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ABSTRACT

A new numerical technique is proposed for the electromagnetic characterization of

the scattering by a three-dimensional cavity-backed aperture in an infinite ground plane.

The technique combines the finite element and boundary integral methods to formulate

a system of equations for the solution of the aperture fields and those inside the cavity.

Specifically, the finite element method is employed to formulate the fields in the cavity

region and the boundary integral approach is used in conjunction with the equivalence

principle to represent the fields above the ground plane. Unlike traditional approaches,

the proposed technique does not require knowledge of the cavity's Green's function and is,

therefore, applicable to arbitrary shape depressions and material fillings. Furthermore,

the proposed formulation leads to a system having a partly full and partly sparse as well

as symmetric and banded matrix which can be solved efficiently using special algorithms.



I. INTRODUCTION

Recently,a newtechniquewhichcombinesthe finite elementandboundaryintegral

formulationsto yield a systemfor solutionvia the conjugategradientmethod(CGM)

and the fastFouriertransform(FFT) wasproposedfor electromagneticscatteringcom-

putations. In particular, the methodwasformulatedfor the characterizationof filled

slotsandgroovesin a thick groundplanewith transverseelectric(TE) and transverse

magnetic(TM) incidence[1], [2]. A similar techniquewasalsoproposedin [3] for com-

puting the apertureadmittancematrix of the samegeometry,but in that procedurea

frontalsolutionalgorithmwasemployedto reducethememorydemand.In this paperwe

describeanextensionof the hybrid techniqueproposedin [1], [2]for theelectromagnetic

characterizationof three-dimensional(3-D) cavity-backedaperturesin a groundplane.

The problemof scatteringby 3-D cavity-backedaperturesin a groundplanehas

beenconsideredin the pastvia the modematching[4] and momentmethod/modal[5]

approaches.A uniquefeatureof both of thesetechniquesis a requiredknowledgeof

the cavity's Green'sfunction. Theyare, thus,mostlyrestrictedto rectangularcavities,

but eventhen, additionaldifficultiesmayarise.For example,the modematchingtech-

niqueyieldsan infinite matrix that mustbe truncatedandin the caseof the moment

method/modalapproachthe admittanceelementsinvolvemodesumsthat areusually

slowlyconverging.Neitherof thesemethodologiesareobviouslycapableof treatinglarge

sizeaperturesbut in the caseof deepcavities,highfrequencytechniquessuchasthose

proposedin [6]and [7] couldbeeffectivelyemployed.Nevertheless,whenthe cavity is

narrowin onedimensionor shallowand perhapsfilled with inhomogeneousmaterial,a

numericalsolutionapproachis the likely alternative.



A numericalapproachwhichhasdemonstratedpromisefor treatinglargestructures

is the finite difference-timedomainapproach(FD-TD) [8]. In this casethe finite dif-

ferencemeshmust be terminatedwith an absorbingboundarycondition. In contrast,

the proposedapproachavoidspossibletruncation errorsand excessdiscretizationby

representingthe fieldsexternalto the cavity with the appropriateboundaryintegrals.

Specifically,the proposedapproachemploysthe finite elementmethod[9] to formulate

the fieldswithin the cavity whereasthe fieldsexternalto the cavity areexpressedvia

the radiation integralsover the aperture. The resultingequationsare then solvedby

demandingcontinuityof thetangentialfieldsacrosstheaperture.By virtue of the finite

element method, the technique is applicable to cavities of arbitrary shape, possibly filled

with inhomogeneous or composite materials. In the following sections the proposed hy-

brid formulation is discussed in some detail along with the pertinent discretization of

the resulting integral equations. A number of results are then presented which validate

the formulation and we conclude with a discussion on the method's merits and possible

improvements.

II. FORMULATION

Consider the 3-D cavity-backed aperture illustrated in Figure 1. We will denote

the free space region above the cavity (z > 0) as region I and that inside the cavity

(-c < z < 0) as region II occupying the volume V. We will further assume that the

cavity is filled with an inhomogeneous material having a relative permittivity _(R) and

relative permeability #_(R).

