
mathematics of computation, volume 27, NUMBER 121, JANUARY, 1973

A Finite Element Collocation Method for

Quasilinear Parabolic Equations

By Jim Douglas, Jr., and Todd Dupont

Abstract. Let the parabolic problem cix, t, u)ut = aix, t, u)uxx + bix, t, u, ux), 0 < x < 1,

0 < / á T, uix, 0) = fix), w(0, t) = gli), ií(1, t) = giit), be solved approximately by the
continuous-time collocation process based on having the differential equation satisfied at

Gaussian points £,,i and £;,2 in subintervals (x,-_i, x¡) for a function l/:[0, T] —» 3C3, the class

of Hermite piecewise-cubic polynomial functions with knots 0 = x0 < Xi < ■ ■ ■ < xn = 1.

It is shown that u — U = 0(A4) uniformly in x and t, where h = max(x, — x,-_i).

1. Introduction.   Consider   the   quasilinear   parabolic   differential   equation

(1.1) cix, t, «)|j = aix, t,u)^2 + b(x,t,u,^) ,        0 < x < I, 0 < t g T,

subject to the initial condition

(1.2) k(x, 0) = fix),       0 < x < 1,

and the boundary conditions

(1.3) «(0, 0 = goit),       «(1, i) = *,(/),       0 < t ú T.

Assume the stability condition

(1.4) 0 < m ^ cix, t,u) <. M,        m ^ aix, t, u) ^ M < œ,

for 0 g x ^ 1, 0 ^ r ^ J, and - » < u < ».

We shall be concerned with the numerical solution of (1.1)—(1.3) by a method

of collocation for the particular case in which the approximate solution is an Hermite

piecewise-cubic polynomial in the space variable x at each time t. More precisely, let

0   =   X0   <  Xi   <    • • •    <  X„   =   1 , Ay   =   X,   —  Xy-!,

and

/, = [*,_!, x,\,        I = [0, 1].

Let

3C3 = {v = v(x) E C1il) | v is a cubic polynomial on each /,-, j = 1, • • ■ ,n).

We shall seek a map U: [0, T] —► 3C3 such that 1/ is a good approximation of u for

0 ^ r Ú T. Recall that a basis for 3C3 can be constructed by translation and nor-

malized piecewise-dilation of two functions. Let
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18 JIM DOUGLAS, JR., AND TODD DUPONT

Vix) =

Six) =

I - 3x2 + 2x3,

1 - 3x2 - 2x3,

o,

xil - x)2,

x(l + x)2,

0,

0 g x ^ 1,

-1 á x ^ 0,

|*| > 1,

0 g x g 1,

-1 é x g 0,

|x| > 1.

Set

V¡ix) =

S,(*) =

ÍK((X   -   Xy)/Ay + 1),

1 Vüx - x¡)/h¡),

¡hi+1Siix - x¡)/h¡ + i),

\h¡Süx - x¡)/h¡),

X ^ X

X ^ X

X ^ X

X ü X

where A0 = hn+1 = 1. Then,

3C3 =  Span[ V0, S0, Vn, Sn]

and dim(3C3) = 2n + 2. Thus, we need 2n -f- 2 relations at each time í to specify

the approximate solution U(t). Two of these conditions obviously can be obtained

from the boundary conditions; i.e., the coefficients of V0 and Vn are given by g0(r)

and g¡it), respectively. The method of collocation requires that the remaining re-

lations be obtained by having the differential equation satisfied at 2n points. Since

there are n intervals /,, it seems natural to locate two points in each interval. For

reasons associated with approximation theory that will be explained later, we shall

choose the points in the following fashion:

(1.5)
h,

£y,t    =    hiX¡-l   +   X¡)   +   i-lf  J^ j = 1, , n, k = 1,2.

Thus, our collocation method is specified by the equations (the writing of the in-

dependent variables x and t being partially suppressed)

(1.6)
■<<-^-^)K""=°-j= l, •■■  ,n,k= 1,2,

UiO, t) = goit), Uil,t)= glit),

for 0 < t ^ T. In addition, it is necessary to specify initial conditions for U; the

easiest way to do this if / E C\l) is to let t/(x, 0) be the 3C3-interpolant of /; i.e.,

i/(x, 0) and dU/dx (x, 0) agree with / and /' at the node points x,, respectively.

