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ABSTRACT

This paper presents a review of a hybrid finite element - boundary integral formu-

lation for scattering and radiation by two- and three-dimensional composite structures.

In contrast to other hybrid techniques involving the finite element method, the proposed

one is in principle exact and can be implemented using a low O(N) storage. This is of

particular importance for large scale applications and is a characteristic of the boundary

chosen to terminate the finite element mesh, usually as close to the structure as possible.

A certain class of these boundaries lead to convolutional boundary integrals which can

be evaluated via the fast Fourier transform (FFT) without a need to generate a matrix,

thus, retaining the O(N) storage requirement. The paper begins with a general descrip-

tion of the method. A number of two- and three-dimensional applications are then given,

including numerical computations which demonstrate the method's accuracy, efficiency

and capability.



I. INTRODUCTION

Integralequationmethodsandto a lesserdegreedifferentia]equationmethodsare

commonlyusedfor electromagneticscatteringand radiation computations. Among

the variousintegral equationapproaches,surfaceformulations(see,for example,[1]-

[4]) aremoreattractivefor perfectlyconducting,impedanceor layeredmaterialstruc-

tures, whereasvolumeformulations(see,for example,[5]-[8])are particularly suited

for modelinginhomogeneousscatterers.Both havebeenappliedto a variety of two-

and three-dimensionalproblemsand areoften referredto asexacttechniquesbecause

they guaranteeconvergencefor sufficientlydensediscretizations.However,they have

the disadvantageof beingdifficult to implementfor complexobjectsand alsoresult in

full matriceswhosetreatmentrequiresa largememory. This is particularly true for

three-dimensionalapplicationsand becauseof it, differentialequationapproachesare

becomingmorepopular.

Differentialequationmethodscanbesubdividedinto finite elementandfinitediffer-

encemethods.In contrastto the integralequationapproaches,they leadto relatively

simpleformulationsandarethusattractiveforsimulatingcomplexpenetrablestructures.

More importantly,they areassociatedwith sparse,bandedmatriceswhichcan be effi-

ciently solved and stored. They do not, however, incorporate the Sommerfeld radiation

condition and this requires that the domain of discretization be extended far from the

scatterer where the radiation condition can be imposed [9]. This is a major disadvantage

of the differential equation methods and recent efforts have concentrated on the use of

absorbing boundary conditions to reduce the discretization region outside the scatterer

(see, for example, [10], [11]). Unfortunately, the accuracy of the absorbing boundary



conditionsis dependentupon the compositionand shapeof the scatterer,leadingto

resultsof unpredictableaccuracy.

Toeliminatethedisadvantagesofthe integralanddifferentialequationmethodswhile

retainingtheir advantages,varioushybrid methodologieshavebeendeveloped(see,for

example,[12]-[17]).Thegeneralprincipleof hybrid techniquesis to introduceafictitious

boundaryenclosingthe scatterer.Interior to the boundary,the finite elementor finite

differencemethod is usedto formulatethe fields whereasin the exterior regionthe

fieldsarerepresentedby aneigenfunctionexpansion[12]-[14]or aboundaryintegral [15]-

[17].Thelast is anexactrepresentation,but in practicethe eigenfunctionexpansionis

approximatesincetheinfinite seriesmustbe truncated.

In this paper, wedescribea hybrid techniquewhich combinesthe finite element

and boundaryintegralmethods.The paperis essentiallya reviewof our recentwork

pertainingto the developmentof a finite element- boundaryintegralmethod[18]-[24].

In the next sectionwepresentthe generalformulationwithout referenceto anyspecific

geometryor application.A numberof two-andthree-dimensionalapplicationsarethen

consideredto demonstratethe accuracy,efficiencyand capabilityof the method. Of

particular concernin theseapplicationsis thechoiceof thefictitiousboundaryenclosing

thestructuresothat theresultingboundaryintegralsareconvolutions.Theycanthenbe

evaluatedvia thefastFouriertransform(FFT) in conjunctionwith aniterativesolution

approachsuchastheconjugategradient(CG) or biconjugategradient(BiCG) method.