In accordance with the equivalence principle [10], the fields in the two regions can be
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decoupledby closing the aperture with a perfect conductor and introducing the equiva-

lent magnetic current

M = E x _. (1)

over the extent of the aperture, where E is the electric field at the aperture (z = 0). The

field in region I is then due to the radiation caused by the equivalent current M residing

on the ground plane and possibly by other impressed sources (ji, Mi). Accordingly, by

invoking image theory we have

Hr(R) = Hi(R) + H'(R) - 2jkoYo/Is _0(R,R') * M(R')dS' (2)

where H i denotes the incident field due to (ji, M i) and I-I r is that reflected by the

ground plane without the aperture. Also, ko = 2r/A is the free space wavenumber,

Zo = 1/Yo is the free space intrinsic impedance, S denotes the planar surface area of the

aperture and to is the free-space dyadic Green's function given by

with

_o(R, R') = (_ + -_o2VV) Go(R, R') (3)

e-jko]R-R'[

= _b_ + _ + _./_ and G0(R, R') - 4_'[R - R'["

Enforcing continuity of the tangential electric fields across the aperture, we find that

the field in region II can be represented by the radiation of the equivalent magnetic

current -M. The fields in the two regions are then coupled by enforcing continuity of

the tangential magnetic fields across the aperture. This gives

xHI(M,ji,M i)=/_xH/I(-M) at z=0 (4)



whereH I and H II denote the magnetic fields in regions I and II, respectively.

Traditionally, M is solved from (4) by substituting for H r as given in (2) and ex-

pressing H H as a function/integral of M. The resulting integral equation(s) are then

discretized to obtain a system of equations for solution via direct inversion or LU de-

composition. However, to explicitly express H II in terms of M implies a knowledge of

the cavity's Green's function. For rectangular cavities filled with homogeneous material,

this is usually found in modal form which is in general computationally inefficient [5].

Furthermore, in the case of arbitrarily shaped and/or inhomogeneously filled cavities

there is no available closed form of the associated Green's function. As a result, so far

numerical solutions have only been considered for cavities that are rectangular and filled

with homogeneous or uniformly layered material [4], [5].

To overcome the difficulty associated with the availability of the cavity Green's func-

tion, we employ the finite element method to formulate the fields in the cavity region

(region II). Specifically, the cavity fields are demanded to satisfy the variational equation

_r=0 (5)

where the functional F is given by [11]

_(_") _ ± (_.,_")_
-_0_,_''. _"]_ +j_0_0g (_"×.") •_ (0)

CQV

if the variation is taken with respect to the electric field or by
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if the variation is taken with respect to the magnetic field. In these, V denotes the

volume occupied by region II, Sc_. corresponds to the surface that encloses V and h

denotes the unit vector normal to the surface, pointing away from the cavity. Since

the divergence of E H is zero in the source free region, it would appear that the second

term in (6) and (7) is superfluous and, in fact, it is not included in the corresponding

expressions found in [11]. However, a solution of (5) with s = 0 does not guarantee

that the resulting fields will be maxwellian unless the divergence conditions are also

satisfied. In the case of two-dimensional solutions they are satisfied a priori but not so

for three-dimensional implementations. Here we propose that the divergence conditions

be satisfied approximately and implicitly [12] by minimizing (6) or (7) with s _ 0. The

parameter s is referred to as the penalty factor and its choice will be discussed later.

To solve (6) or (7), it is necessary that the fields be known over the surface specified

by Sca_. Obviously, the boundary conditions to be imposed on the conducting boundaries

of the cavity axe

fix g II = 0 (s)

and

h • H H = 0. (9)

Substituting these into (6) and (7) eliminates the portion of the surface integral over

the conducting boundary of the cavity (that is, there is no power flow through the

metallic portion of 5'car). It remains to specify the boundary condition over the cavity's

aperture and this is given by (1). With these boundary conditions we may proceed with
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adiscretizationof (5) whichin conjunctionwith the discretizationof (2) yieldsasystem

for a solutionof M. Herethe continuitycondition(4) is enforcedupon the discretized

fields and this is the standardprocedureemployedin generalfinite element-boundary

integralformulation[13].However,if (6) is usedtheenforcementof (4) canbeexecuted

at theanalyticalstageby substituting(2) into (6). Doingso,weobtain thefunctional

///V [_r $ (_e_rE//)2 k2_rEII EI/] dy

-jkoZo//'3 M(R)* [H'(R)+ H_(R)] dS (10)

which can be discretized via the finite element method for a solution of M. Once M is

found, the far zone scattered field can be easily computed from

HS(R) = _jkoYo e (O0 + _p_p). M(x',y')eJ_'in°(_'c°'¢+u"in¢)dx'dy ' (11)

where (R, _, ¢) are the usual spherical coordinates of the observation point. The radar

cross section (RCS) of the aperture is then given by

s 2

.... 21H (R)I (12)
a = _im= 4_-n iHi(R)l---------5-.