The object of this paper is to analyze the convergence of the solution U of (1.6)

to u. Obviously, it is a prerequisite to show that U exists and is unique. We shall

demonstrate that there is a constant C depending on u and certain of its derivatives

such that

II" -   I/||L-(o.r..L-(/»  ^ Ch4, max A,,
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A  FINITE  ELEMENT  COLLOCATION  METHOD 19

if C/(x, 0) is chosen as indicated above. This is optimal order convergence, since

U E 3C3. We do not know the minimal smoothness necessary to preserve the fourth

order convergence; consequently, we shall not complicate the arguments in this

paper by seeking minimal smoothness requirements on u.

The placement of the collocation points £,, k is critical in obtaining the 0(h4)

estimate. For other choices of the collocation points, only second order accuracy

is obtained. Obviously, the £,-, k can be perturbed by terms of Oih4) without causing

a loss in order of accuracy, but such modifications of the method generate no new

ideas.

Before practical calculations can be made, it is necessary to discretize (1.6) in

time. This can be done in the usual ways, e.g., backward differencing, Crank-Nicolson,

etc. The proofs of convergence for these cases can be carried out without great

difficulty based on the methods of this paper; however, we shall defer presenting

these results so that they can be combined with the extension of the single space

variable results to several variables.

It should be noted that Eq. (1.1) was not given in divergence form. There does

not seem to be any advantage to having a divergence form for collocation methods,

in sharp contrast to Galerkin and finite-difference procedures. It is clear that, under

the hypothesis (1.4), no loss of generality in (1.6) results from dividing out the co-

efficient a'x, t, u), since the arithmetic is unaltered. We shall henceforth assume

(1.7) a(x, t, u) = 1.

We can also assume g0(0 = gi(t) = 0 by modifying b and c. For convenience, we

shall do so.

The Hermite cubic space 3C3 can be employed in a Galerkin procedure just as

readily as in a collocation method. It is also the case that Oih4) accuracy results

[5]. Thus, some comparisons should be offered between the two methods. Practically,

the collocation method should run noticeably faster on the computer than Galerkin,

given exactly the same nodes. First, there are no quadratures to evaluate in the

collocation method. Even with the various methods that have been devised to reduce

the effort involved in these quadratures [2], they remain a significant part of any

Galerkin calculation. Second, there are only four nonzero coefficients in any of the

2« equations generated by (1.6), while there are six in the Galerkin case. Thus, solving

the algebraic systems that result from discretization in time is simpler for collocation.

Now, our arguments to be presented below require more smoothness on u for the

collocation method than is required for the Galerkin method to obtain the optimal

order of convergence. Whether this is real or only a failing of this proof is unknown

to us. It is not known whether the same h leads to a smaller error for collocation or

Galerkin.

2. Some Preliminary Lemmas. We shall indicate the L2 inner products on

/ and /, as follows (only real functions will arise):

»In n fij

(2.1) («, v) =        uv dx =   2 iu,v)¡ =   ^   /       uvdx.
Jo j=i i-i  Jxj-,

It is convenient to define
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20 JIM DOUGLAS, JR., AND TODD DUPONT

(2 2) (u, v)¡ = K«(ÍmMÍm) + ui^,2)vi^.2))h¡,

|«|y = (U,  U)¡

and

n

(2.3) (u,v)  = £<«,!>>„   |«|2 = («,«).
¿-i

Lemma 2.1.   For all f and g in 3C3,

(2.4) -(/", g) = (/', g') - f'g |i + j¿3 g /{"¿"A?,

wAere /<" is ?Ae {constant) value of the third derivative off on I¡.

Proof. It is sufficient to treat just one interval of length hx, since the boundary

terms collapse on summation over intervals. Note that the points %SA and £i2 are

exactly the Gaussian quadrature points for the choice of two points and a uniform

weight function [1], [4]. Hence, if p is a polynomial of degree three,

,*.
{p, l)i =  /    P dx.