In this manner,thegenerationofa partly full matrix is avoidedandthesolutionrequires

only O(N) storage without compromise in accuracy. Also, provided the enclosure fits

tightly over the structure, the elements comprising the mesh outside the domain of the
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structurearekept to a minimum.

II. GENERAL FORMULATION

Consider the scattering/radiation problem illustrated in Figure 1. We are interested

in the computation of the fields generated by the external sources (j_xt, M¢_t) (for the

scattering case) or by the internal sources (Ji'_, M i'_t) (for the radiation case) in the

presence of a three-dimensional structure immersed in an infinite, homogeneous medium.

In the following we describe a numerical procedure for determining the field everywhere

by combining the finite element and boundary integral methods.

1. Decoupling and Coupling of Exterior and Interior Fields

To combine the finite element and boundary integral methods, it is necessary that the

three-dimensional structure be enclosed in a fictitious surface denoted by S. Within S

the finite element method is employed to formulate the fields, whereas outside S the fields

are represented by the radiation of the extenal sources and a set of equivalent electric

and magnetic currents placed on S. This permits the decoupling of the fields interior

and exterior to S which can later be coupled by enforcing tangential field continuity on S

leading to a system of equations for the solution of the equivalent electric and magnetic

currents.

By making use of the free space Green's function, the fields in the region exterior to

S (this region will be hereon denoted as Voo) are represented as

E (or H) = E '_c (or H,nO) + L_,h (E+ × fi, H+ × n) (1)

where (E i'_c, Hinc) denote the incident fields radiated by the impressed external sources
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(jest, M_,t) and LS.h denote the boundary/surface operators (integral or integro-differential)

yielding the field radiated by the equivalent electric (H + x fi) and magnetic (E + x fi)

currents. The subscript e corresponds to the operator associated with the E field formu-

lation and likewise the subscript h is associated with the H field representation. Also,

(E +, H +) are the fields on S as one approaches from V_ and fi denotes the unit vector

normal to S and pointing toward V_. Let us now consider the region interior to S,

denoted as V. When this region is inhomogeneous, its associated Green's function is

usually not available and we cannot, therefore, formulate the fields in terms of bound-

ary integrals as was done for V_. However, by using the differential form of Maxwell's

equations, we can find a relation between the interior and the tangential boundary fields.

This can be of the form

/_,h (E or H, E- × fi, H- x fi) = 0 (2)

where f_,h denote the appropriate operators and (E-,H-) are the fields on S as one

approaches from V. We note that, since fe,h do not involve any Green's function, their

discretization via the finite element method results in sparse and banded matrices. Con-

sequently, the implementation of (2) is associated with O(N) memory demand which is

one of the primary advantages of the finite element method.

To solve for (E + x fi, H + x fi) we must couple the fields given in (1) and (2) by

enforcing continuity of the tangential electric and magnetic fields on S. The continuity

condition demands that

E+xfi=E-xfi, H+xfi=H-xfi (3)

which together with (1) and (2) imply a system for the solution of the interior and



boundaryfields.

2. Formulation of Functionals and Weighted Itesidual Equations

To formulate the fields in V, we begin with the vector wave equation

where ko = 2re/)_ is the free space wavenumber and Z0 is the free space intrinsic

impedance. A traditional approach for solving this is to consider the functional

'lJl.[" ]F(E) = 7 (V×E).(V×E)-k_e.E.E dV

+ fffvE" [JkoZoJ'"'- V x dV

+jkoZo_s E. (H × fi) dS (5)

which can be easily shown to be stationary with respect to the solution of (4) with

(H × fi) being considered as one of the sources for E. Thus E can be found by enforcing

_F(E) = 0 (6)

where SF(E) denotes the first order variation of F about E.

An alternative approach for solving (4) is to employ the method of weighted residuals.