III. FINITE ELEMENT DISCRETIZATION

For a numerical implementation of (5) we must first discretize the functionals by

subdividing V and S into smaller volume and surface elements, respectively. Considering

the electric field formulation, it is convenient to rewrite the functional F as

F=_+_+_ (13)

6



whereFv is the volume integral

- + + 1dV
)

(14)

obtained by expanding the appropriate integrand in (10) and Fs denotes the surface

integral

(15)

The remaining portion of F is associated with the source field and is given by

FE = -2jkoZo/Is M(R) • Hi(R)dS (16)

upon using the relation _. x Hr(R) = _ x Hi(R). For simplicity, in (14) we have omitted

the superscript II and this practice will be continued in the remaining portion of the

paper.

To discretize (14) we subdivide the volume V into M. small volume elements such

as tetrahedra, triangular prisms, or rectangular bricks. Within the eth element having

n nodes, the field components are expressed as

n

E_ = _, N_(x,y,z)¢_j p = z,y,z (17)
j-_ l

where Nje are the known expansion or shape functions (see Appendix) chosen so that ¢_j

(p = x, y, z) represents the unknown field at the jth node of the eth element. Substituting

(17) into (14) yields the portion of Fv attributed to the eth element. The complete

expression for Fv is then obtained by summing/assembling the contributions from all



elements.Thisyieldsa functionalin termsof theunknownnodefield componentswhich

must be found to satisfy (5). In accordancewith the Rayleigh-Ritzprocedurethis is

equivalentto settingthederivativesof F with respect to the node fields ¢_j (p = x, y, z)

equal to zero. Differentiating the portion of Fv attributed to the eth element with

respect to the node field ¢_i we obtain

o¢_ = ,_ e_ O= #z + Oy oy + Oz Oz

-kger#rN:N;] ¢;j + e_ Oz Oy Oy Ox J ¢_j

[ s O(e,.N:)O(erN_) ONIONS]}+ _ Ox Oz - Oz Ox ¢_J dV. (18)

Similarly, by differentiating with respect to the other node field components we have

+

[c3Y_ c3NZ s c3(,rN_)cg(e,.Y Z) OY_ ON] _ k_)erp,.N[N;] CyjT L ox Ox + e_ c_y Oy .4- Oz Oz

[sO(e,.N[)O(e,.N_) ON[ON:] }oy o_ Oz ay j¢;_ dY (19)

and

- = ,_ Oz O= - a= Oz ¢BJ

ON_ cON_ s_._cO(erN_) _ k2oe_#,.N[N; ] Cezj}+ oy _ + _ az a_ dr. (20)

We observe that if e_ and #, are assumed constant within the eth element, all integrals

in (18)-(20) can be evaluated analytically. Otherwise, a numerical integration may be

be required for their evaluation.



Let us now consider the discretization of the surface integral in (15). A difficulty

in the evaluation of this integral is the usual singularity associated with the derivatives

of the free space Green's function. This, however, can be avoided by transfering the

derivatives to the current. To do so, we invoke a common vector identity and the

divergence theorem, leading to

Fs = -2/fsM(R) [k_ /Is M(W)Go(R, W)dS'

+vffsv'. M(R.')Go(R,R/)dS']dS.

Through the same process, (21) can be further rewritten as

I/is
and by invoking (1) we obtain

dS
JJS LJJS J

• M(R')Go(R,R')dS'] dS

(21)

(22)

Tl$

Ep = E Ne"X _-e3 t , y )cppj
j=l

p = x, y (24)

where ns denotes the number of nodes associated with the area element, N_ are the

same expansion functions as those in (17) with z = 0 and ¢_j (p = x, y) represent the

expressed as

(OE= OE__) (OE= OE_)aodS']dS (23)

which can be discretized by subdividing S into Ms smaller surface elements. In parallel

with the volume discretization, the field components in the eth surface element can be



nodefields.Substituting(24)into (23)andreplacingS in the first pair of integrals with

