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Deformable models of elastic structures have been

proposed for use in image analysis. Previous work has

used a variational approach, based on the Euler-

Lagrange theory. In this paper an alternative

mathematical treatment is introduced, based on a direct

minimisation of the underlying energy integral using the

Finite Element Method. The method is outlined and

demonstrated, and its principal advantages for model-

based image interpretation are explained.

INTRODUCTION

Models allow the use of high-level knowledge about

expected structures to control the visual interpretation

process. Most work on model-based vision has

considered rigid [1] or parameterised [2] models.

Recently, deformable models have also attracted

attention, e.g. [3,4,5]. Deformable models are likely to

have particular relevance in medical imaging

applications, as a means of encoding the shapes of

anatomical organs, which are inherently variable.

As an example, consider an X-ray image of an artery.

Context-free image processing may produce good

evidence of an artery in the regions A and B (see Figure.

4(a)), but fail to identify its position between A and B.

One way to detect the artery in this space is to use a

model of an "ideal" artery, which can be deformed

within known constraints under the influence of the

fragmentary image data, to derive an optimal global

solution.

A simple artery model can be specified by minimising

the energy integral given in expression (1) over

functions v(s), as proposed by Kass et. al. [3].

I {a(s)lv (s)l2 + P(s)lv (s)l2 + I(v(s))}ds (1)
J 0

 s ss

Where v(s) = (x(s), y(s)) is the position vector as a

function of the intrinsic parameter s, the normalized

length of the line with vertices vi» V2 • • VM [note: vi

(i= 1 . . M) denotes v(s-)]. The terms vo and voo denote
I S SS

first and second derivatives of v with respect to s; and

ot(s), P(s) are weighting functions.

Expression (1) contains three terms, the minimisation of

which have simple physical interpretations.

The term lv_(s)P (the norm of the first derivative of

the position vector) makes the model act like an

elastic string.

• The term (the norm of the second

derivative of the positional vector) makes the model

act like a thin bar.

• The final term, I(v(s)), is used to allow chosen

features of the image intensity values to influence

the model. In the present treatment we use the

image grey-values along v(s), so that the term is

minimised in dark areas of the image.

In effect, the minimisation of expression (1) expresses

the fact that an artery is a stiff, elastic, dark entity. The

optimal global solution of the position of an artery is

the choice of v(s) which minimises the total energy

given in (1). In general this is a non-linear problem

which must be solved using iterative numerical methods,

which produce successive deformations of the position

v(s).

A method for minimising integral (1) based on the use

of the Euler-Lagrange Theory (ELT) has been presented

previously [3,4,5]. This paper presents an alternative

approach based on the use of the Finite Element Method

(FEM). In recent years, FEM has been used extensively

in computational studies of elasticity in structural

mechanics. It offers benefits over the more traditional

ELT, which it has now superceded in many areas of

study. We report here a modification to the FEM which

allows it to be used for model-based vision, and discuss

its computational advantages over ELT.

ENERGY MINIMISATION BY ELT & FEM

Both ELT and FEM may be used to solve variational

problems, including the minimisation of energy integrals

such as expression (1). The principles of both methods

have been treated extensively in the literature [6,7]. The

two approaches are illustrated in Figure 1, and their

main characteristics are outlined briefly below.

(i) Euler-Lagrange Theory

The ELT solves a variationai problem by reducing it to

the solution of differential equations. The ELT method

used by [3,4,5] develops a set of differential equations by

considering the change in the energy integral caused by

small variations in each of the unknowns x(s), y(s).
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Figure 1: Schematic showing alternative approaches to energy minimisation, using FEM (left) or ELT (right).

FEM is more direct since it involves a single stage of approximation, whereas ELM requires two

This gives rise to the Euler-Lagrange equations. These

higher-order differential equations are then made discrete

and solved numerically by means of finite differences.

(ii) Finite Element Method

FEM uses the energy integral directly, and works by

dividing the given domain into subdomains and

minimising the energy integral over each subdomain

separately. This produces the so called "element

equations" which are then joined together through their

common boundaries.

External forces which are independent of the unknowns

to be determined may be represented in FEM as a set of

loading conditions. FEM also leads to a system of

equations, the solution of which involves a matrix. In

this case the matrix is not only banded, but is also

symmetric and positive-definite.

The advantages of FEM over ELT

A main advantage of the FEM in minimising energy

integrals such as expression (1) is that the method is

more straightforward. It acts directly on the integral,

instead of transforming the integral to a set of

differential equations to be solved numerically (see

Figure 1).