This is an approach often presented in graduate electromagnetics texts and it would,

therefore, be instructive to employ it here as well. Based on the weighted residual

method we demand that

(It, T)

(7)



where tt denotes the residual of (4) and T is a testing or weighting function chosen to

satisfy the required boundary conditions associated with E. Recalling the identity

(?)× xE .TdV

= .(V x n). (V x T) dV +jk0Z0 T. (H x fi) dS (8)

(7) can be written as

(R,T) /JJV [ xE) (VxT) k_e_E T] dVI(V • - •

+ T. koZoJ in_ - V × dV
\_tr / J

+jkoZo #s T . (H x fi) dS = 0 (9)

which is equivalent to (5) and (6) provided T is chosen to be the same as the expansion

basis, implying an application of Galerkin's technique.

In some cases, it may be advantageous to work with magnetic fields rather than

electric fields. It will then be necessary to use the dual of (5) and (9) given by

F(H) = [¼ ](V x H) • (V x H) - ko2p,.H • H dV

- H • koYoM int + V x \er /J

-jkoYo _s H • (E x fi) dS (10)

and

(R, T) /f/v [I (V x H) " (V x T) - k2o#_H * T]

-///vT. [jkoYoMint + V × (1jmt)]

-jkoYo #s T * (E x fi) dS = 0

dV

(11)



respectively,whereYo = 1/Zo.

3. Finite Element Discretlzatlon

To discretize V, we subdivide it into a finite number of small volume elements such

as tetrahedra, triangular prisms, or rectangular bricks. By using the edge-based vector

basis functions [25], the electric field E or magnetic field H is expanded as

N,

E (or I-I) = _ Ej (or Hi) Wj (12)
j----1

where Nv denotes the total number of element edges resulting from the subdivision

including those on the surface S. Also, Ej (or Hi) denote the unknown expansion

coefficients equal to element edge fields and Wj are the chosen vector basis functions.

Note that the same basis functions are employed for both E and H, though this is not

required.

To generate a system of equations for the fields in V, (12) is substituted into (5).

Applying the Rayleigh-Ritz procedure to enforce (6) then yields

[A]N_×N,{E}N_xi + [B]N,×No{HS}N,×I = {C}Nv×l (13)

where {E} - [El, E2, ..., ENd] T, {Hs} -- [H1, H2, ..., HN,] T with the superscript T denot-

ing the transpose of the vector and Ns being the total number of element edges residing

on the surface S. The elements of [A], [B] and {C} are given by

Bij = jkoZof_¢Wi.(Wj × fi) dS

H

Ci Wi k0ZoJ ;n_ - V x dV
\_r }J

(14)

(15)

(16)
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Wenote that the result statedin (13)canalsobe obtainedvia a discretizationof the

weightedresidualequation(9) providedthe sameexpansionsareusedand T is set to

T = Wi, implying a Galerkin's formulation. Finally, a discretization of (10) or (11)

yields the dual of (13) given by

[A']N_×N_{H)N,×I + [B']N,,×N,{ES)N,×I = {C')N_xl • (17)

The elements of the matrices [A'], [B'] and {C') are, respectively, given by the dual of

(14)-(16).

4. Boundary Element Diseretization

To solve the system (13) or (17), a specification of a boundary condition relating

(E x fi) and (H × fl) is required. This is provided by the boundary integral equation

(1), and to incorporate it into (13) or (17) it must first be discretized. To illustrate this

let us rewrite (1) for the electric field as

E = E _'_c4-L;I (E × fi)9-L;2 (H x fi) (18)

where L_e was split into two parts; one (LS_l) pertaining to the equivalent magnetic current

and the other (L_2) to the equivalent electric current. Taking the cross product of (18)

with fi yields

E x fi = E;"" x fi+ L;_(E x fi) x fi+ L:2(H x fi) x fi (19)

which can be discretized by using (12) and applying Galerkin's procedure to find

[B']N. xN.{ES}N.x, 9-[P]N. xN.{Es}N, xl 9- [Q]N.xN.{Hs}N. xl ----{Y}N. xl • (20)



Thematrix elementsof [B'] arethesameasthosein (17)andtheothermatrix elements

aregivenby

Pij = jkoYo_s Wi • [L_I (Wj x fl) x fi]dS (21)

Qij = jkoYo f_s Wi * [L_2 (Wj xfi) xfi]dS (22)

--
The dual of (20) can also be obtained from (1) and is given by

[B]N, xN,{Hs}N, xl + [P']N, xN,{Hs}N,×I + [Q']N°xN,{Es}N, xl = {Y'}N, xl • (24)

