
numeric wave number agree with the analytic one. In this
work, the former approach was used. Thus, in analytic ex-
pressions, k was replaced by 1.00288k . Since the wavelength
in the FDTD simulation was contracted, the height and
length of the pressure-release surface were scaled corre-
spondingly !divided by a factor of 1.00288". Finally, when
transforming back into physical space from numeric space
!points in the FDTD grid", the spatial coordinates were re-
scaled by multiplying by a factor of 1.00288.

The reference problem is well suited to such a simple
dispersion correction since the incident field propagates pri-
marily in a single direction !i.e., although the incident insoni-
fication is not a plane wave, most of the incident energy
propagates at an angle 2 close to 10° grazing". If the incident
field were not approximately planar !e.g., the field due to a
line source near the surface", it would be difficult to define a
meaningful dispersion correction factor, and dispersion er-
rors would have to be controlled by a suitable selection of
the PPW.

It should be noted that for the problem considered here,
the benefits of using a dispersion correction are not restricted
to results near the specular direction !10° grazing". The fields
coupled into the grid are dictated by an analytic expression
for the incident field. It is important that the phase velocity
!or wave number" of the analytic expression and the phase
velocity of the fields in the grid are matched. Without proper
matching, the fields coupled into the grid will behave as if
the incident field arrived at an angle other than the true inci-
dent angle. By correcting for numerical dispersion, the inci-
dent angle is true. However, the scattered fields do leave the
surface at all angles. Thus, energy that is propagating in di-
rections other than specular !or backscatter" will suffer some
numerical dispersion since the dispersion correction is only
exact for a single angle. However, these scattered fields are
recorded !at the data collection zone" after traveling only a
short distance and, hence, at that point, have not accumulated
any significant phase error. Since the fields are analytically
propagated after being recorded, no additional phase error is
ever introduced.

The type of dispersion correction described above is not
restricted to the Dirchlet problem. It can be applied equally
well to fluid–fluid and fluid–elastic interface problems.
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E. Surface realization and conformal cell

The reference problem specified heights to a high degree
of accuracy, but only at discrete range samples separated by
1
10 of a wavelength. Since the FDTD simulation requires a
finer discretization in range, it was necessary to interpolate
between the surface heights provided. Hence, the resulting
surface was slightly different than that used for the IE
method.

A standard FDTD implementation uses a Cartesian grid
that allows specification of media only to within a grid space.
As a result, curved boundaries are modeled using a staircase
approximation as shown in Fig. 4!a". Such an approximation
can produce significant artifacts due to nonphysical scatter-
ing. This is remedied either by using a very finely discretized
grid or by using a conformal technique for which the grid
structure is altered to conform to the scatterer. In this work, a
locally conformal technique was used based on the integral
form of !5" and !6". Rewriting these equations as a single
vector equation and taking the volume integral of both sides
yields

#
V

(v!

(t dv!"#
V

1
+

“p dv . !15"

Using the identity 3v“2 dv!3 s2 n̂ ds and reducing to the
2-D case yields

#
S

(vx
(t ds!" %

l

1
+
pnx dl , !16"

#
S

(vz
(t ds!" %

l

1
+
pnz dl , !17"

where surface S and contour l are shown in Fig. 4!b" and !c"
for field components vx and vz , respectively. The quantities
nx and nz are the x and z components, respectively, of the
outward unit normal vector along the contour. This method
is analogous to that introduced by Jurgens et al.15 It is as-
sumed that vx and vz are constant over S and p is constant
over each segment of the contour. To satisfy the Dirichlet
boundary condition, the pressure on the surface is set to the
negative of the incident field. The incident field is computed
at the center of the contour segment adjoining the surface.
Under these assumptions, !16" and !17" reduce to the time-
stepping relations

vx
n$1/2! i , j "!vx

n"1/2! i , j ""
,t

1
2! l1$l2"-+

„pn! i , j "
"!1$! l2"l1"2nxp inc… !18"

vz
n$1/2! i , j "!vz

n"1/2! i , j ""
,t

1
2! l3$l4"-+

„pn! i , j$1 "

"!1$! l3"l4"2nzp inc…, !19"

where lengths l1 , l2 , l3 , and l4 are shown in Fig. 4!b" and
!c".