S e, the area of the eth surface element, gives the portion of Fs attributed to the eth

element. As noted earlier, to enforce the stationarity condition we need the derivatives

of Fs with respect to the node fields. For the eth element we have

]OF_
= -2k2>ii_ Nt r. ¢_=J Y;aodS' dS

(25)

( +, (26)
-2 : _ L:=_ = • t, Oy' :_ Ox' _-_) GodS'

eazid OF_IO¢,_ = 0 since Fs is not a function of E,. We note that in deriving (25) and (26)

the differentiation was performed only with respect to the node fields outside the square

brackets in (23) while those introduced by substituting (2) into (6) remained uneffected.-

Further, we remark that the evaluation of the surface integrals in (25) and (26), although

not trivial, can be done through analytical and numerical means as discussed in the

Appendix.

It remains to discretize (16) which involves the excitation fields. By replacing M

with E in accordance with (1) we obtain

This can again be discretized by introducing the expansion (24) and by doing so we
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obtain(for the eth element only)

=2jkoZo0¢;i •

and

(28)

f/"

= -2jkoZo JJs]], N_H_dS (29)

Given the partial derivatives of all integral functions comprising the functional F we

can now proceed with the construction of the final system of equations by imposing the

stationarity condition (5). This implies that

OF My 6QF_ z M, oqr_ M,

•=1 0¢_i ,=1 O¢_i ,=1 0¢_

0r M. 0F_ M, 0r_ M,

- + + =° (30)
,=1 0%_ ,=1 ,=1 0¢;;

OF My OF_, = 0 i = 1,2,3,...,N

e----1

leading to a matrix system for the solution of the node fields. In (30) N denotes the

total number of nodes, ¢_ (p = z, y, z) are the node fields labeled with global indices

and as before ¢_i (P = z,y,z) are the node fields associated with the eth volume or

surface element. Both Cpi and ¢_i refer to the field at the same node and thus the eth

term of the summations have non-zero values only if the global node i belong to the

eth element. The system implied by (30) must, of course, be solved after imposing the

boundary condition (8) which permits us to zero out those field components that belong

to nodes on metallic boundaries and are also tangential to that boundary. This reduces

substantially the number of unknowns in the system which can then be solved via direct

inversion, LU decomposition, or iteration. However, since the system matrix is partly full

11



andpartly sparseaswellassymmetricandbanded(if thenodesareproperlynumbered),

it canbemoreefficientlysolvedby thosealgorithmswhichexploit theseproperties[14].

Variouspartition techniquessuchasthe thosediscussedin [15]can alsobeemployed

to enhancethe efficiencyof the solution. Further, the matrix systemis amenableto a

conjugategradient-fastFouriertransformsolution,thus, reducingthe memorydemand

to 0(N) asin [1], [2].

Let us now briefly address the formulation resulting from a finite element discretiza-

tion of (7). In this case we cannot invoke (4) to incorporate (2) into (7) and obtain an

expression that is completely in terms of the unknown nodal magnetic fields. As a re-

sult, the continuity condition (4) must be explicitly imposed leading to a second system

of equations to be coupled with that from the discretization of (7). The penalty with

this approach is an increase in the number of unknowns because the surface magnetic

currents or electric fields must be added to the nodal magnetic fields resulting from the

discretization of region II. Accordingly, the system resulting from (7) is of the form

[g]{¢} -b [B]{¢s} = 0 (31)

where {¢} is a column vector representing the nodal values of the discretized magnetic

field in the cavity and over the aperture, and {¢s} is a similar column for the discretized

aperture electric fields. The matrix [K] is square and symmetric whereas [B] is rectangu-

lar. Further, both matrices are very sparse and banded provided the nodes are properly

numbered. A corresponding discretization of (2) via Galerkin's methods leads to

[B]T{¢} + [P]{¢s} = {b} (32)

where the superscript T denote the transpose and [P] is a full, square and symmetric
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matrix. Further,{b} is theexcitationcolumnvectorandisafunctionof the incidentfield.

Combining(31) and (32)yieldsa symmetricsystemthat canbe solvedafter imposing

the boundarycondition(9).