In this, the elements of [B] are the same as those in (13) and the elements of [P'], [Q']

and [Y'] are given by (21)-(23), respectively, upon replacing Y0 with -Z0, L*,I.2 with

L s and E _'_c with H i'_c
hl,2

5. Solution of the System

A complete system of equations for the discrete edge fields can now be obtained by

combining any one of (13) and (17) with either (20) or (24). Various techniques can be

employed for solving the resulting system, but it would be advantageous to use algorithms

which exploit the special properties of the finite element matrices. More importantly, the

subsystems (20) and (24) resulting from the discretization of the boundary integrals are

fully populated and could increase the memory demand beyond O(N) unless special care

is exercised. In particular, to retain the O(N)storage requirement, the boundary/surface

S must be judiciously chosen so that the resulting boundary integral or a large portion

of it is convolutional. The FFT can then be used to evaluate the integral without a need

to explicitly generate and store the boundary element matrices, provided an iterative
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solutionsuchasthe CG or BiCGmethodis employed.Belowweconsiderspecifictwo-

and three-dimensionalapplicationswhichillustrate howthe boundary/surfaceS could

be chosen to maintain the O(N) storage requirement. These applications will also permit

the derivation of specific forms for the matrices introduced in (13), (17), (20) and (24) as

well as demonstrate the validity and effectiveness of the method. In the following we first

consider a few two-dimensional applications and in this case V and Voo represent cross-

sectional areas denoted by _ and floo, respectively, and S becomes a contour which will be

denoted by r. Some three-dimensional applications are also discussed and computations

are presented which are compared with reference data.

III. TWO-DIMENSIONAL ANALYSIS

For two-dimensional problems, it is sufficient to consider the transverse magnetic (TM

or E-polarization) and transverse electric (TE or H-polarization) incidence separately.

This reduces the problem to a scalar one and (5) or (10) becomes

1 { [(0¢) 2 (O¢_2]_k2ov¢2 } Jr¢¢dF (25)F(¢)= _/_ u -_x + \Oy] J dzdy+

where

1
¢=E,, ¢=jkoZo(Hxfi)._, u=--, v=¢_ (26)

for E-polarization and

1
¢=H_, ¢=-jk0]_(Exfi)._, u=--, v=p_ (27)

Er

for H-polarization. The matrix equations (13) and (17) now reduce to

[A]{¢} + [B]{¢} = 0 (28)
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where

u - k0ul, i l,jj dxdy (29)

Bij = Lj dr. (30)

where N_ and L_ denote the chosen basis functions for the interior and boundary fields,

respectively, and furthermore, N_ becomes the same as L_ at the boundary r. It remains

to obtain the elements associated with (20) or (24). Obviously, the explicit form of these

depends on the formulation of the boundary integral equation which is dependent upon

the geometry of the scatterer under consideration.

1. Scattering by Grooves and Slots in a Thick Conducting Plane

Consider the geometry illustrated in Figure 2 where an infinitely long groove is cut

in an infinite ground plane. For this specific configuration, _ is the region occupied by

the cross-section of the groove and fl_ is the half space above the ground plane (y > 0).

Also, r consists of the straight line segment I'1 across the opening and the conducting

boundaries forming the groove. Because of the boundary condition, the portion of the

boundary integral in (25) over the conducting boundaries vanishes and, thus, we only

need to consider the remaining boundary integral along 1_1. Below we discuss the TM and

TE cases separately since they are associated with different boundary integral equations.

A. TM incidence

Using the notation defined in (26), the boundary integral equation is given by

J k_ + _'l)d_'¢(x,0) = + , (31)
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whereH_2)(.) denotes the zeroth order Hankel function of the second kind and a factor of

two has been introduced in the right-hand side to account for the presence of the ground

plane. To obtain a system corresponding to (24), (31) is discretized via Galerkin's

technique, yielding

[B]{¢} + [Q']{¢b} = {Y'}. (32)

In this, {¢b} denotes the portion of {¢} on the boundary F1, [B] is the same as that in

(28) and [Q'] and {Y'} are given by

Qiy = J Lf(x) k_ + Lgj(x')H_2)(ko]x- x'[)dx' dx (33)

= 2 (34)
dl 1

which can be evaluated analytically or numerically for the given L_ and L_.

