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SUMMARY 

We presented a finite-element-based algorithm to simulate plane-strain, straight hydraulic fractures in an 

impermeable elastic medium. The algorithm acCOllllts for the nonlinear coupling between the fluid pressure 

and the crack opening and separately tracks the evolution of the crack tip and the fluid front. It therefore 
allows the existence of a fluid lag. The fluid front is advanced explicitly in time, but an implicit strategy 

is needed for the crack tip to guarantee the satisfaction of Griffith's criterion at each time step. We enforced 

the coupling between the fluid and the rock by simultaneously solving for the pressure field in the fluid and 

the crack opening at each time step. We provided verification of our algorithm by performing sample simula­

tions and comparing them with two known similarity solutions. Copyright © 2012 Jo1m Wiley & Sons, Ltd. 
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1. INTRODUCTION 

Hydraulic fracturing is involved in very diverse applications, ranging from the flow of magma through the 

earth's crust to the failure of dams due to underwater cracks [1, 2]. However, perhaps the most relevant 

and most investigated use of hydraulic fracturing today is in its application to the extraction of natural 

gas from shale [3]. In this case, water at high pressure is pumped several miles through the earth's crust 

through a predrilled borehole. When the water reaches the pay-zone layer where the natural gas is 

trapped, cracks are formed in the rock. Then, before the applied pressure is completely released, a 

treatment of proppant (sand slurry, etc.) is inserted into the newly formed cracks to prevent them from 

completely closing. Afterwards, the freed natural gas can flow back up the borehole for collection. 

Numerically solving the equations that model the hydraulic fracturing process can be difficult. It is 

known that when the toughness of the rock is large, the fluid travels very close behind the crack tip, 

and it can be assumed that the crack tip and the fluid front propagate together [4-6]. However, for 

small toughness, the fluid lag (i.e. the gap between the fluid front and the crack tip) can be significant, 

so the fluid occupies only part of the crack length [5, 6]. Because both the boundary of the solid and 

the domain of the fluid are evolving in time, it is necessary to use a different spatial discretization for 

each time step in the simulation. This can be particularly challenging in the general case where the 

crack path is not known a priori because it would be necessary to ensure a suitable mesh on the 

evolving crack surface to solve the lubrication equations that describe the fluid in its interior. 

The two-dimensional plane-strain Khristinaovic-Geertsma-de Klerk (KGD) model is widely used 

for the geometry of hydraulic fracture problems, where the borehole is treated as a line source in the 
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direction out of the plane [7, 8]. For this geometry, the nature of the hydraulic fracture problem in the 

region of the crack tip has been analyzed by considering a crack propagating at a constant velocity in a 

semi-infinite medium [9-11]. For a crack of finite size with constant inlet flow rate, asymptotic 

solutions have been obtained in the limit of large viscosity [12, 13] and large toughness [14]. In 

addition, two similarity solutions have been obtained by numerically solving the governing 

equations. The first was obtained by Spence and Sharp [4], who derived a similarity solution by 

neglecting the fluid lag, which is an appropriate assumption in the asymptotic limit of late time. The 

second was obtained by Garagash [5], whose similarity solution is applicable for the case of zero 

far-field stress, which can also be interpreted as an early-time solution. 

An overview of the methods used to simulate hydraulic fracturing has been given by Adachi et al. [3], 

and we will summarize some of that discussion here. Many of the first hydraulic fracture simulations were 

carried out based on the Perkins-Kern-Nordgren geometry, which assumes a limited crack height in the 

vertical direction and that the vertical cross section is elliptical [15,16]. Clifton et al. [17-19] pioneered 

these types of planar three-dimensional simulations. Since then, several other simulations of this type 

have been cartied out, especially in the investigation of the effects of layered media [20-22]. The 

prevailing method used in simulating hydraulic fractures has been the displacement discontinuity 

method, which is a type of boundary element method [23]. For the KGD geometry, Lecarupion and 

Detournay [6] have devised an algorithm using the displacement discontinuity method that simulates 

hydraulic fracturing between the known similarity regimes at early and late time. 

Although the boundary element method is widely used to investigate the hydraulic fracture problem, 

there are many types of hydraulic fracture problems where using finite-element-based algorithms could 

be especially attractive. An example of this would be when strong plastic deformation is present, or 

when the rock exhibits a high degree of poroelastic behavior [24-26]. In those cases, boundary 

element methods are not so attractive because of the transient and inhomogeneous nature of the 

problem. Along this line, Lecarupion [27] recently investigated how to use the extended finite 

element method to accurately approximate the hydraulic fracture solution in the region of the crack 

tip at a given instant in time. In that article, it was assumed that either the crack opening or the fluid 

pressure was given, so that the nonlinear coupling between them was not considered. In addition, 

Dahi-Taleghani [28] formulated an extended-finite-element-based method to investigate intersecting 

fractures. In that work, it was assumed that the fluid lag was negligible. 

In this article, we create a finite-element-based algorithm that evolves both the fluid front and the 

crack tip in time. We model the rock as an impermeable homogeneous finite linear elastic block. 

The two-dimensional plane-strain KGD model is adopted for the geometry. The fluid is assumed to 

be incompressible, laminar, and Newtonian. We also assume that lubrication theory is valid because 

of the smallness of the crack opening relative to the crack length, so the governing equations for the 

fluid are stated in a one-dimensional domain. No leak-off term is considered. The crack is assumed 

to propagate in a way that satisfies Griffith's criterion at all times. Under this model, it is assumed 

that when the fracture propagates, it does so quasi-statically such that the stress intensity factor (SIP) 

equals the fracture toughness. 

A crucial assumption we made herein is that the fracture propagates along a predefined straight line. 

As mentioned, cracks propagating in arbitrary directions need a strategy to approximate the solution to 

the lubrication equations on the crack surface as the crack evolves. For straight cracks, this problem is 

noticeably simpler, although some important aspects remain. A key one is that it is necessary to iterate 

over the crack tip position to satisfy Griffith's criterion. In other words, it is necessary to iterate over the 

geometry, and hence the mesh, of the problem. In contrast, the fluid front can (generally) be advanced 

explicitly. A second important aspect is that fine enough meshes near the crack tip are needed when it is 

close to the fluid front, to resolve the steep pressure gradients induced by the small crack opening near 

the tip. For simplicity, we also assumed that the fluid front never reaches the crack tip because some 

additional care is needed to deal with the contact conditions in such situations. Of course, it could 

be argued that all these simplifying assumptions severely restrict the applicability of the algorithm. 