IV. NUMERICAL RESULTS

Wepresentin this sectionsomeresultsfor referencepurposesandfor v_lidatingthe

proposedformulation.In all cases,the excitationis a planewavegivenby

E (R) = [(4 • + (4 • -jk''R (33)

where 5 = 0{ cos a + ¢_ sin a is the polarization vector, k i is the propagation vector given

by

k i = - ko(sin 0 i cos ¢i_ + sin 0 i sin ¢13:, + cos Olin) (34)

and _i and _i are the usual unit vectors in the spherical system and are associated with

the angles 0i and ¢i. Further, in all computations the penalty factor s was set to unity

and rectangular bricks were used for the discretization of region II.

For reference, Figure 2 shows the y-component of the electric field along the center

of an aperture formed by a narrow crack of length a = 0.5A, 1.0A, 1.5)_ and 2.0A. We

remark that the behavior of the aperture field associated with the cavity-backed structure

is distinctly different from that of a transmitting aperture as given in [16].

Figure 3 displays the co-polarized and cross-polarized backscatter RCS of a deep

empty cavity as compared with data obtained via the moment method/modal approach

[5]. Overall the agreement between the results from the two methods is seen to be

excellent except at the point (¢ = 90 °) for a = 90 °. We also note that the data in
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this figurearein agreementwith thoseobtainedusingthemodematchingprocedure[4].

For the sameaperture size, Figure 4 displays the cavity RCS as a function of depth.

The resonant behavior of the cavity is rather distinct and characteristic of the cavity

dimensions.

The backscatter RCS of a material filled cavity is displayed in Figure 5. The re-

sults based on this formulation and the moment method/modal approach are again in

excellent agreement. Finally, Figure 6 refers to a cavity filled with multilayer material.

The presented formulation is, of course, applicable to cavities filled with inhomogeneous

material whereas traditional approaches are not. Further, arbitrary shape cavities can

be treated with the same ease by employing an appropriate mesh generation algorithm.

V. DISCUSSION

There are a few issues which must be addressed in connection with the proposed

formulation and the solution of the resulting system. In particular, below we discuss the

role and choice of the penalty factor and the difficulty associated with the representation

of the fields near corners and edges. Also, a few remarks are included with respect to

the efficiency of this solution versus those based on more traditional approaches.

A. Penalty Term

As we stated above, the role of the penalty term is to implicitly satisfy the diver-

gence conditions on the electric and magnetic fields. The term was first introduced in the

stationary functional to remove the spurious modes that often appear in finite element

solutions of eigenvalue problems such as those pertaining to waveguides and closed cavi-

ties [12]. For those problems the role of the penalty term was very crucial in determining
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thepropermodes,propagationconstantor resonantfrequencies.Forthis applicationwe

observedthat in most casesthe actualvalueof the penaltyfactor (s from 0 to 2) has

a smalleffecton the RCSpattern. Nevetheless,it is desirableto avoidthe ambiguity

associatedwith the penalty term and this canbeaccomplishedby usingdivergenceless

basisfunctions[17].

B. Corner/Edge Conditions

It is known [18] that some field components are singular near sharp perfectly conduct-

ing edges as is the case with the four edges forming the aperture in Figure 1. The basis

functions used in this paper or other similar conventional basis functions are not capable

of accurately representing those field singularities. This, of course, leads to errors in the

calculated field distribution which can be avoided by modifying the field expansion to

include basis functions that simulate its expected singular behavior as determined from

a static solution. A successful example of this is given in [19] and the approach could

be extended to three-dimensions. We note that for the computations in this paper we

did not observe a noticeable effect on the RCS pattern due to errors associated with the

edge condition.

C. Computational Efficiency

The proposed formulation was considered because of its potential to treat cavities of

arbitrary shape and material fillings. However, it was also found more computationally

efficient than tradiational formulations [4], [5] without even making use of the symmetry

and sparseness properties of the resulting matrix. In particular, by using LU decom-

position for the solution of the matrix system, the data in Figure 3 were generated in

less than one minute on an Apollo DNI0000. In contrast, the corresponding time when
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usingthe modematchingtechniquewasfive minuteson a Cray XMP-48 [4] and that

for the momentmethod/modalapproachwastwo minutesonanApollo DN10000.The

CPU time differencesbetweenthe momentmethod/modalapproachand the proposed

formulationaxeevenmoreapart for largerapertures.For example,the data in Figure

5 wereobtainedin four minutesonan ApolloDN10000by this methodbut 65minutes

wererequiredwith themomentmethod/modalapproachon thesamemachine.A major

reasonfor the largedifferencein CPU time is dueto the slowlyconvergingmodesums

that must beevaluatedin the processof generatingthe matrix elements.