To solve for the fields {¢}, (32) and (28) can be combined to yield

[A]{¢}-[q'l(¢b} = -{Y'} (35)

which is amenable to a unique solution and can be solved via a number of methods.

However, if the CG or BiCG method is used, the FFT can be employed for the compu-

tation of [Q']{¢b} without a need to generate the matrix [Q']. To illustrate this we refer

to (33) and observe that Q_j is a function of (i - j) for an equal subdivision of F1. Thus

we may invoke the convolution theorem to write

[Q'] {¢b} = 7 -1 {7{q'} o 7{¢b}} (36)

in which q_ = Q_I, 5r" denotes the discrete Fourier transform and the symbol o implies

the Hadamard product. Clearly, the use of the FFT in (36) eliminates a need to store
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the entire[Q'] matrix (otherthan onerow of it), thusmaintainingthe O(N) memory

requirement. We now turn to the computation of [A]{¢). As noted earlier, [A] is

an Nv x N,_ square matrix resulting from the finite element discretization. Since it

is assembled from the element matrices, its associated matrix product can be easily

computed as

My

[A]{¢) = _[Ae]{¢ e) (37)
e=l

where My is the total number of subdivision elements, [Ae] is the element matrix and

{&) denotes the fields associated with the eth element. Note that [A e] are generally

simple small matrices and thus the computation of (37) requires only O(N) memory.

The total memory demand for the solution of the system (35) is then kept to O(N) since

[A]{¢) and [Q']{¢b) are the only computations in a CG or BiCG algorithm involving

the use of [A] and [Q'].

B. TE incidence

The procedure for this excitation is very similar to that outlined for the TM case.

¢(x')H0 2)(kolx- x'l)dz'

The boundary integral equation now is

¢(z, 0) = 2¢'"c(z, 0) + i (38)

where the notation defined in (27) has again been adopted. A discretization of this via

Galerkin's procedure then yields

[B]{¢b) + [Q']{¢} = {Y') (39)

where [B] is the same as that in (28) and the elements of [Q'] and [Y'] are now given by

' = -- Lj(x)H o (kol x- x'l)dx' dx (40)
2 1 a

13



Yi' = 2_ L_(x)¢i'_c(x,O)dx. (41)
Jl 1

A solution for {¢} and {¢} then follows by combining (39) with (28). As in the TM

case we again observe that [Q']{¢} can be computed via the FFT as

[Q'] {¢} = 7 {J:{q'} o 7{¢}} (42)

where q_ = Q_I. Provided the CG or BiCG method is used, the memory requirement of

the solution is only O(N).

C. Numerical results

The above formulations for the TM and TE scattering by a groove and slot have been

implemented using linear expansion functions. To show the capability of the method,

we consider the plane wave scattering by two different structures. Figure 3 shows the

backscatter radar cross section (RCS) for a rectangular groove, compared with measured

data [26]. Figures 4 and 5 show: the transmission coefficient as a function of frequency

and bistatic scattering patterns for a structure consisting of a wide slot having a non-

uniform filling and containing a periodic array of strips in a multilayer dielectric. We

note that the model employed for generating the data in Figure 4 required nearly 2500

unknowns at the high end of the spectrum. However, by using the CG or BiCG method

in conjunction with the FFT, we were able to carry out the solution of the system on a

workstation.

2. Scattering by Cylinders

We consider now a cylindrical scatterer of arbitrary cross-section enclosed by the
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fictitiousboundaryF. Theboundaryintegralequationthenbecomes

¢(p) = + [¢(Pr') c°g°(P'P')_ ÷ go(P,P')¢(P')] dr' (43)

where p and p' denote the observation and integration points, respectively, and

go(p, p') = -4 H_2)(k°[p - P'I) (44)

is the free space Green's function. A discretization of (43) via Galerkin's approach yields

[B]{¢b} + [P]{¢b} + [O]{¢} = {Y) (45)

where [B] is given by (30) and the matrix elements for [P], [Q] and [Y] are given by

I

(47)

(48)

with p denoting the observation point on F.

