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This paper considers' a finite-element approximation of a Poisson equation in a
region with a curved boundary on which a Neumann condition is prescribed.
Piecewise linear and bilinear elements are used on unfitted meshes with the region of
integration being replaced by a polygonal approximation. It is shown, despite the
variational crimes, that the rate of convergence is still order (h) in the H1 norm.
Numerical examples show that the method is easy to implement and that the
predicted rate of convergence is obtained.

1. Introduction

CONSIDER THE NUMERICAL SOLUTION of

_ VV*> = / (i.ia)

on a sequence of two-dimensional domains Cllk) having boundaries
9Q(t) = 31ilu82£J( 'I), respectively, of the form depicted in Fig. 1, on which the
following boundary conditions hold:

=92 on 8,Q»>, (Lib)

where n(t) is the outward-pointing unit normal on 92Q
(k). Such a situation arises

when solving either certain types of moving-boundary problems as in Barrett &
Elliott (1982) or free-boundary problems by trial free boundary methods as in Cryer
(1977).

The standard finite-element (or difference) approach would be to fit a mesh to
each domain £2'*'. However, for a Neumann condition on a curved boundary it is
not necessary to fit the mesh to the boundary in order to retain the optimal rate of
convergence in the Dirichlet norm. Consider a uniform partition of the interior of
the closed curve Qtn, taking no account of the position of Q2Cllk). Then one can
define a finite-element approximation to u(i) by considering the associated
variational form of (1.1) over a finite-element space based on this uniform partition.
It is easy to show that the rate of convergence is optimal, see Babuska (1971).
However, this method requires the evaluation of integrals over nw and 92f}

(*) which
in general cannot be performed exactly. Thus a practical approach is to perform the
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FIG. 1.

integrals over approximations QJ,10 and Q2^
ih)- It is the purpose of this paper to show

that for the simplest trial spaces—piecewise linears on triangles and piecewise
bilinears on rectangles—that by approximating the curved boundary by a straight
line in each element the resulting approximation retains the optimal order of
accuracy in the Dirichlet norm. Clearly more sophisticated trial spaces require a
more elaborate approximation of the boundary to retain this optimality.

Although the effect of domain perturbation and numerical integration in the case
of homogeneous Dirichlet boundary conditions is well understood (see, for example,
Ciarlet & Raviart, 1972; Ciarlet, 1978; Wahlbin, 1978), very little work has appeared
concerning the Neumann problem. Oganesyan (1966) and Strang & Fix (1973)
consider the effect of domain perturbation for the Neumann problem when using a
fitted triangular mesh. However, the present authors are unaware of any work which
has appeared concerning the use of an unfitted mesh. Clearly the use of unfitted
meshes has useful practical applications for free and moving-boundary problems as
at each step one would only have to adjust the domain of integration and not the
mesh—leading to a considerable saving in effort and computing time. The technique
offers also a computationally simple approach to solving a single elliptic equation
with a Neumann condition on a given curved boundary which occurs, for example,
in exterior flow problems.

The outline of the paper is as follows: in the next section we describe our
technique more precisely. In Section 3 we study a domain perturbation of a
boundary value problem which plays an important role in the derivation of our
error estimate. One should note that the analysis of Oganesyan (1966) and Strang &
Fix (1973) for fitted meshes does not generalize in a straightforward manner to deal
with the present technique. We piece together the various estimates to prove our
main theorem in Section 4. Finally, in Section 5, we discuss the numerical
implementation of the method, including the use of numerical integration, and
report on some numerical computations.

Throughout this paper we adopt the following notation. With N the set of natural
numbers and G a bounded open region in R\ setting

M = t W
1 = 1

for a 6 N" we define the following norms and semi-norms for a function w defined
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on G:

M p d x j , |w|m.p.G =

r m

IML.p.C = I £ K
l/P

Mm,G = M-.2.G.

where me N and p > 1. If p = oo, then we define

MB,.=O.G =max ess sup |Daw|, ||w||mcx>iC =max ess sup \D'w\.
|a| = m xeG |a|Sm xeG

The Banach spaces of functions associated with the norms || • ||0.p,c. II' L.p.G.
|| • ||n>G are then, respectively, LP(G), Wm'"{G) and Hm(G). The measure of a domain G
is denoted by m(G) and C denotes a positive constant, independent of h, whose value
may change in different relations.