Jo

Thus, if

3 3

P(x) =   2 a,x\        qix) =   X bjX',
i-0 t-0

then

~{p", q)i = — i    P"a dx — (6a3x, £>3x3)i +  /     6a363x4 dx.
Jo Jo

A trivial calculation shows that (x, x3)! = 7Af/36; thus

-{p"^)i=-f\"adx + ^p"W",

and the lemma follows.

It is another easy calculation to see that

max
Í    JP'"f 720

p a nonconstant cubic [ = —rg--
A

U «* dx \

Thus,

7¿5 £ ÏÏ'g'i'% ík § £ ll/'IU.í/y) Ili'lU-u,) â ! ll/IU.. 11*11*..,     /. s E 3C3,

where

')2 dx.

The space 7/J = H0(I) is defined as usual [3], along with the other Sobolev spaces.
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A  FINITE  ELEMENT  COLLOCATION  METHOD 21

Let 3C3 denote the subspace of 3C3 consisting of functions vanishing at x = 0 and

x = 1.

Lemma 2.2.   /// E 3C°3, then

I l/l Ik. á -</",/>£# U/H*.-
This lemma will be quite useful later. It should be noted that, while (/', /') is

obviously positive semidefinite on 3C3, it vanishes for

fix) = £ Sjix) E X°3.
i-0

Fortunately, the form that will arise is — (/", /). In fact, we can see by an argument

analogous to that of Lemma 2.1 that

</', g') = (f, g') - ^ £ r/Wh),    f e 3c3,

and

(2-5) \f'\2 Û U/H*..,        /G3C3.

The following lemma is useful in interpreting the error bound that will be derived.

Lemma 2.3.   For f E H\

11/11«..+ I/I2 ̂ 111/11*..

(The constant can be of the form (1 + ch)'1.)

Proof   The relation f(x) = ftfc,,) + Jf, , f(T) dT implies that

ll/lll.«,) ^ 4|/|2 + 2A2||/||k1(,,,,

and

11/11*. á 4(| l/l |L, + l/l2).

It should be noted that |/| and ||/||l° are not equivalent with constants inde-

pendent of the Xy's on 3C3 for arbitrary node spacing. This is easily seen by taking

a very short interval adjacent to a much longer one. However, it is clear from homo-

geneity (in h) and a simple calculation that

(2.6) l/l g (28/27)I/2 ll/IU.,        /G3C3.

3. Approximation Theory. We shall bound the error in collocation by first

bounding the difference between U and the Hermite cubic interpolant of the

true solution u. In order to estimate the amount by which the interpolant fails to

satisfy the collocation equations (1.6), we shall need a representation of the interpola-

tion error.

For sufficiently smooth functions u on [0, 1], define the following interpolants

oft/:

r3(«)(x) = uiO)Vix) + u'iO)Six) + uil)Vix - 1) + u'il)Six - I),

r4(«)(x) = T3iu)ix) + uwih)Bix),

T5iu)ix) = r4(«)(x) + «(5)(J)ß(x),
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22 JIM  DOUGLAS,   JR.,   AND   TODD  DUPONT

-where

Bix) = j{ x2(l - x)2,       Qix) = ^ x2(l - x)2(x - i).

Using Taylor's theorem with integral remainder and the fact that T, reproduces

polynomials of degree less than i + 1, we obtain by standard techniques [1, pp. 69-

70], [4, pp. 70-71].
Lemma 3.1.   Suppose that, for I = 3, A, or 5, u E H,+\I). Then

(3.1) iu - Ttiu))ix) =   [   Ktix, t)ua+1\t) dt,
Jo

where, for each fixed t,

Ktix, t) = g«(I)(x) - r,(glU))(x)

and

g\l\x) = 1
\(x-t)',        0=i = x,

l0, x = t =  1.

For sufficiently smooth functions u defined on [0, h], define

T,Au)ix) = Tliw)ix/h),        0 g x = A, / = 3, 4, 5,

where w(x) = w(Ax). Also let

*</, s) - \ ¿ lg[% (i + (-DV V3)) .     >|/|2 = .</, /).

Taking h = 1 and e = u — T3u, we obtain the following relations from Lemma 3.1:

i[em\áC[[uw[\L,U),        A: = 0,1,

(3>2) i\e"\ á C||M(5)|UM/),

|,<rM>| = C||M(5)|U,m,

W, i>| = c||«(6,|UM7).