The combined system of (45) and (28) now forms a complete system for the solution

of {¢} and {_b}. However, care must be exercised for the computation of [P]{¢b} and

[Q]{¢} to ensure an O(N) memory demand for the entire system solution if the CG

or BiCG method is used. In the previous examples, this was achieved by exploiting

the convolutionality of the integral operators. This property is strongly dependent on

the choice for F. It was shown that for planar F the boundary integral operators are

convolutional, and this also holds for circular boundaries as well. Choosing F to be a

circle tightly enclosing the cylindrical scatterer and subdividing it equally, (46) and (47)
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become

j /'2_

(49)

(50)

where a denotes the radius of the circle and H}2)(,) denotes the first order Hankel

function of the second kind. It can be readily shown that Pij and Qq are functions

of (i - j) and thus the matrix products associated with the boundary integrals can be

efficiently evaluated via the FFT. Specifically, we have

[P]{¢b} = 7 -I {7{p} o 7{¢b}} (51)

[Q](¢} = 7 -1 (7{q} o _:{¢)} (52)

where Pi = Pix and ql = Qil. In passing, we should note, though, that choosing a circular

boundary enclosure may not necessarily be a memory efficient approach, particularly if

the scatterer is small in one dimension. In that case, a rectangular or ogival enclosure that

tightly encloses the target will most likely result in less unknowns [20]. The boundary

integrals are then convolutional only when the observation and integration points are on

the same side of the ogive or the rectangle, and also when they are on the parallel sides

of the rectangle. Otherwise, the boundary integral has no special form and its associated

matrix must therefore be stored explicitly [16].

The above formulation has been implemented and validated for a variety of geome-

tries. Figure 6 shows the backscatter patterns for a coated ogival cylinder in comparison

with the moment method data [27]. In generating the finite element - boundary integral
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solutionweemployeda ogivalenclosurein order to keepthe finite elementregionto

minimum.

IV. THREE-DIMENSIONAL ANALYSIS

The full advantageof the proposedhybrid methodis realizedwhenwe considera

three-dimensionalapplicationwherethememorydemandsarefar moreexcessive.There-

fore,havinga solutionmethodleadingto an O(N) memory demand is of crucial impor-

tance. In this section, we consider the problem of scattering by a cavity-backed aperture

and a slot in a thick conducting plane, scattering and radiation by a microstrip patch

antenna or array in a cavity, and that of scattering by a finite size object.

1. Scattering by Cavity-Backed Apertures and Slots in a Thick Conducting

Plane

Consider the cavity-backed aperture illustrated in Figure 7. In this case, _ is the

free space region above the ground plane (z > 0) and V is that occupying the cavity

(-c < z < 0). The surface S consists of the planar aperture and the conducting walls

of the cavity. Because of the boundary condition the portion of the boundary integral

over the conducting walls vanishes as was the case with the groove. Thus, we only need

to consider the remaing portion of the integral over the aperture.

For this problem, the boundary integral equation (1) is given by

H(r) = H"_C(r) + H_l(r) - 2jkoYo //s_O(r,r') * [E(r') x _] dS' (53)

where H in¢ denotes the incident field due to (jr,t, Me,t) and H _I is that reflected

by the ground plane without the aperture. Also, C0 is the free-space dyadic Green's
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functiondefinedby

with

_o(r,r'): (i+_o2VV) G0(r,r') (54)

e-Jko Ir-r'l

Go(r, r') - 47fir - r'l (55)

Multiplying (53) by (jkoZo), crossing by _ and discretizing the resulting integral equation

via Galerkin's method yields

' E _-[BI{Hs} + [q ]{ s} {Y'} (56)

In this, [B] is given by (15), [Q'] and {Y'} are similar to those in (24) and are more

explicitly given by

Q_j = 2k_ ffs[Wi(r) x_]. {fis_°(r'r')'[Wj(r')×_]dS'}dS (57)

(58)