2. The Technique

Let £2 be a bounded open region in R2 with a boundary 3Q such that
3fi = dlQ.iud2Q, where 9 tO and 32£i are non-empty and disjoint. We assume that
either 3fn are closed curves or that 3 ^ 0 92^ = {finite number of points P,}. We
assume also that 32Q is smooth and that d^il is polygonal. Let/ 6 L2(Q), gx e H^Q)
and g2 6 L2(32Q), then we shall approximate the problem: find u e Hl(Q) with
u - 0 ! 6 H^Jfi) such that

(Vu, Vy)n = (/, v)a + ig2, v>B2n, V 0 e tf io(Q), (2.1)

where the following notation has been adopted for G £ R2 and 3G = 3 t G u 32 G:

H\0{G) ={we H!(G): w = 0 on SjG}
and

(wi , w 2 ) G = w x • w 2 dx, <Wj, w 2 > a G = Wj • w 2 <fs.
JG JaG

Equation (2.1) is the weak formulation of the mixed boundary-value problem:

- V 2 u = / i n n , u = ^1on31£J, ~ = g2 on 32Q, (2.2)
on

where n is the outward pointing unit normal to 32Q.
Let ®* be a bounded set in R2 containing Q which is the union of a collection of

elements {e} with disjoint interiors. The elements {e}, which we assume to be regular
(see Ciarlet, 1978, p. 124), are either triangles or rectangles whose diameters are less
than h in length. Thus the domain ®* is dependent on h, that is ®* = ©*(/i). Then
we define the domain & =

[J { { } } (2.3)

We shall assume that the elements e fit the boundary 3 ^ that is 3 X ^ = 3 ^ and if
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then each point of intersection is taken to be a vertex of an
element. A polygonal domain flh approximating £2 is constructed in the following
way. If for an element e, 32C2n e & {<£}, then the arc of 32£1 in e is approximated by
its chord joining the points where it intersects the boundary of the element. If 32£i
crosses the boundary of the element more than twice then the approximating chord
is taken to be that which joins the first point of entry to the last point of exit. The
resultant piecewise linear approximation to 32f2 is denoted by 32Qh and flA is then
the open bounded domain in U2 with boundary 3Qfc = 3tfi u 32£V Examples of the
construction of the boundary 32Qh for rectangular elements are given in Fig. 2.

The approximation to u e Hx(fl) will be a function U whose domain of definition
is @h, where

0hs\Je, (2.4)

and in general /?,,=£ B because of the possibility that a boundary element may have
an edge with two vertices on a convex arc of 32Q. Also U will belong to a finite-
dimensional space S^^;,), where either

or

and

Sh(2>h) = {W e C{%): W is linear on each triangle}

= {W e C(®^: W is bilinear on each rectangle},

= {W e S"{2>h): W = 0 on 3XQ}

(2.5a)

(2.5b)

for each vertex x,-on 9 tn}. (2.5c)

Thus we have S\2}^ <= H\9^ and Sh
0{9h) <= Hl

Eo(2>^. The space S\2ih), in either
case, has the following approximation property: for w—gl e Hl

Eo(2i^ n H2(@J there
exists an interpolate rHw e S^^J such that

- \">-rhw\o.9> + Mw-ri,Mi.9*^Ch2\w\2i3h, (2.6)

where C is a constant independent of w and h (see Ciarlet, 1978, p. 124).
Assuming {/, g2} are the restrictions on £5 of functions {/ g2} defined on U2

which are smooth in a neighbourhood of Q, containing tlH, the finite-element
approximation to (2.1) we wish to present and analyse is: find U e S ^ J such that

, Vyd2ilh V V e S"0(2h). (2.7)

Af t

FIG. 2.
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The reason for considering (2.7) rather than: find U e Sh^2>) such that

(VU, VV)a = (/, V)a + (g2, Vyain, V V e S*0(5>), (2.8)

where S\[Q) and S^(S) are the obvious generalizations of (2.5), is that the integrals in
(2.8) are over regions with curved boundaries and thus being difficult to evaluate
(2.8) is not a practical method. The use of (2.7) in place of (2.8) is a so-called
"variational crime". The method (2.7) is based on the use of an "unfitted" mesh as
the approximation U is defined outside the region Clh which is not a union of
elements. A fitted mesh method would take in (2.7) Clh to be a union of elements with
the vertices on d2Clh lying also on 92Q.

The approximation (2.8) was mentioned by Babuska (1971) in early mathematical
papers on the finite-element method, but this idea of using an unfitted mesh seems
to have been put to one side in the recent literature. The optimal error estimate in
the Dirichlet norm for the approximation U e Sh^@) given by (2.8) is easily obtained
by the observation that

(Vu-Vl/, VV)n = 0, V V e
so that

where rhu e S1^^) is the interpolate of u. The desired result now follows from the
approximation property of S\2>) and the smoothness of u, that is

\u-U\ua^Ch\u\2M. - (2.10)

It is the aim of this paper to show that the computationally convenient and simple
approach (2.7) retains this optimal rate of convergence. To obtain this error estimate
we need to study a perturbed mixed boundary-value problem, which forms the basis
of the next section. We note that the approximation defined by (2.7) depends on the
extended data {/, g2} as opposed to the given data {/, g2}. However, in most
problems of interest/and g2 are smooth functions and thus this extension causes no
difficulties. Indeed by employing numerical integration to the right-hand side of (2.7)
the dependence of/ can be removed and for the case of Sh being linears on triangles
the dependence on.g2 can also be removed. This point and further details of the
implementation of the technique are described in Section 5. The method is easily
applied to the more general equation

- V • {dVu) + V • (bu) + cu = / i n SI.