However, we regard the contributions herein as necessary steps toward constructing a thorough 

finite-element-based hydraulic fracturing strategy. 

TIlls article is organized as follows. In Section 2, we outline the problem statement and introduce the 

governing equations. In Section 3, we construct the algorithm by first discretizing the problem in time 
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and then in space. This involves introducing approximations for the time derivatives of the crack 

opening and the fluid front location. The resulting semidiscrete problem is independent of the spatial 

approximation adopted. This is a convenient feature because the finite element spaces generally 

change at each time step, as the geometry of the problem evolves. In Section 4, we make a specific 

choice for the finite element space at each time step, and we also clearly outline the specific 

approximations and methods used to implement the algorithm. In Section 5, we verify the proposed 

method by comparing the simulations it generates to two known similarity solutions [4, 5]. 

2. PROBLEM STATEMENT 

In this article, we adopt the following model problem to construct and test a numerical method for 

hydraulic fractures. We restrict our attention to two-dimensional plane-strain problems in which the 

crack geometry is that of the KGD model [7, 8]. This consists of a single vertical planar crack, 

represented as a segment in the horizontal plane shown in Figure 1. A fluid is injected at a constant 

flow rate Qo through a vertical borehole located at the midpoint of the segment in Figure 1. We 

assume the radius of the borehole is much smaller than the crack length so that the injected fluid can 

be modeled as a point source. The crack then is restricted to grow symmetrically with respect to the 

borehole while remaining planar at all times. The crack opening is assumed to be perpendicular to 

the minimum far-field confining stress. To a first approximation, the minimum far-field stress is of 

the same order of magnitude as the maximum far-field stress, so it is standard to assume that the 

entire far-field stress is that of a uniform compressive far-field stress (To. In addition, at this stage, we 

assume that the fluid front never reaches the crack tip. 

We introduce a Cartesian coordinate system (Xl, X2) and define the straight crack as (- a, a) X {O}. 

The fluid partially fills the crack and exists in the domain (- L, L) x {O} where L < a. We approximate 

the infinite medium as a finite square block of size 2 s with s »a. Then, by taking advantage of the 

symmetries of the problem, only the top-right quarter of the block is considered. The computational 

domain is therefore B == (O,s) x (O,s), as shown in Figure 2, with the crack residing partway along 

the bottom edge. We provide computational evidence of the validity of approximating the infinite 

medium with a finite block in Appendix A. 

The rock is characterized by its Young's modulus E, Poisson's ratio v, and Mode I fracture 

toughness KIc- The fluid is characterized by its dynamic viscosity fl. We introduce the following 

reduced parameters: 

Qo 

l' l' l' l' l' l' l' 

Rock 

Fluid 

Lag 

Figure 1. Basic geometry of the problem. A fluid is injected into the rock at a constant flow rate Qo. The 
crack opens perpendicular to the minimum far-field stress 0"0. There is a lag region between the fluid front 

and the crack tip. 
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(0,8) f, (8,8) 

f, B 

(0,0) fp (L,O) fv (a,O) fb (8,0) 

Figure 2. The top-right quarter block, which defines the computational domain B. The crack lies along 
fpufvl and the fluid lies in [po 

(1) 

The parameter E' is the plane-strain modulus, and the other parameters are introduced to reduce 

numerical clutter as well as to be consistent with a large number of articles already in the literature 

[10, 5, 6, 29, 27], Note that for an infinite elastic medium, the elastic response of the solid depends 

on E and v only through the combination E'. We will choose a value of v = 0.3 throughout this analysis. 

The solution of the hydraulic fracture problem consists of finding the crack length a(t), the fluid 

front L(t), the rock displacement field u(B, t), and the fluid pressure p(rp, t), for a given set of 

material parameters Q01(Y01E',K~, and f1'. Here we let Ui denote the component of the displacement 

vector u in the Cartesian coordinate direction Xi- We should emphasize that the boundaries fp, [v, 

and r b as defined in Figure 2 are functions of time because they are dependent on the two fronts, 

L(t) and aCt). In particular, this means that the domain of the fluid f p == (0, L(t)) x {O} also depends 

on time. The governing equations, at each instant in time, consist of elastostatics for the rock, and 

lubrication theory for the fluid, along with a set of boundary conditions for each of them. We note 

that the equations for the rock and the fluid are coupled because the elastic response depends on the 

fluid pressure, and the fluid pressure depends on the crack opening. The system evolves forward in 

time through the propagation of the fluid front and the crack tip, starting from a given initial 

condition. We detail the governing equations next. 

2.1. The rock 

We model the rock as an isotropic linear elastic material undergoing small deformations. We do not 

consider the effect of gravity because it is assumed to act in the direction orthogonal to the plane, 

and hence it is orthogonal to the motion of the fluid. We assume that, at each instant in time, the 

deformation is quasi-static. Consequently, the following governing equations should be satisfied at 

each instant in time. The equilibrium and constitutive equations are given by 

(2) 

The primary unknown of the rock is the displacement vector u, whereas the stress tensor (Y can be 

eliminated as an unknown by combining the previous equations. We use repeated indices to imply 
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summation from 1 to 2, and the comma denotes partial differentiation with respect to the corresponding 

spatial coordinate. The fourth-order elasticity tensor C is known and is expressed as 

(3) 

where by is the Kronecker delta. The boundary conditions can be prescribed by specifying either the 

displacement u or the traction t i ;::::::: (Yijnj, where n is the Quter normal to 8B. The symmetric treatment 

along the bottom and left sides implies 

U2 = 0 } on rb == (a,s) X {O} 
I, ~ 0 

u, : 00 } on r, == {O} x (0, s) 
12 -

and we impose the far-field stress along the top and right sides, so that 

_ onrt==(O,s)x{s} I, ~ 0 } 
t2 - -0"0 

I, ~ -<TO} _ {} ( ) _ 0 on fr = S X O,S 
12 -

(4) 

(5) 

(6) 

(7) 