Pressure nodes that have one or more neighboring ve-
locities above the pressure-release surface are not used. In-
stead, the velocities that would normally depend on them for

update are computed using extended cells. Hence, no special
update equation is needed for pressure nodes that occur near
the surface. To obtain !18" and !19" the conformal cells are
approximated as trapezoids. This introduces a slight change
in the surface geometry; however, the difference is small
compared to the staircase approximation. Conformal-cell up-
dates only occur near the interface; in fact !16" and !17"
reduce to !11" and !12" for square cells.

Many of the locally conformal schemes developed for
electromagnetics problems can be adapted for acoustics
problems. The method used here is adapted from one devel-
oped for electromagnetic scattering from perfect electric
conductors.15 Fluid-fluid boundaries are analogous !in 2-D"
to dielectric–dielectric boundaries and hence the locally con-
formal schemes which have been developed for dielectric
interfaces can be used to solve fluid–fluid problems. These
methods are not restricted to surface scattering problems
such as the one considered here—they can also be applied to
discrete scatterers with complicated geometries including
wedges, slots, and curved surfaces.1

F. Absorbing boundary conditions

For unbounded problems, a FDTD simulation requires
the use of absorbing boundary conditions !ABCs". Here, the
perfectly matched layer !PML"16 ABC was used. As shown
in Fig. 5, the ABC bounds the computational domain below
the surface and terminates on the edges at the water–air in-
terface. The surface was extended with flat buffer zones on
either end to accommodate the PML. The PML thickness
used was 16 grid spaces.

A minimum vertical grid dimension of 78 cells was used
to accommodate the surface and the PML. Increasing this
value caused a change in the results at a depth of 10 m;
however, the magnitude of the difference between the FDTD
and reference solutions remained relatively constant. Hence,
it is likely that reflections from the ABC were the cause of
the discrepancy at the 10-m depth. To eliminate completely
spurious energy from the ABC, it would be necessary to
increase the size of the computational domain to such an
extent that the problem would become numerically intrac-
table. However, given the published literature documenting
the excellent overall performance of the PML ABC and the
weak dependence of the observed results on the size of the
computational domain, one can be confident that the error
introduced by the PML is small.

G. Comparison with another FDTD solution

A FDTD-based solution to the reference problem has
been published by Stephen.7 His solution is based on the
full-grid implementation—that is, the computational domain
fully encompasses the surface, ‘‘transmitter,’’ and ‘‘re-
ceiver.’’ The incident field is propagated directly from the
‘‘transmitter’’ via the FDTD grid, and no NFNF transforma-
tions are used. Table I lists some of the differences between
the full-grid solution and the solution presented here. The
full-grid solution agreed well with the reference solution.
However, with the exception of the field near a depth of 10
m, the results presented in this paper agree better with the
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reference solution than do the full-grid results. The full-grid
solution was obtained using 20 PPW instead of 16. The
amount of phase error due to dispersion is reduced 36%
when the PPW are increased from 16 to 20. However the
NFNF approach with the dispersion correction had better
overall accuracy. From Table I, it is apparent that the NFNF
approach is computationally more efficient than the full-grid
approach. However, the implementation used in Ref. 7 was a
general elastic/acoustic scheme. The use of strictly acoustic
update equations would reduce the number of unknowns and
run time shown for the full-grid approach by a factor of
approximately 3

5. The run times shown in Table I provide an
estimate of the speed-up that can be realized using the ap-
proach presented here !which is more than an order of mag-
nitude faster". However, although the machines on which
these codes were run are roughly comparable in computa-
tional power factors such as clock speed, cache size, and
compiler optimization will also influence run times.

III. SUMMARY

A FDTD method for simulating scattering from rough,
pressure-release surfaces has been presented. The approach
relies on a near-field to near-field transformation to reduce
computational cost and utilizes a correction for the inherent
numerical dispersion of the FDTD method. A conformal grid
technique was used to model more accurately the surface
geometry at a modest number of points per wavelength !16
PPW". An alternate full-grid FDTD implementation was
compared with the NFNF implementation presented here.
The comparison shows that the NFNF approach has better
overall accuracy and is far more computationally efficient

than the full-grid scheme. Finally, the FDTD solution was
compared with the IE reference solution and results for both
the magnitude and phase are virtually the same.
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Full grid NFNF

Points/4 20 16
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Run time 9 h 22 min 38 min
Machine DEC Alpha 3000/400 HP 9000/735
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