In deriving these relations, we used the facts that

,<£', 1) = ,(0", 1) = B"(l/2 ± 1/2-y/3) = 0.

Using the relations (3.2) and homogeneity, we obtain the following:

Lemma 3.2.   Suppose u E H6(0, h). Let e = u — T3, hu. Then, with a constant C

independent ofh,

*|e(!)| Û C*4-'||ii|Umd.m,       / = 0, 1,

(3 3) »k"| á CA8||h||h.(„,w.

W, 1)1 á Ch9/2[[u[[HH0.h),

U(e",l)[ = CA9/2||«||„.(„,M.
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A  FINITE   ELEMENT  COLLOCATION   METHOD 23

4. A Weighted Galerkin Formulation. In this section, we shall show that the

solution of (1.6) can be viewed as the solution of the following Galerkin-type scheme:

(4.1) (c(U)U, -  U„ - b(U, Ux), Z) = 0,        ZE 3C3.

In the process of showing this, we establish the existence of the solution of the equiv-

alent systems (1.6) and (4.1) locally in time; the global existence in time then follows

from the a priori estimates of the next section.

The form (4.1) is useful for analysis but its time-discrete analogues should not

be used in computations, since (1.6) gives schemes that are both more efficient and

easier to implement.

Let {Zj\2Z-i be a basis for 3C3, and write l/(x, t) = Y, P\(0^;(x). The relations
given by (1.6) can now be written as

(4.2) 5ft + gd = <ñ,

where ß = (ft, • • • , ft„f and ÍF = ï(ô) = (/„■), e = (gj¡), (R = (r¡). If we let {# [ I =

1, • • • , 2n\ = \%a 11 = 1, • • • , n; j — 1, 2}, then we can express /,,, gti, and r¡ as

fu = c(ÇftZ,ao)zy(?î)>

g¡¡ = -Z'j'iZ),

r¡ = ô(Ç ftZiíÉÍ), ZftZÍ(Í0).

In a similar fashion, we can express (4.1) as

(4.3) eft + aß = S,

where

e = eiß) = (a,),      a = («,,),      s = (s<),

c« = (c(Z ßiZijz,, z\

a¡¡ = -(Z'¡', Z,),

*. = (»(LßiZj, Zft^J.z.y.

If we can show that the matrix e = e(ft is nonsingular for any ft it will follow

that (4.3) has at most one solution and that (4.3) is solvable locally in time. It follows

easily that if C(ft) is nonsingular, then i(o) is nonsingular, since any solution t of

Hrr = 0 would also be a solution of Qt = 0. Thus, if Q(ß) is always nonsingular,

(4.2) is also locally solvable in time. Since any solution of (4.2) is clearly a solution

of (4.3), we see that they are equivalent.

Lemma 4.1.   For any ft e(d) is nonsingular.

Proof. Suppose that r, ß E R2\ r ^ 0, are such that e(ftV = 0. If U(x) =

2 i ßiZi(x) and W'x) = £< r^Z^x), we see that

(ci U) W, W) = 0;
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24 JIM   DOUGLAS,   JR.,   AND   TODD  DUPONT

hence, W(%k) = 0 for k = 1, ■ ■ • , 2n since c > 0 for any arguments. Since W is a

cubic on [x0, x¡] and vanishes at x0, £i,i, &,», either ^ *b 0 on [x0, xj or JfTxOW'tXi)

> 0. Now, if W = 0 in any [x¡, xi+1], then W = 0 on 7, since in each adjacent interval

Wwould have a double root at the endpoint (WE C\[0, 1])) and two roots at the

collocation points. Thus, since r ^ 0, we see that W(x/)W'(xZ) > 0. On [xu x2],

the quadratic W has roots in (xu £2,i) and (£2.i, £2,2). Hence W<x2)W'(x2) > 0.

Proceeding inductively, we can see that W(xn)rV'ixn) > 0, which is a contradiction

since WixZ) = 0. Thus, the lemma is proved.