On the crack face, the normal traction is equal to the fluid pressure p, which is an unknown. The 

traction from the fluid shear stress is assumed to be negligible because, under the lubrication 

assumption, it is generally much smaller than the pressure. In addition, there is no traction in the lag 

region. These conditions imply 

2.2. The fluid 

I, ~ 0 } 
_ on rp == (O,L) x {O} 

12 - P 

I, ~ 0 } _ ( ) {} -0 onfv = L,a x 0 
12 -

(8) 

(9) 

Under lubrication theory, the velocity profile of the fluid at each point in the crack is that of a planar 

Poiseuille flow between two parallel plates, in such a way that the continuity equation is satisfied at 

each instant in time (see, e.g. [30]): 

(10) 

Here, q denotes the flow rate and a dot (-) over a quantity means the partial derivative with respect to 

time t at fixed spatial locations. Because of the symmetries of the problem, the crack opening 2U2 is 

equal to twice the displacement in the vertical direction U2. The flow rate q can be eliminated by 

combining the previous equations. The boundary conditions consist of a constant flow rate Qo at the 
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inlet, half of which travels into the right wing of the crack, 
I 

q(O) ~ '2Qo (11) 

At the fluid front L, the pressure must balance the vapor pressure in the fluid lag, which is assumed 

to be negligible, thus yielding a zero-pressure condition there, namely, 

p(L) ~ 0 (12) 

2.3. Fluid front propagation 

The time evolution of L is obtained by computing its time derivative L, which is given by the mean 

velocity of the fluid at L: 

(13) 

This is equivalent to computing the fluid front evolution from mass conservation. 

2.4. Crack tip propagation 

We used Griffith's criterion to model crack propagation. Under this model, the (reduced) SIP K' is the 

sole parameter governing fracture. t 'When K' is less than the fracture toughness K~, then the crack does 

not propagate. However, when the crack does propagate, it does so in a manner such that K' equals the 

fracture toughness K~. This can be summarized as follows: 

{
a~o,K<K; 

a> Q,K =Kc 
(14) 

There are many different methods for computing the SIP K', which is a function of the displacement 

u and the pressure p. We will use a method based on computing an interaction integral [31-33]. When 

computing K', we must also account for the nonzero traction arising from the pressure on the crack 

faces. In this method, the approximation for K' is 

(15) 

where Iu and Ip are given by 

(16) 

(17) 

Here e is the unit vector tangential to the crack face at the crack tip and pointing toward the 

uncracked material. For our problem, we therefore have ei = 6i1 . 

:t As with K lc , K' = 8KI / v'2n is the reduced SIP. 
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The quantities ljJI and ljJ2 are the Cartesian components of an auxiliary displacement field ljJ 

undergoing purely mode I fracture: 

ljJI ~rI/2cos(~)(K- cose), ljJ2 ~rI/2sin(~)(K- cose) (18) 

where K = 3 - 4v for plane-strain problems. The corresponding auxiliary stress field is given by 

(J"& ;::::::: Cijk1ljJk,lo 

Finally, X is a scalar field defined over the domain B such that X satisfies some minimal smoothness 

assumptions and X = 0 on the boundary r, u r, u r, and also X = 1 at the crack tip (a, 0). We are largely 

free to design X in a convenient way. 

2.5. Initial condition 

Because of our quasi-static assumption, the initial condition is prescribed by specifying initial values 

for the crack tip aO and the fluid front LO, along with an initial profile for the fluid pressure p0(fp). 

The pressure profile pO should be consistent with the boundary conditions of the fluid (Equations (11) 

and (12)). Once the pressure pO has been specified, the initial displacement uO(B) is computed by 

solving the static equilibrium equations in Section 2.1. 

3. NUMERICAL ALGORITHM 

We formulate the numerical algorithm by first cliscretizing in time, and then in space. This is an 

attractive approach because it allows the problem to be posed in a space-continuous (or sernidiscrete) 

form at each time step. In this way, a different spatial discretization can be adopted later to find 

approximate solutions to the sernidiscrete problem. This perspective is convenient when, for 

example, the crack becomes so long that the computational domain needs to be re-meshed to yield a 

good spatial discretization near the crack tip or when the block size s needs to be expanded to 

maintain a good approximation of the infinite domain. 

3.1. Time discretization 

The goal of the integration in time is to advance the solution variables from the current time tn, to the 

next time r + 1. We define the time step as tJ.(1 + 1 ;:::::: (1 + 1 - (1. 

The fluid front L and the crack tip a are advanced in time first because these variables define the 

domain over which the rest of the solution (u and p) is computed. We will only consider explicit 

schemes to advance L, because Equation (13) enables the direct evaluation of the fluid front velocity 

L In this article, we adopt a simple forward Euler scheme to advance L, naruely, 

(19) 

Other schemes involving values at several previous times steps are also possible. 

On the other hand, there is no direct way of obtaining the crack tip velocity iI, and therefore we 

simply make a guess as to where the crack tip a will be and then improve on this guess iteratively. 

With the fluid front Ln 
+ 1 determined and a guess for the crack tip an + 1 made, spaces of admissible 

displacement and pressure fields can be defined, naruely, 

S~+I ~ {u~ (UI,U2) E [HI(B)nLOO(B)]2: U2 ~OOnrb,UI ~Oonr,}, 

S~+I ~ {p E HI (rp) : p(L"+I) ~ O} 
(20) 

These are the spaces where we seek the semidiscrete solutions for the displacement un+1 E S~+1 and 

the pressure pn+l E S;+1 at time (1+1. 
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To complete the time discretization, we also replaced the time derivative of the crack opening U2 in 

Equation (10) with a finite difference expression 

n+l _. (A .n+l An. n+l n n-l ) 
V2 - U2 J..l.t 1 J..l.t 1'" 1 U2 1 U21 U2 1'" (21) 

which is possibly a function of the current and previous time steps and values of the crack opening. In 

this article, we adopt the simplest fann for V~+l, namely, 

(22) 

More accurate approximations are also possible. As evident in the next equation, by adopting 

approximations of Equation (21), the data at earlier time steps effectively act as known source terms. 