Further, there are difficulties inherent in the ELT

approach, especially when several independent variables

are involved (requiring partial derivatives). This

constrains both the type of integral that can be

minimised by ELT, and the choice of boundary conditions

[8]. FEM provides a very flexible approach to

minimising energy integrals, and is capable of handling a

wide variety of energy integrals and boundary conditions.

ELT is also ineffective in solving problems that are

geometrically complex, or whose loads or physical

properties are discontinuous [9]. FEM is well-suited to

this task [10].

There are a number of other advantages of FEM over the

use of ELT solved by finite differences, which are of

particular relevance to applications involving deformable

models:

• FEM leads to matrices which are n-diagonal,

symmetric, and positive-definite, for which efficient

numerical schemes have been developed that use

fewer operations and handle round-off errors

effectively. An example of such a numerical scheme

is the Cholesky decomposition [11].

The ELT leads to n-diagonal matrices with no

guarantee of symmetry or positive-definite

characteristics.

• The ability to represent domains with irregular

geometries by a collection of Finite Elements makes

the method a valuable practical tool for modeling

regular structures. This feature has proved

important for the solution of problems in structural

engineering. Domains with curved boundaries can be

treated very effectively by using "isoparametric"

elements [12], and this is particularly useful for

modeling curved surfaces by means of an elastic

membrane.

By contrast, in ELT the nodes over which the

derivatives are made discrete must form a

rectangular mesh, which often fails to capture the

underlying geometry efficiently In multiple

dimensions this can lead to great inefficiency.

Figure 2 illustrates this point graphically. FEM is

able to use an efficient representation of the

structure, as 2 triangles and 2 quadrilaterals, which

may be specified by 8 pairs of equations in 8 pairs of

unknowns (corresponding to the asterisks in Figure

2(b)). On the other hand, the ELT approach (using

finite differences) requires nodes spaced equally in

each dimension, Figure 2(c). Very high resolution is

needed to capture the shape of the structure

accurately. In this case 60 2-d control points are

needed, giving rise to 120 unknowns.

• FEM uses a more natural description of the

derivatives, able to exploit the continuity of the
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(using finite differences)

Figure 2: Illustration of the advantage of using

finite elements to model geometrical structures

position vector over each element.

ELT equations solved by finite differences use a

discrete approximation for the derivatives.

• In the FEM we can choose between a wide selection

of boundary conditions. It is also possible to

impose smoothness criteria at the inter-element

boundaries, with only small modifications of the

final system.

ELT does not have the equivalent flexibility [6,8].

DEMONSTRATION OF FEM

The use of FEM for image interpretation using

deformable models has been demonstrated by means of a

program which uses the same energy integral as Kass et

al [3]. Details of the method are given in the Appendix.

We can think of the function v(s) as a "snake" which

seeks out dark regions in the image.

The image term in the energy integral (1) gives rise to a

set of external forces. These are calculated by

estimating numerically the derivative (with respect to

the unknowns, x and y) of the integral of the image

intensity along straight lines connecting adjacent nodes.

The external forces act as the loading conditions for the

system (see Appendix). As the snake moves between

iterations, the image energy changes according to its

position. This changes the loading conditions, which

have to be re-computed on each iteran'oa

Our initial implementation is computationally

inefficient. It has been written in popll, and uses a

i
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Figure 3: Demonstration of the FEM minimisation of

expression (1), showing (top to bottom) the initial

position, and the result after 1,3 and 9 iterations.

general-purpose matrix-inversion routine (based on the

pivotal Gauss method), which has poor numerical

characteristics for this problem, and fails to exploit the

properties of the symmetrical, positive-definite, banded

matrix. Furthermore, we have as yet employed only a

very simple iterative technique. In consequence, our

demonstrations are at present limited to use only a few

tens of nodes, and the behaviour of the snake is

correspondingly coarse. In future work we plan to make

use of more efficient numerical methods.

Figure 3 shows an example of the program applied to a

synthetic image. Figure 3(top) shows the initial

position of the snake. The black crosses indicate fixed

points, and simulate the fragmentary evidence that might
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Figure 4: FE Mesh generation showing (x,y) positions (top) parameterised by s (bottom)

be derived either from low-level image processing, or

from the interactive specification of known points by the

user. The white crosses represent additional starting

points interpolated between the fixed points.

Figures 3 show the results after 1, 3 and 9 iterations of

the program. It can be seen that the snake successfully

seeks out the linear shape in the image.