5. Convergence Analysis.   Let U be the solution of (1.6) where we have assumed

without loss of generality that a(x, t, u) = 1 and g0(t) = gi(t) = 0; i.e.,

(5„        (c(<_£»_6(^),,).0,   .e<

Now, assume that m £ C3(7 X [0, 7]) and let W: [0, T] -> 3C3 be determined at each

time t as the 3C3-interpolant of u. We shall not look at f = u — Í/ directly, but instead

we shall estimate v = W — U and then apply known approximation theoretical

results to i\ = u — W. Let

R = d2r)/dx2.

Then, it is a straightforward calculation to see that

(dU)vt - vxx,z) = (IdU) - ciffW« - ciW)v, - Iciu) - ciW)]ut + R.z)

+ (Ibiu, ux) - biW, ux)] + IbiW, ux) - biW, Wx)],z)

(5 2) + {IbiW, Wx) - biU, Wx)] + IbiU, Wx) - biU, UM, z)

= (-c\Wtv - ciW)Vi - c**utr,,z)

+ {bU + bï*v + b*j>x, z)

+ (R,z) + (biW, ux) - biW, Wx),z),

where we have assumed b and c to be differentiable (or at least Lipschitz continuous)

with respect to u and ux. If these derivatives are bounded, then the choice z = v,

leads to the inequality

m h|2 - (v„, vt) =  Kl[v[2 + [vx\2 + h|2 + h,|2]

+ j h|2 + (R, vt) + (biW, ux) - biW, Wx), vt).

Add the inequality

2í/í ' '   -  6 ' ''   x 2m ' '

to obtain

(5.3)        2 l"'12 + 2 I I"'' - <"- Vt) =  KW* + K|2 + l,|S + M*]

+ (R, vt) + {biW, ux) - biW, Wx), vt).
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A  FINITE  ELEMENT  COLLOCATION   METHOD 25

Lemma 2.1 implies that

~{""' v,) = \ít [> "*> + ÏÔ8Ô % vl"ih]\

Id
- —ldt <»,„v).

Integrate over the time interval (0, t). Then,

f jf \vt\2dT-h(vxx,v)it) + h[v[\t)

(5.4) =  tf|j,|2(0) + £ (|H2 + kl2) dr + £ (h|2 + h,|2) drj

- \{vxx, *>(0) +   f   </?, r.) dr +  [  (bifV, ux) - biW, Wx), vt) dr.
Jo Jo

Integrate by parts in time to get

[  {R,vt)dr = (R,v) |S -   f  (Rt,v)dr.
Jo Jo

Assume that

sup    IKOllff-U) =  ||«IU»(o,r;*M/))  <  °°,
o<!<r

(5.5) r

f     I|«i(OI!*•</) dt =  ||«,||i.(o.r;*«(j)) <  °°-
Jo

Then

<Ä. r) = £ (R, v)j = £(R,v- V¡)¡ + £ (R, V,)j,       v¡ = h-\v, 1),-.
I-l 1-1 i-l

Recall that the collocation points were chosen so that

\(R,V¡)¡[ =  \(vxx,V¡)¡\

g> ï ||b||«.waJ/,A71 \fy.i),\

^ K \\u\\H.{Il)h4 \v\¡,

by Lemma 3.2. Thus

K*.">l á £ \R\, \v - v¡\¡ + K £ |M|,.(I„AÎ Mi-
)=i f-i

Since it is trivial (using the elementary version of the Poincaré Lemma) that

\v-v¡\¡ ú  Kh¡ |k|U.<x„

and since

|Ä|, è K Null».«,,*?,

it follows that
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26 JIM DOUGLAS, JR., AND TODD DUPONT

\(R,v)\ è  K Y, [| M !*•(/,) I Kl Um/,) + IM !*.</,) |v|,-]AÍ

(5.6) û ¿ ¿ (IKIIÍm/,) + M?) +  K £ ||«||*.(zf,A!
10 í-1 1-1

^ tí (-<*„, *> + IH2) + * £ 11-11-.«,)*?.
16 y_!

Note that it follows immediately from the above argument that

(5.7) [   (Rt,v) dr   ^\-  [   l-{vxx, v) + \v\2] dr +  K £ h*  [   \\u, |||.<i„ dr.
¡Jo 10 Jo i-i        Jo

Also,

f (bifV,ux)- biW, Wx),vt)dT
Jo

= (biW, ux) - biW, Wx), v)\'o - f  {jt\KW, «,) - biW, Wx)),vJ dr.