The governing equations and natural boundary conditions for both the rock and the fluid in 

Sections 2.1 and 2.2 can be combined to produce the weak fonn of the problem. Its statement is as 

follows: find (un+1 ,pn+l) E S~+l X S;+1 such that 

(23) 

is satisfied for all admissible test functions (w, wp ) E S~+l X S;;+1. 

The solution of Equation (23) together with the values of the fluid front and crack tip positions enables 

then the computation of the SIP (K)"+ 1 from Equation (15). The crack tip position d'+ 1 must be such that 

the crack propagation criterion (Equation (14» is satisfied. If ilis not, then an improved guess for the crack 

tip a
n

+ 1 is made based on the computed value of (K't+ 1, and the process is repeated in an iterative fashion 

until the propagation criterion is satisfied to within a chosen tolerance. 

We summarize this entire algorithm in Algorithm 1. 

Algorithm 1: Numerical algorithm for time advancement 

Input: Ln, an, un,pn 

Output: Ln + 1, an + 1, un+ 1,pn+ 1 

Compute c+ 1 explicitly by taking advantage of Equation (13) 
Guess an+1 

repeat 

Compute (un + 1, pn+ 1) from Equations (20), (21), and (23) 

Compute (K't+ 1 from Equation (15) 

If the crack propagation criterion (Equation (14» is not satisfied, then 

Make improved guess for an n + 1 on the basis of (Kit + 1 

until the crack propagation criterion (Equation (14)) is satisfied 

3.2. Spatial discretization 

The semidiscrete problem in Equation (23) is still an infinite-dimensional one. To approximate its 

solution at each time step, we introduce a spatial discretization of the domain. In this article, we 

consider finite element meshes over B at each time step. In particular, because the domain B 
changes as the crack propagates, the mesh will slightly change as welL In the following, h denotes 

the largest diameter of an element in the mesh. 

8



FINITE ELEMENT APPROACH TO HYDRAULIC FRACTURES WITH LAG 

n+l ( )n+l We then build finite element spaces (S~) cS~+1 and s;, cS;+l over the mesh at time (1+1 to 

approximate un+1 (8) and pn+l (8). The approximate solutions u~+l E (S~r+l and p~+l E (S;) n+l are 

n+l ()n+l 
those that satisfy Equation (23) for all admissible test functions (w, wp ) E (S~) x S~ , with 

Equation (21) evaluated instead as 

(24) 

and similarly for Equation (19). This problem leads to a system of nonlinear equations that can be 

solved using, for example, the Newton-Raphson method. 

4. IMPLEMENTATION OF THE NUMERICAL ALGORITHM 

A few additional choices need to be made to implement the algorithm in Section 3. First, we describe 

how we discretize the problem in space and time. Then we comment about the chosen strategies to 

advance the fluid front and the crack tip, which include the computation of SIP. We also detail the 

initialization of the Newton-Raphson iterations. Then finally, we specify the initial condition for the 

pressure profile used in all subsequent simulations. 

4.1. Discretizations in space and time 

Here we describe in detail the three types of approximations that must be made to solve the hydraulic 

fracture problem. First, we describe how to construct the spatial discretization over the computational 

domain. Then we outline the criteria we used for choosing the time step. And lastly, we discuss how we 

approximate the infinite medium with a finite block size. 

4.1.1. Spatial discretization. The most interesting aspect of constructing spatial discretizations for the 

hydraulic fracture problem is that the domain of the fluid and the rock are changing in time. It is 

therefore necessary to devise efficient strategies to build the spaces (S~)n and (~)n at each time 

step. Of course, this is much simpler in the context of this article because we are dealing with only a 

two-dimensional setting and an a priori known possible crack path. 

We construct approximation spaces for the displacement field on a mesh of triangular elements over the 

domain of the rock B. It is convenient, however, that each mesh over B defines a one-dimensional mesh of 

segments over the domain of the fluid fp- In this way, this mesh of segments can be adopted to build 

approximation spaces for the pressures, the boundary condition (Equation (12» is simple to impose, 

and integrations over f p in Equation (23) involving pressure and displacement variables together can be 

more easily performed. In particular, meshing fp requires a node to coincide with the fluid front 

location. In addition, it is convenient (although not necessary) for a node to coincide with the crack tip. 

L a 

L a 

Figure 3. In the original mesh (top), the locations of the fronts L and a do not coincide with the nodes. In the 
modified mesh (bottom), the node closest to a moving front now coincides precisely with it (the dashed lines 

show the original mesh pattern). 
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The way we move the nodes is illustrated in Figure 3. Given a mesh over B at a certain time step, the 

idea is to move the node closest to the fluid front (or crack tip) to coincide with it. In this way, we can 

reuse essentially the same mesh at each time step, by temporarily moving two of its nodes to coincide 

with the fluid front and the crack tip. Because we have assumed that L < a, the two fronts will not share 

the same node as long as the mesh size is small enough. We monitored this assumption in all the 

simulations in this article. 

With the mesh at time f+l built, we construct (S~r+l as the set of continuous two-dimensional 

vector fields that are affine when restricted to each element over B, known as [PI]2 elements in the 

finite element literature (or piecewise linear triangular elements). 'When these functions are evaluated 

over fp, they define continuous displacement fields that are affine over each segment of fp- For the 

pressure field, we made a similar choice, namely, we set (s; )n+l to be the space of continuous 

functions over fp that are affine over each segmem (also known as piecewise linear one-dimensional 

elements). We should note that each node in the mesh is associated with two unknowns for the 

displacement field (one for each component), and nodes on f p contain one more unknown, which is 

the value of the pressure. 

Another challenge arising in the spatial discretization is that to obtain more accurate solutions, it is 

necessary to represent the singularity at the crack tip as well as the steep pressure gradient at the fluid 

front as the fluid lag vanishes (when Ua --+ 1). In this article, we do this by using finer elements closer 

to the crack and coarser elements farther away from the crack. This is particularly important for the 

crack tip singularity because the convergence of the solution with the mesh size could be rather 

slow otherwise C··..I hlf2 for the stresses). A useful alternative, which we have tested, is to include the 

crack tip singularities as enrichment shape functions, as in [34, 35, 27], Such an approach can 

recover an optimal order of convergence (1"'..1 h for stresses) and enables the use of less refined 

meshes near the cracktip. Of course, it does not help with steep pressure gradients when L 1"'..1 a. 