VI. SUMMARY

A new technique was proposed for a numerical characterization of the scattering

by a 3-D cavity-backed aperture in a ground plane. The proposed technique combines

the finite element and boundary integral methods to generate a system of equations

for the aperture fields in conjunction with the continuity condition at the aperture.

In principle, the technique is capable of treating arbitrarily shaped cavities filled with

inhomogeneous materials. However, because of the lack of available reference data, the

proposed solution was only validated for rectangular cavities. Some important issues

relating to the implementation and effciency of the technique were also discussed.

APPENDIX

A suitable element for the discretization of a rectangular cavity is the rectangular

brick illustrated in Figure 7. For this element, the expansion functions in (17) are given

by

N_ = (a'- x')(b'-a,b,c,y')(d- z') N_ = x'(b'-a,b_dy')(c'- z') N_ = x'y'(C'-a,bJc' z')
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N,_ -" (a'- x')y'(C'-a,b,dz') N_ -- (a'- x')(b' -a,bJc' y')z' N_ - x'(b' -a,b,c,y')z'

z'y'z' (a' - z')y'z'
N_ .:- a,tYcl N_ - a'tYc' (35)

and those in (24) are obtained by setting z' equal to zero. Here (x', y') denote the local

coordinates associated with the e element and through a linear transformation they can

be replaced by global coordinates. Substituting these into (18)-(20), (28) and (29), the

resulting integrals can be evaluated analytically on the assumption of constant e, and #r

within each element. The evaluation of the integrals in (25) and (26) is, however, more

involved because of the kernel's singularity. To illustrate how these integrals could be

evaluated let us consider one that has the generic form

If the eth and e'th elements are not adjacent, then mid-point integration could be used

to evaluate pi_e' as

ee' = N_(xc," 'N"" ' R'o)S S°'

where the subscript c denotes the point at the center of the element. Otherwise, the

eth and e'th elements could be subdivided into 3 × 3 small rectangles. Replacing the

expansion functions N_ and N_' within each of nine rectangles with their mid-point

val_ms yields

3 3

_e tp,J Z: °' ' '= ym,_)Nj (xm, yw)gm,_pq (38)
m,n=l p,q----1

where
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Theintegralg,n,_pq can again be evaluated via mid-point integration provided (x, y) and

(xr, y_) do not belong to the same rectangle, or share the same side. Otherwise, we

rewrite grnnpq as

grnnpq

dS. (40)

The first integral of these has a non-singular integrand and can therefore be evaluated

numerically using a 2 x 2 Gaussian integration. The second integral has, of course, a

singular integrand and must be evaluated analytically as described in [5].

IX. REFERENCES

[1] J. M. Jin and J. L. Volalds, "TE scattering by an inhomogeneously filled aperture

in a thick conducting plane," IEEE Trans. Antennas Propagat., accepted for pub-

lication.

[2] J. M. Jin and J. L. Volakis, "TM scattering by an inhomogeneously filled aperture in

a thick conducting plane," Proc. Inst. Elec. Eng., part H, accepted for publication.

[3] S. K. Jeng, "Aperture admittance matrix by finite element method for scattering

from a cavity-backed aperture," 1988 IEEE AP-S International Symposium Digest,

vol. 3, pp. 1134-1137, June 1988.

[4] S. W. Lee and It. Ling, "Data book for cavity RCS," (version 1), Electromagnetic

Laboratory Technical Report SWL89-1, pp. 17-18, University of Illinois, January

1, 1989.

18



[5] K. BarkeshliandJ. L. Volakis, "Scattering by an aperture formed by a rectangular

cavity in a ground plane," Radiation Laboratory Technical Report 389757-t-T,

The University of Michigan, December 1989.

[6] H. Ling, R. C. Chou, and S. W. Lee, "Shooting and bouncing rays: calculating

the RCS of an arbitrarily shaped cavity," IEEE Trans. Antennas Propagat., vol.

AP-37, pp. 194-205, Feb. 1989.

[7] P. H. Pathak and R. J. Burkholder, "Modal, ray, and beam techniques for analyzing

the EM scattering by open-ended waveguide cavities," IEEE Trans. Antennas

Propagat., vol. AP-37, pp. 635-647, May 1989.