Now,

(biW, ux) - biW, Wx), v) =  ¿ (bu.iW, Wx) |,_{/>1 ,x + ^M,,»>,-,

where |^| is bounded independently of h¡ if the second derivatives of b are bounded.

Since the bu, multiplier of r¡T has been reduced to a constant on each /,-, we can

employ the leading orthogonality (3.3) of r¡x to constants on each I¡ as follows:

\{bu, \x-(i., Vx,v)¡\ ^  \(bu, !,_{,., i\„Vj)j\ + \{K, |,_fJil r\x,v - v¡)¡\

Ú  Klh4 \\u\\H.w \v\j + h4 ||«|U.W |WU.(/,)1.

Also, by (3.3),

Ktowhl ^ *aî ||«||*.(/y, M„
and

(5.8) \{biW, ux) - biW, Wx), v)\ Ú ¿-(v„, v) + \u\2] + K £ h* ||«||-.<„).
10 ,_!

Next, note that

jtlbiW,ux)- biW, Wx)]

d( (rv,ax)-t  d(  duK». ax) -t- dxdt duis», ctx) + du^w, w x) ^

It then follows from the argument above that, if b has bounded third derivatives,

(  (Í W-W' K») - KW, Wx)], v) dr

(5.9) J°   V' '

új-.f l-{vxx, v) + \v\2] dr+ K£h8¡  f l\\u\\%.at) + ||«,||-.<„>] dr.
10 Jo i-l Jo
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It follows from (5.3)-(5.9), (2.5), and the Gronwall lemma that

f   \Vl\2dr+ max [\\v\\%.. + \v\2]
Jo osisr

(5.10) r . -|

g  ^IKO)!^, + K0)|2 +  Z^ill«l|2L»<o.r;*.(/,„ + ||«,||i.«.r,*.(/t))}J"

Lemma 2.3 and (2.6) imply that

(5.11)

/     |i»,|2 dr +  |M It"«),r:*.)
Jo

g  AÏ|K0)||*. +  2 A¿lll"ll¿"(o,r;*,(j,)) + ||«i||l.(o.r¡*'«,))}J'

In particular,

I M|l«(0,T¡L,°)

(5.12)
< K\  ll"(0)||*.  +   £ A8{||tt||Í»(o,r;*v/,))  +  ll««l|t'(0,r¡*««y»}J'

Also, it is well known [4] that

n

(5.13) IMIi-co.riL-) á  K 2 Ä; ll"l|i»(o,r;*.(/f))-
i-i

Since u — U = i; = r) -\- v,

\\U —   C^||L»(o,r;Lœ)

^ tf[lKo)||*> + £ Alj||«||l»(o,r;*.(fl„ + ||«,||£.co.ri*.cr,»}|

(5.14)

If we choose, as is quite natural, to define £/(x, 0) as the 3C3-interpolant of w(x, 0),

then

(5.15) ||«   —    í/||L-(0,r;L-)   á    A'[||«||L.(o,r;*«)   +   ||«(IU"(o,r;*,)]A*,

where

(5.16) A =    max    A,.
1=1. ■■•,!■

Theorem. Let the coefficients in the differential equation have bounded third

derivatives and assume that (1.4) holds. Let u be the solution o/(l.l)-(1.3) and assume

that

u E L~i0, T; He)    and    u, E L\0, T; He).

Let i/(x, 0) be the 3C3-interpoIant affix) = w(x, 0). Then, there exists a unique solution

U of the collocation equations (1.6), and U converges to u with an error that can be

estimated by (5.15).

The order of convergence of U to u is optimal, given the approximating space

3C3; however, the smoothness hypotheses in the above theorem are stronger than

would be required from approximation theory alone, since boundedness in H4

suffices for interpolation to give 0(A4) in L2 and Hs is more than enough for V.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



28 JIM DOUGLAS, JR., AND TODD DUPONT

Thus, we have not obtained as strong a theorem for the collocation procedure as

for the corresponding Galerkin procedure.
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