Despite the benefits of such an approach, its proper description is rather laborious, so we decided 

against it in this manuscript. 

4.1.2. Time step selection. The selection of the time step size was mainly based on accuracy and 

practical considerations, and not on stability. We have not systematically explored the stability 

properties of the method. Nevertheless, we highlight that we did not find a numerically unstable 

solution in any of the numerical experiments we conducted. In fact, the method seems to be quite 

robust with respect to the selection of the time step. 

The main consideration that guided our selection of the time step was controlling the growth of the 

crack length. More specifically, we selected the time step so that Jia/a never exceeded a desired value 

(for the simulations in Section 5, we had 1;,a/a < 0.25). There were two reasons behind this choice. 

First, as we show in Section 5, we selected meshes that are very refined near the crack tip. 

Therefore, by limiting the growth of the crack length, we could guarantee that the crack did not step 

into a region with a coarser mesh. Second, in iterating to find the location of the crack tip at each 

time step, it is necessary to compute the value of the SIP for different possible locations of the crack 

tip (see Section 2.4 and Section 4.3). By limiting the crack growth, it is possible to reuse much of 

the information in all iterations for each time step. 

We have found that we can limit the value of Jia/a at each time step if the time step size is 

proportional to the elapsed time (i.e. 1;,t ~ t). In this article, after each decade of time elapses, we 

increase 1;,t by a factor of ten. We should note that choosing 1;,t ~ t may lead to large inaccuracy of 

the solution when Ll"'..la (this is mostly due to the explicit time advancement of L). Hence, when we 

have Ua> 0.9, we stop increasing Jit and keep it constant as time t continues to increase. 

4.1.3. Infinite medium approximation. In addition to the time and spatial discretizations, the third 

critical numerical approximation we make is to use a domain of a finite size, specifically, a square 

block of edge size s. From the subsequent numerical examples, we observed that most of the 

numerical error sterns from this last approximation. 

In Appendix A, we show through a numerical experiment that the error arising from the finite block 

size scales as s - 2. Thus, reducing the error caused by the finite block size is the first issue to address to 
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improve the accuracy of the method. This could likely be accomplished by adopting one of several 

alternative remedies, such as imposing boundary conditions based on Dirichlet-to-Neumann 

maps [36], adopting special "infinite elements" along the outer boundaries f,uf, of the 

computational domain [37], or simply using boundary elements for the external region. 

4.2. Fluid front advancement 

As described in Section 3, advancing the fluid front in time requires the computation of the flow rate at 

the fluid front q(L), see Equations (13) or (19). The computation of fluxes across surfaces in the finite 

element setting is more accurately performed using domain integrals rather than surface ones [38]. 

Hence, instead of evaluating q(L) directly through its definition in Equation (10), we compute 

(2S) 

where wp is a smooth enough function that satisfies wp(O) = 0 and wp(L) = 1. To compute cf(L), we set 

V2 = ~,P = p~, U2 = (u~)2' and wp =NL in Equation (25), where NL is the shape function of the 

pressure associated with the node at the fluid front Xl = L. For the types of finite element spaces 

considered here, this means that at the fluid front we have NL(L) = 1, whereas all other shape 

( )

n+l 

functions in S; are equal to zero there. In addition, because NL is nonzero only in the element 

that has the fluid front as a node, the integral in Equation (2S) only needs to be computed over that 

single element. 

4.3. Computation of the stress intensity factor 

Similar reasons to those mentioned in the last section lie behind the computation of the SIP K' with a 

domain integral (as described in Section 2.4) instead of a contour integral like the I-integral. In this 

section, we describe our selection of X to use in Equations (16) and (17), which is analogous to the 

choice of wp in Equation (2S). 

The continuous scalar field X over B should satisfy X = 0 on the boundary f, u f, u f" and X = 1 at the 

crack tip (a, 0). To construct X, we consider a (closed) circleCx ofradius rx centered at the crack tip (see 

Figure 4). Elements whose interior lies outside Cx have a constant value of X = 0 within the element, 

whereas elements that lie completely inside Cx have a constant value of X = 1 within the element. 

Elements whose interior intersects the circumference uCx have X defined as an affine function, 

taking the value X = 0 at the nodes outside Cx, and the value X = 1 at the nodes in Cx' 

In this way, X is a continuous function with derivatives devoid of singularities. This, together with 

the fact that that the gradient of X is only nonzero in the ring of elements whose interior intersect 8Cx, 

makes its use in computing K' from Equation (1S) very simple and efficient. In fact, computing Iu 

in Equation (16) only needs integrals over this ring of elements. The computation of Ip in 

Equation (17) involves integrals over the elements in the mesh of the fluid domain rp over which X 

is different than zero (i.e. those elements in rp that intersect Cx). 

08 

06 

04 

02 

o 

Figure 4. The scalar field X over the domain B. 
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A couple of remarks about this choice of X are appropriate. First, although the value of Iu + Ip is 

independent of the choice of X for the exact solution u of the problem, it is not when u is replaced by 

its numerical approximation Uh- Rather, the dependence of the computed value of Iu+1p on the choice 

of X will progressively decrease with the mesh size. Second, by constructing X in a way that its gradient 

grows as h decreases, the convergence rate of the computed value of K' with h is not optimal. It could 

be improved by selecting a function X that does not change with the mesh size, among others. In our 

case, this was unnecessary because the values we obtained were quite accurate in view of the error 

introduced by the infinite medium approximation, as discussed earlier in Section 4.1.3. 

4.4. Crack tip advancement 

As mentioned in Section 3, there is no explicit expression for the crack tip velocity. So the crack tip 

location at (1+1 must be found by making a guess and then improving on that guess in iterative 

fashion. We describe this procedure as follows. We want to increase the crack tip position by an 

unknown amount tJ.an 
+ 1 = If + 1 - an such that the crack propagation criterion (Equation (14» is 

satisfied at time (l + 1 . 