Several difficulties remain, which have not yet been

investigated. Firstly, the snake manifests erratic

behaviour at the inter-element boundaries, due to the

lack of smoothness constraints between elements. In the

example shown in Figure 3, the only influence between

elements occurs where they join. One method for

overcoming this has been to use over-lapping elements.

This doubles the number of elements which are then

combined linearly into the M*M matrix. A better

alternative would be to impose first and second order

continuity at the inter-element nodes.

CONCLUSION

We have presented a novel technique for using

deformable models in the analysis of images, based on

the finite element method. The technique has been

demonstrated on a simple simulated image.

The FEM offers several important potential advantages

for minimising energy expressions arising from

deformable models, but these have yet to be properly

investigated. In particular it offers the ability to use

more complex energy terms, and may be efficiently

extended to problems involving multiple dimensions.

These developments are the subject of current work.

APPENDIX

OUTLINE OF THE IMPLEMENTATION

We give here a brief description of the use of FEM for a

one dimensional case. The problem is to minimise the

energy integral given in expression (1). We have adapted

fairly standard techniques, see [9,12]. Section 1 below

summarises conventional finite element methods, and

Section 2 reports our adaptation of the method for image

analysis using deformable models.

(1) One Dimensional FEM

Division of the domain into finite elements. The domain

(s) is divided into a finite number of elements (m). Each

element includes a number of nodes (n), determined by

the degree of continuity of the vector v(s)=(x(s),y(s))

demanded by the order of the derivatives in the energy

integral. Neighbouring elements share a common node,

see Figure 4(b), so that the total number of nodes is

given by M = 1 + m(n-l).

For the expression (1), n must be at least 3 because it

includes second order derivatives of the position vector.

In this case the analytical representation of the position

vector v(s) must be at least quadratic over each element.

Calculation of the basis functions. The coordinates of

the positional vector, x(s) and y(s), over each element

can be expressed by:

x(s) = £ x. O^s) (j = 1.. n)

y(s) = £ y. *.(s) (j = 1 .. n)
(2)
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Figure 5 Basis functions (Lagrange interpolating polynomials)

where O- (s) (j = 1, . . n) are the Lagrange interpolating

polynomials (see Figure 5), and x- , y. are the

coordinates of the position vector v(s) at the nodes

within the element.

A graphical representation of the basis functions is given

in Figure 5. Note that several of the desirable

computational properties of the final matrix are due to

the use of the Lagrangian basis functions.

Calculation of the "element" equations. For each

element we substitute the right hand side of equations

(2) into expression (1) where the integration is taken

over the corresponding element and we differentiate

with respect to the unknowns, Xj, yj, within each

element. This leads to a system of n equations in n

unknowns, the so-called element equations.

Derivation of the final system. The m sets of n element

equations are then assembled to form the final system of

M equations in M unknowns, by summing the

coefficients at the inter-element boundaries. The

resulting M*M matrix (the "stiffness" matrix) has

symmetric, positive-definite characteristics, and a variety

of numerical schemes exist that offer an efficient

computational solution.

(2) Modification for model-based vision

The conventional FEM has been adapted to the specific

needs of image processing in the following way.

The initial positions of the nodes (see Figure 3(top)) are

determined interactively by hand, and are identified as

fixed or movable points. The nodes are grouped into

elements consisting of three nodes, so that neighbouring

elements share their boundary nodes (see Figure 4(b)).

The positions of the nodes determines the forces exerted

on them by the internal tension of the model. These

internal forces are combined into a global stiffness

matrix, A.

The stiffness matrix A, representing the internal forces

of the snake, is combined with the external forces,

which cause the snake to be attracted towards areas of

low intensity in the image. This leads to equation (3).

A * v = b (3)

Where b represents the force vector due to the image

energy term. The force vector is derived numerically

from the image data by measuring the change, under

small perturbations of the position v(s), in the integral

of I(v(s)) along lines between adjacent nodes within an

element.

Equation (3) is then modified to take account of the

boundary conditions due to fixed nodes by the method

given in [12, page 173].

The external force vector b depend strongly on the

position of the model in the image, so equation (3) is

non-linear, and a simple iterative scheme is employed to

solve it. At each iteration, an improved position for

v(s) is computed by the linear solution of (3). This

provides an improved estimate for b, and the process is

repeated. At each step, a node is constrained to move no

further than a fixed limit, which is progressively

reduced with each iteration. This has the effect of

damping down any oscillatory behaviour.
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