[8] A. Taflove and K. R. Umashankar, "The finite-difference time-domain (FD-TD)

method for electromagnetic scattering and interaction problems," J. Electromag-

netic Waves and Applications, vol. 1, no. 4, pp. 363-387, 1987.

[9] O. C. Zienkiewicz, The Finite Element Method, 3rd ed. New York: McGraw-Hill,

1977.

[10] R. F. Harrington, Time-Harmonic Electromagnetic Fields. New York: McGraw-

Hill, 1961.

[11] P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers. Cam-

bridge University Press, 1983.

[12] B. M. A. Rahman and J. B. Davies, "Penalty function improvement of waveguide

solution by finite elements," IEEE Trans. Microwave Theory Tech., vol. MTT-32,

pp. 922-928, August 1984.

19



[13] J. M. Jin and V. V. Liepa, "Application of hybrid finite element method to elec-

tromagnetic scattering from coated cylinders," IEEE Trans. Antennas Propagat.,

vol. AP-36, no. 1, pp. 50-54, Jan. 1988.

[14] A. George and J. Liu, Computer Solutions of Large Sparse Positive Definite Sys-

tems. Englewood Cliffs, N J: Prentice-Hall, Inc., 1981.

[15] J. M. Jin and V. V. Liepa, "A note on hybrid finite element method for solving

scattering problems," IEEE Trans. Antennas Propagat., vol. AP-36, no. 10, pp.

1486-1490, Oct. 1988.

[16] J. R. Mautz and R. F. Harrington, "Electromagnetic transmission through a rectan-

gnlar aperture in a perfectly conducting plane," Scientific Report No. 10, Contract

F19628-73-C-0047 with Air Force Cambridge Research Laboratories, Hanscom

A.F.B., Mass., Feb. 1976.

[17] G. Mur and A. T. de Hoop, "A finite-element method for computing three-dimensional

electromagnetic fields in inhomogeneous media," IEEE Trans. Magnetics, vol.

MAG-21, pp. 2188-2191, Nov. 1985.

[18] J. Van Bladel, "Field singularities at metal-dielectric wedges," IEEE 7¥ans. An-

tennas Propagat., vol. AP-33, no. 4, pp. 450-455, April 1985.

[19] J. P. Webb, "Finite element analysis of dispersion in waveguides with sharp metal

edges," IEEE Trans. Microwave Theory Tech., vol. MTT-36, pp. 1819-1824, Dec.

1988.

2O



FIGURECAPTIONS

Fig. 1 Geometry of a cavity-backed aperture in a ground plane.

Fig. 2 Aperture field distribution (E_) at the center of a narrow crack, b = 0.05_,

c = 0.25,_, er = 1.0, #r = 1.0, normal incidence. (a) a = 0.5)_. (b) a = 1.0,k. (c)

a = 1.5A. (d) a = 2.0,L

Fig. 3 Backscatter RCS patterns for an empty cavity versus incidence angle, a = 0.7A,

b = 0.1_, c = 1.73)_, 0 = 40 °. Solid and dashed lines represent the solution of this

method; circles and squares represent the moment method/modal solution [5]. (a)

a = 90 ° (E = q_E¢). (b) a = 0° (E = _E0).

Fig. 4 Backscatter RCS for an empty cavity as a function of cavity depth, a = 0.7,k,

b = 0.1,k, 0 = 40 °.

Fig. 5 Backscatter RCS patterns for a material-filled cavity versus incidence angle.

a = 1.0,k, b = 0.25,k, c = 0.25_, er = 7.0-j0.5, #_ = 1.8-j0.1. Solid and

dashed lines represent the solution of this method; circles and squares represent

the moment method/modal solution [5]. (a) ¢ = 90 °. (b) ¢ = 0 °.

Fig. 6 Backscatter RCS patterns for a multilayer material-filled cavity versus incidence

angle, a = 1.0,_, b = 0.25,k, c = 0.25_. Top layer: e, = 7.0-j0.5, #, = 1.8-j0.1, t

(thickness)= 0.0625,k; middle layer: er = 3.0 - j0.05,/_, = 2.0, t = 0.125,k; bottom

layer: er = 5.0- j0.03,/_ = 1.0, t = 0.0625_. Solid and dashed lines represent the

solution of this method; circles and squares represent the two-dimensional solution

[1], [2]. (a) ¢ = 90% (b) ¢ = 0%

Fig. 7 Geometry of a rectangular brick.
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