To find tJ.a
n

+ 1, we adopted a root-finding method that has guaranteed convergence at a relatively 

fast rate [39, 40], It is a Regula Falsi method (false position) and requires two initial guesses for the 

crack tip increment that bracket the root of the equation we wish to solve. We denote the first initial 

guess with an asterisk (*), which should yield K > K;. In addition, we denote the second initial 

guess with two asterisks (**), which should yield the opposite, K < K;. In this article, we choose 

(26) 

for the first initial guess, which indicates a guess of no crack propagation. If this guess yields K' < K~, 
then we conclude that no crack propagation occurs, and we do not have to iterate further. However, if 

this guess yields K' > K~, then crack propagation does occur, and we choose 

(27) 

for the second initial guess. In general, this guess will bracket the root if the rate of crack propagation 

decreases with time (which is the case for all the simulations shown in this article). 

There are two special cases to be considered, for which Equations (26) and (27) might fail to return 

valid initial guesses. One special case appears when tJ.a
n = 0, that is, when the crack tip did not advance 

at tirue t". In this case we adopted the alternative 

(28) 

which is the distance that the fluid front traveled during this tirue step and is partially rooted in the 

observation that often the fluid front and crack tip velocities are very similar. If this guess does not 

yield K < K;, we successively double (Llan+1
)" until it does. 

One other special case is when the fluid front exceeds the guess for the crack length. This might 

occur, for example, during the first initial guess when using a large time step tJ.(l+l. Hence, if we 

have Ln 
+ 1 > an, we instead choose 

(29) 

for the first initial guess, where h is the element size of the mesh in that region. In other words, we 

ensure that we have L < a by always keeping a minimum distance of h between the fluid front and 

the crack tip. 

As with most nonlinear equation solvers, the strategy outlined earlier is not completely robust, 

namely, the initial guesses might not be good ones, either because they do not bracket a root or 
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because they bracket too many roots. In the examples in this article, however, this strategy has worked 

remarkably well. 

4.5. Newton-Raphson initial guess 

For each guess of the crack tip position, it is necessary to solve Equation (23) for the coupled elastic 

and pressure fields, as detailed in Section 3.2. We solve it using the Newton-Raphson method, 

which requires a good initial guess. We denote the initial guess for the unknown values at time f+l 

with an asterisk (*). 

Because the nonlinearity arises from the fluid equations, an initial guess is only required for the 

crack opening u~+l (xd and pressure pn+ I(XI) in the domain of the fluid rp (note that X2 = 0 in this 

domain). The initial guess we use is 

(u~+lnxd =U~(Xla~:I). 

(pn+l)' (xd = pn (Xl L~:l) 
(30) 

where we have the known functions U~(Xl) and pn(Xl) from the previous time step. This guess is 

basically a "stretching" of the profiles at (' to match the new domains at (' + 1 This strategy has led 

to convergence of the Newton-Raphson iterations for all the simulations described in this article. 

4.6. Initial condition 

We have observed that the long-time evolution of the system is not especially sensitive to the initial 

condition, and therefore we have some liberty in constructing an initial condition. We choose the 

initial crack length a
O and the initial fluid front LO with LO < aO. We prescribe the pressure profile 

pO(Tp) to vary linearly from p at the fluid inlet to zero at the fluid front, namely, 

° ' ( Xl) P = P 1- LO (31) 

With the pressure pO and the geometry specified, the initial displacement uO(B) is computed as the 

solution of the linear elastostatics equations in Section 2.1. More precisely, we find uO E ~ such that 

Equation (23) is satisfied for all test functions W E s;: with wp = O. 

It remains to compute p such that the inlet boundary condition (Equation (11» is satisfied. Taking 

advantage of the ability to superimpose solutions of the linear elasostatics equations, the 

displacement field can be constructed as 

(32) 

for any value of p. The displacement field u' (B) is computed for an arbitrary nonzero value of the inlet 

pressure p = p' with no far-field stress (i.e. setting "0 = 0). The displacement fieldu" (B) is the response 

due solely to the far-field stress, so the pressure is set to zero, p = O. With the two computations made 

to find U
U 

and u"', the correct value for p can be found by solving the nonlinear scalar equation 

,,(u~(O) p)3(P) _~ -0 
q u2(0) + p' V' 2Q

o-
(33) 

where it is the flow rate corresponding to p = p*, which is computed as 

(34) 
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It is simple to see that the fourth-order polynomial in Equation (33) has a single positive root 

because it is negative at p = 0 and its derivative is nondecreasing. 

A good initial guess for solving Equation (33) is 

___ . (!Qo) 1/4 

p - P ~* 
q 

(35) 

5. NUMERICAL EXAMPLES 

In this section, we perform sample simulations using the algorithm outlined in this article and compare 

the results with two known similarity solutions. One of these similarity solutions occurs when the crack 

propagates under zero far-field stress [5], and the other occurs for late times for any nonzero value of 

the far-field stress [4], 

When displaying the simulation results, we will normalize the solution variables by their 

corresponding characteristic dimensions (which will be defined later for each problem). We will 

define characteristic dimensions for the position ae , time to displacement 6, and pressure Pc-

To compare the simulation results with the similarity solutions, we need to introduce similarity 

variables for the position ~ and time r, which we define as follows: 

Va t 
r~-+-

aJ) tc 
(36) 

The position ~ takes on values of 0 < ~ < 1 in the crack domain. The time r is corrected for the 

amount of fluid volume Vo already injected into the crack at zero time. The volume is obtained by 

integrating the opening profile over the fluid domain rp as follows: 

(37) 

We also introduce similarity variables for the crack length y, pressure II, and crack opening Q by 

scaling with the appropriate powers of r as dictated by the similarity solution: 

(38) 

The previous equations can be used to describe both similarity solutions, if we use (T~ = 0 for the 

zero far-field stress solution, and (To = 1 for the late-time solution. We note that the similarity 

solutions are governed solely by the dimensionless toughness K;, which is defined through a 

combination of the physical pararueters of the problem: 

(39) 

So for each value of K;, there is a corresponding value of y, and corresponding functions II(O and 

Q( 0, which have no dependence on r. 

In the following, we carry out simulations for two different cases (zero far-field stress and late time) 

and discuss the results. Then after that, we provide details about the type of mesh used, the time step 

selection, the block size, and performance. 
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5.1. Zero far-field stress solution 

It was shown by Garagash [5] that a similarity solution could be found when the far-field stress is zero. 