Obviously, the integrand singularty of Q[j is nonintegrable and it is necessary to employ

the divergence theorem in order to transfer the del operators contained in _0 to the

expansion and weighting functions and this is discussed in [21]. As before, a final system

of equations is obtained by combining (56) and the finite element equation (13) to give

[A] {E}- [Q'] {Es} = -{Y'} (59)

This can be solved using various techniques including the CG or BiCG method in con

junction with the FFT for the evaluation of the product [Q'] {Es}
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Theaboveformulationwasimplementedandvalidatedusinglinearbasisfunctionsfor

rectangularcavitiesandslotswhichareamenableto simplefiniteelementdiscretizations.

As an example,Figure8 displaysthe backscatterRCSof a rectangularcavity and as

seen,the resultsbasedon this formulationare in excellentagreementwith measured

data [28].Other computationsaredisplayedin Figures9 and 10. In particular,Figure

9 presentsthe scatteringby a circularcavity whereasFigure 10displaysthe bistatic

scatteringby a materialfilled rectangularslot. Of course,the presentedformulationis

applicableto cavitiesfilledwith inhomogeneousmaterialwhereastraditional approaches

arenot andonesuchapplicationis considerednext.

2. Scattering and Radiation by Microstrip Patch Antennas in a Cavity

The structure to be considered is illustrated in Figure 11 where a microstrip patch

antenna or array is residing on or embedded in a substrate which is in turn housed in

a cavity recessed in a ground plane. As expected, the formulation for this problem is

similar to that of scattering by a cavity-backed aperture, except in the case of radiation

where the excitation is due to internal sources in the cavity. The system to be solved is

therefore

[A] {E} - [Q'] {Es} = {C} (60)

rather than (59) which is suitable for scattering computations. In (60), {C} is given

by (16) and the product [Q'] {Es} is again evaluated via the FFT for a CG or BiCG

solution.

The modeling of the conducting patches and microstrip transmission lines is carried

out by setting the electric field components to zero for those element edges coinciding with
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the patch. Further,an impedanceloadcanbemodeledasa postof finite conductivity

joining both the patchandthebaseof the cavity.Theantennacanbeexcitedeitherby

a currentfilament,a magneticfrill current,or agapgenerator[23].

Figure 12showsthe backscatterRCSspectrumfor a singlepatch loadedwith 50

ohmsat the point (XL, YL). About 1280 unknowns were required for the simulation

of the geometry. Notably, on the average only 100 iterations were required for the

solution to converge to within 0.01 dB of the correct RCS level for each excitation with

a corresponding cpu time of about 20 s on a Cray Y-MP832. The radiation patterns for

a 13x16 microstrip patch array is given in Figure 13. The patches of this array are of

the same size as that shown in Figure 12. They are 1.83 cm apart in the z-direction,

1.30 cm apart in the y-direction, and the cavity dimensions are 73.2 cm × 63.7 cm x

0.158 cm. Each patch is uniformly fed at its lower left corner and the feed was modeled

by a current filament. For this example, 120935 unknowns were used and the solution

converged within 100 iterations.

3. Scattering by a Finite Body

The corresponding equation to (1) for a finite body enclosed by the fictitious surface

S is given by

ffs {v × [E(r')×E(r) EinC(r) +

-jkoZo_o(r, r') • [H(r') x fi']) dS' (61)

for the electric field. A numerical discretization of (61) yields the matrix equation (20),
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whosematrix elementscanbeobtainedfrom (21)-(23).Specifically,wehave

= -jkoYo_j_s [W,(r)×fi]. {J_s V× _o(r,r'). [W,(r')× fi'] dS'} dS (62)

(63)

The implementation of the above formulation for an arbitrary body has not yet been

carried out. A major difficulty is the large number of unknowns on S even for small

bodies. To overcome this, a cylindrical enclosure may be chosen so that the integrals over

the cylindrical surface become two-dimensional convolutions and can, thus, be evaluated

via the FFT, provided the CG or BiCG method is employed for the solution of the

system. This idea has been tested for a body of revolution [24] and Figure 14 displays

the bistatic scattering patterns for an ogive as obtained by this method and the moment

method [29].