In this solution, the fluid fraction L/a is a constant and its size depends only on K;. For increasing 

values of K; , the fluid fraction increases and eventually approaches Ua --+ 1. For K; > 1.6, the size 

of the fluid fraction is greater than 0.99, and thus nearly fills the entire crack length. 

Although the similarity solution is exact only when the far-field stress is zero, it is still reasonably 

accurate for nonzero values of (To if 

( )

1/3 

"0 _1-0 «1 
fl'E " 

(40) 

Notice that this inequality is also valid when time t is smalL Thus, the similarity solution can 

alternatively be interpreted as an "early-time" solution for nonzero far-field stress. 

For the simulations in this section, we define the characteristic dimensions that normalize the 

solution variables as 

fl (a ) 
1- ---(

. 0 6) 1/4 
c- Q6E' 1 

(41) 

We have performed a simulation with (To = 0 and have compared it with the known similarity 

solution. We chose the dimensionless toughness to be K; = 0.6, which is small enough to allow a 

significant fluid lag. The initial fluid fraction was LO/ao = 1/4, and we advanced the simulation for a 

total time of I/Ie = 1.6. 

In Figure 5, we show the time evolution of the fluid front, crack tip , and inlet pressure, along 

with snapshots of the pressure and opening profiles. We observe that the crack starts propagating at 
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Figure 5. Time evolution of the fluid front and crack tip (top-left) and inlet pressure (top-right). Profiles for 
the pressure (bottom-left) and opeuing (bottom-right). 
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Figure 6. Snapshots of the rock with the injected fluid. From left to right, the times are tlte = 0.0, tlte = 0.8, 
and tlte = 1.6. The color in the rock corresponds to the von Mises stress nonnalized by the plane-strain 

modulus, ajE'. The displacement is magnified by a factor of (O.25)(aJo). Note that only the region of 

the computational domain in the neighborhood of the crack is shown. 
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Figure 7. Time evolution of the similarity crack length (top-left) and fluid fraction (top-right). Profiles for 

the similarity pressure (bottom-left) and opening (bottom-right). Note that we do not show the profiles at 

times tlte = 1.2 and tlte = 1.6 because they are the same within plotting accuracy to the profiles at tlte = 0.8. 
The dashed lines correspond to the zero far-field stress similarity solution. 

about tltc= 0.7. The inlet pressure p(O) steadily decreases throughout the simulation. The crack opening 

is always increasing at fixed values of the spatial coordinate Xl. In Figure 6, we show snapshots of the 

displacement of the rock with the injected fluid. 

To compare the simulation results with the similarity solution, we computed the similarity variables 

using Equation (38) with,,~ ~ O. In Figure 7, we show the time evolution of the similarity crack length 
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y and fluid fraction Ua, along with profiles of the similarity pressure fI and opening n at several 

snapshots in time. We observe that there is agreement with the similarity solution as soon as the 

crack starts propagating. 

We have performed a few more simulations like the one just described, but with different values for 

the dimensionless toughness K;. In Table I, we show the values of the dimensionless variables y, Lla, 

fI(O), and nco) at the end of the simulation when tlte = 1.6. We compute the "exact" values for the 

similarity solution using the numerical method presented by Garagash with 50 elements [5]. We 

observe that there is good agreement between the simulation results and the similarity solution, and 

this provides verification of our method. 

5.2. Late-time solution 

It was shown by Spence and Sharp [4] that a similarity solution can be found in the late-time limit 

when the far-field stress is nonzero. In this solution, the fluid lag is assumed to be negligible, and 

therefore we have Ua~1. It was shown in numerical simulations by Lecampion [6] that this is a 

valid assumption at times of the order of 

(42) 

or larger. Notice that as (To ----t 0, we have tc ----t 00, and hence the simulation never evolves into the late­

time regime. TIlls is consistent with what was observed in Section 5.1, where the zero far-field stress 

similarity solution was interpreted as an early-time solution that kept the fluid fraction constant, and 

hence the fluid never evolved to fill the entire crack. 

For the simulations in this section, we define the characteristic dimensions that normalize the 

solution variables as 

_ (fl' QOE
3

) 1/2 
ac - 4 1 

"0 

(43) 

together with the definition of te in Equation (42). 

We have performed a simulation in which we compared the numerical solution against the late-time 

similarity solution. We chose the dimensionless toughness to be K; = 0.5, which is small enough to 

allow a significant fluid lag at early time. The initial crack length was aOlae= 1/512, and the initial 

fluid fraction was LOlao= 112. We advanced the simulation for a total time of tlte=2.5. 

In Figure 8, we show the time evolution of the fluid front, crack tip, and inlet pressure. In Figure 9, 

we show snapshots of the pressure and opening profiles. We observed that the crack starts propagating 

at about tlte = 4 x 10- 5 The inlet pressure p(O) steadily decreases throughout the simulation. The crack 

opening is always increasing at fixed values of the spatial coordinate Xl. At late time, the pressure 

gradient is small throughout most of the fluid region, except near the fluid front where it is very large. 

To compare the simulation results with the similarity solution, we computed the similarity variables 

using Equation (38) with IT; ~ 1. In Figure 10, we show the time evolution of the similarity crack 

length y and fluid fraction Va, along with profiles of the similarity pressure fI and opening n at 

Table 1. Similarity variables at tltc = 1.6. 

y Lla TI(O) Q(O) 
K' 

c 

Exact Numerical Exact Numerical Exact Numerical Exact Numerical 

0.4 1.4919 1.4974 0.3950 0.3926 0.3883 0.3910 1.0210 1.0167 

0.5 1.1866 1.1915 0.5025 0.4990 0.4123 0.4141 1.0262 1.0218 

0.6 1.0024 1.0058 0.5997 0.5962 0.4337 0.4359 1.0339 1.0294 

0.7 0.8822 0.8842 0.6849 0.6819 0.4529 0.4555 1.0436 1.0390 
0.8 0.7995 0.8007 0.7574 0.7555 0.4704 0.4732 1.0549 1.0500 
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Figure 8. Time evolution of the crack tip (top-left) and inlet pressure (top-right). Zoom of the fluid front and 

crack tip at early time (bottom-left) and late time (bottom-right). 
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Figure 10. Time evolution of the similarity crack length (top-left) and fluid fraction (top-right). Profiles for 
the similarity pressure (bottom-left) and opening (bottom-right). Dashed lines correspond to the late-time 
similarity solution. We show the pressure and opening profiles at times tltc =(2.5)10n

-
6 for values of 

n = 1 (red) through n = 6 (green). 

several snapshots in time. We observe that as r becomes large, the similarity variables computed from 

the simulation asymptotically approach the values predicted by the similarity solution. In addition, as r 

grows the fluid fraction evolves toward L/a --""'1, which is a necessary condition for the late-time 

similarity solution to be valid. The agreement between the simulation results and the similarity 

solution provides further verification of the method. 

5.3. Discretizations and performance 

All simulations in this article were performed with the mesh shown in Figure 11. This mesh contains 

14,056 elements. It has a highly refined region in the neighborhood of the crack with an element size of 

his = 1/8192. However, along the top and right sides, the element size is coarser, with his = 1/8. 

As the crack grows, the block size s needs to be increased to keep the crack in the highly refined 

mesh region, and also to keep the infinite medium approximation valid. 'When re-meshing, it is not 

Figure 11. Mesh used for the simulations in the article (left). The mesh is highly refined near in the crack 

region. We also show an enlarged view of the bottom-left comer at 4 x magnification (middle) and at 

l6x magnification (right). 

19



M. J. lillNSWECK, Y. SHEN AND A J. LEW 

05 

04 

03 

02 

01 

o 

Figure 12. Snapshot of the entire domain of the problem at the final time tlte = 1.6 for the simulation in 
Section 5.1. The computational domain B comprises the upper-right comer of the block, and the other three 
comers are reproduced by symmetry. The color in the rock corresponds to the von Mises stress normalized by 
the plane-strain modulus, ajE'. For an enlarged view near the crack, see the rightmost snapshot in Figure 6. 

necessary to create an entirely new mesh but rather to just rescale the coordinates of the current mesh. 

In this article, when the crack size exceeded als > 1/16, we doubled the size of the block In this way, 

the inequality 1/32 < als < 1/16 was always satisfied. In Figure 12, we show the entire computational 

domain at the final time for the simulation in Section 5.l. 

The simulation in Section 5.1 was performed with 64 time steps of equal size and took 

approximately 50 min to complete. When the crack was propagating, approximately three or four 

iterations were needed to find the crack tip location. This means that the time steps involving crack 

propagation took approximately three to four times longer to compute than those that did not. For 

each crack tip iteration, two or three Newton-Raphson iterations were needed to solve the nonlinear 

system of equations. 

The simulation in Section 5.2 was performed with 264 time steps and took approximately 455 

min to complete. As mentioned in Section 4.1.2, the size of the time step was increased 

periodically throughout the simulation, so that smaller time steps were used when the crack 

was small and larger time steps were used when the crack was large. Early in the simulation, 

approximately three or four iterations were needed to find the crack tip location when the crack 

was propagating, but later in the simulation approximately seven or eight iterations were 

needed. For each crack tip iteration, usually just three Newton-Raphson iterations were needed 

to solve the nonlinear system of equations regardless of whether it was early or late in the 

simulation. 

The simulations described in this article were implemented in C++ and ran on a 3-GHz Intel Xeon 

CPU with 1 MB of cache memory and 2 GB of RAM. 

6. CONCLUSIONS 

In this article, we have created a finite-element-based algorithm to simulate the hydraulic fracture 

problem. The algorithm is capable of handling the nonlinear coupling between the fluid pressure and 

the crack opening, and is able to allow the existence of a fluid lag. The agreement of our 

simulations with two known similarity solutions provides verification of our algorithm. 

An interesting observation that arose from the numerical experiments was that the major 

contribution to the error in the solution was from the infinite domain approximation. Another 

interesting observation is that solving for the position of the crack tip at each time step was very 

robust. For accurate solutions, we adopted highly refined meshes near the crack tip. We did this to 

capture both the stress singularity that occurs there and also the steep pressure gradient that arises 
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Figure 13. A mesh that has refinement along the entire bottom of the block. 
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Figure 14. Opening profiles for increasing block sizes, with the dashed line representing the analytical solution 
for the infinite medium (left). Also, a convergence curve for the error in the opening at the inlet (right). 

when the fluid lag vanishes. Using enrichments in the finite element spaces to capture these phenomena 

will likely allow the use of coarser meshes for the same accuracy. 

Although we restricted the application of the algorithm in this article to a relatively simple hydraulic 

fracture problem, the algorithm can be easily extended to consider several other cases of interest. For 

example, it could be used to model the phenomenon of leak-off or fracturing fluids with non­

Newtonian rheology. 

APPENDIX A: INFINITE MEDIUM APPROXIMATION 

In this section, we numerically explore the minimum block size needed to obtain an infinite medium 

approximation of a prescribed accuracy. To simplify the analysis, we will prescribe a constant pressure 

p along the entire length of the crack face, so that L = a and the lag region vanishes (i.e. r v = 0). 

Because we are prescribing the pressure, it is not necessary to solve the fluid equations, and thus this 

problem is a standard elastostatics problem. When the elastic medium is infinite, and the pressure along 

the crack face is constant, there is a known analytical expression for the opening profile 

(AI) 
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where the characteristic displacement is defined as 

<5 _ (Toa 
00 - E' (A2) 

We chose the constant pressure to be pl"o = 2 and computed the opening profile using different 

block sizes. An example of the type of mesh we used is shown in Figure 13. The element size along 

the bottom edge was set to hla = 1/64 and those on the top edge to hla = 112 for all block sizes. This 

means that the bigger blocks necessarily contained more elements. 

As we increase the size of the block, the opening profile should converge to that of the infinite 

medium. We computed the error in the opening profile by comparing its value at the inlet to the 

analytical solution, namely, 

(A3) 

where we use the superscript s to denote the inlet opening computed with the finite block size, and we 

use no superscript to denote the analytical solution. 

In Figure 14, we show the opening profile for increasing values of the block size sla, along with 

the corresponding values of 8. in log scale. We see that the slope of the convergence curve is 

approximately -2, and the opening profile is converged to within plotting accuracy for sla = 16. As 

described in Section 5.3, this is the minimum ratio we adopted for the simulations in Section 5. 
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