V. CONCLUSION

In this paper we reviewed a hybrid finite element - boundary integral method for

scattering and radiation applications. The method involves the introduction of a ficti-

tious boundary enclosing the scatterer which serves to decouple the fields in the regions

interior and exterior to the boundary. The fields in the interior region are formulated

via the finite element method whereas those in the exterior region are represented by the

boundary integrals involving the free space Green's function. The interior and exterior

fields are then coupled by invoking the continuity of the tangential boundary fields, re-

sulting in a complete system for the solution of the fields internal to and on the fictitious

boundary.

Of particular interest in the proposed hybrid formulation is the choice of the fictitious
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boundaryso that the resultingboundaryintegralsareconvolutional. If so, they can

then be evaluatedvia the FFT whenan iterative solutionof the systemsuchas the

conjugategradientor biconjugategradientmethodis employed.This avoidsa need

to generate the matrix and since the finite element discretization results in sparse and

banded matrices, the entire system solution requires a low O(N) storage. The proposed

technique, therefore, holds a promise for treating large structures without a compromise

in accuracy. We should note, however, that this technique, like others involving the use

of boundary integral equations over closed surfaces or contours, may be associated with

fictitious internal resonance phenomena which can be eliminated by combining the E

and H field boundary integral equations. Such difficulties do not, of course, arise when

the boundaries are not closed such as in the case of aperture problems.

Finally, we note that in all cases considered in this paper the final system of equations

is symmetric, due to the employment of Galerkin's method for the discretization of the

boundary integral equations. As a result, the BiCG method is more favorable than

the CG method since it requires only one matrix-vector product computation in each

iteration and also since it converges faster.
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FIGURE CAPTIONS

Fig. 1 Geometryof the scattering/radiation problem.

Fig. 2 Geometry of a two-dimensional groove.

Fig. 3 Backscatter RCS for a 2.5 cm wide and 1.25 cm deep rectangular groove as a

function of frequency. H-polarization, _inc = 10o.

Fig. 4 Transmission coefficient as a function of frequency for a truncated strip grating

at normal incidence. Top and bottom layers: er = 2.56, #r = 1.0, 0.2 cm thick;

middle layer: e, = 4.0, #r = 1.0, 0.2 cm thick.

Fig. 5 Bistatic scattering patterns for the geometry in Figure 4 at 10 GHz and _,_c =

60 °. (a) E-polarization; (b) H-polarization.

Fig. 6 Backscatter pattern for a 4_ x 1_ perfectly conducting ogival cylinder with a

0.05A thick material coating having er = 3-j5, #, = 1.5-j0.5. (a) E-polarization;

(b) H-polarization.

Fig. 7 Geometry of a cavity-backed aperture in a ground plane.

Fig. 8 Backscatter pattern for a 16 inch long, 0.1968 inch wide and 0.837 inch deep

cavity at f = 12 GHz. E i'_c = :_E, _,_c = 0.

Fig. 9 Backscatter pattern for an 1 inch deep circular cavity having a diameter of 1

inch at f = 16 GHz.
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Fig. 10 Bistaticscatteringpatternat normalincidencefor a 1.2) l̀ong,0.25) ẁideand

0.25) d̀eepslot filledwith thematerialofeT= 2-j and #T = 1.2-j0.1. E inc = _E

and circles correspond to the scaled two-dimensional solution [19].

Fig. 11 Geometry of a microstrip patch array in a cavity.

Fig. 12 Backscatter RCS versus frequency for a single patch loaded with 50 ohms. The

cavity is 0.158 cm deep and filled with a substrate having er = 2.17 and a loss

tangent of 0.001. 0inc = 60 °, _inc = 45 o, Ei,_c = OE.

Fig. 13 Radiation pattern of the 13 x 16 microstrip patch array equally fed at the lower

left corner of each patch. (--) _ : 0 - _ plane; (- - -) _ = 7r/2 - 3_-/2 plane. (a)

f = 2.62 GHz. (b) f = 3.55 GHz.

Fig. 14 Bistatic scattering pattern for a 1.0), long conducting ogive having a diameter

of 0.176), at its center.
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