3. A Domain Perturbation of the Boundary-value Problem

Let d(h) be a family of bounded open sets in R2, depending on the parameter
h e [0, ho], which are obtained from Q by replacing 32Q with a smooth curve d2d(h)
so that ft(0) = fi. The boundary of ftyi) is then dCtyh) = 3 ^ f i n p ( ^ , where o^fl
and 82fi(/i) are disjoint. We shall assume that 8ft(Ji) is "minimally smooth" in the
sense of Stein (1970, p. 189) and that it is so independently of h, i.e. there exists an
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e > 0, an integer N, an L > 0 and a sequence of open sets %, <%2,. ..,<%„,..., all
independent of h, so that:

(a) If x e 6ft(/i), then the ball of centre x and radius £ is contained in a % for
some i.

(b) No point of R2 is contained in more than N of the %s.
(c) For each i there exists a local co-ordinate system (AT', Y') and a Lipschitz

continuous function OL^X'), whose Lipschitz constant does not exceed L, such
that

<% n ft(/i) = ^,. n {(AT', Y1): Y1 > c^A"')}.

Under these conditions we have the following result.

LEMMA 3.1 Ifd2d(h) is minimally smooth, independently of h, there exists a linear
operator &h mapping functions on d.(h) to functions on U2 such that

(a) Shw = wond[h), ^

(b) H<»w|kiP ^ CJIwlla.0,4,,

where Cj is a constant independent ofh and w.
Proof. This is proved in Stein (1970, pp. 180-192), where it is shown that the
constant Cj depends upon the Lipschitz constants of the curves a|,(). •

For each boundary element e of 3>h (i.e. enQ2Clh #{<£}) a local co-ordinate
system {Xe, V) may be defined so that end2Clh is the A"' axis. Then d2Q and d2ft(/i)
can be parameterized locally by /e() and ?e(), respectively, for 0 < X' < he ^ h,
where he is the length of the boundary edge. Since the boundary 92fl is smooth and,
by the construction of Clh, Ze(0) = le(he) = 0, we have

(a) IU*')I < Ch2 X<e[0,hel
(b) OT^CA JT'6[0,fcJ.

We shall require that ft(/i) satisfies for /: e [0, /je]

(a) (7.(A--)I < C*2 X'e[0,hel
(b) H^OKCfc A- '6 [0A] , (3.3)

We shall assume that {/, g2} are the restrictions to H of functions {/, g2} which
are smooth in a neighbourhood •/T*0 of 92ft(/io) containing 92Q. There exists a
unique solution u(h), such that ii(0) = u, of the perturbed boundary-value problem

= 32 on 9A(/)

where n(/i) is the outward pointing unit normal on d2d(h). We shall assume also that
there exist constants C2 and C3 dependent only on/, glt g2, Cl and /i0 such that

(a) PWIkaw * C2, ( 3 5 )

(b) HfiWIIc..^, < C3,
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where the space C1A(Jfh°) consists of those functions whose first derivatives are
Lipschitz continuous on Jfha and || • llcn^o) is its associated norm. It is necessary
to justify the strong assumptions (3.3) and (3.5), and we do this in the following
remarks.
Remark 3.1. Construction offtijh). First note that if Q is locally convex with respect to
92£i, then Q k c Q and Ci(h) may be taken as Q, which means that (3.3) is trivially
satisfied. Otherwise it is necessary to check that given a domain fl one is able to
construct a family ft(/i) which is minimally smooth, independently of h, and which
satisfies (3.3). We give a construction of ft(/i) in the case of 32fi being a closed
smooth curve with Ji lying on one side of it. In this case for h e [0, /i0] we set d2d.(h)
to be the envelope of circles centred on Q2Cl with radius R = C^h2, where C4 is the
constant such that

max dist (x, 32Q) sj CAh2. (3.6)

It is a simple matter to show that this construction of &(h) satisfies (3.3). The
condition (3.3c) is clearly satisfied. By the construction of Clh, (/„(())= le(he) = 0),
there exists Xe* e (0, he) such that l'e{Xe*) ~ 0. The above construction of 6(h) is
such that X(Xe*) = 0. Expanding ?,(•) and ?;(•) in a Taylor series about X'*
immediately yields the desired results (3.3a) and (3.3b). Furthermore, Cl{h) is
minimally smooth independently of h since the boundary Q2d.(h) has, for small h,
essentially the same smoothness properties as 32fi: that is, the local Lipschitz
constants of 32ftyi) depend only on the local Lipschitz constants of 32Q and the
constant h0.

The above construction can be generalized to the case where 32Q is a smooth
curve whose end-points P, and P2 are also end-points of 3 ^ ; that is,
dlilnd2Q = {Px,P2}; and 32£1 is locally convex at Px and P2. In this case we take
d2ft(h)to be t n e envelope of circles centred on 32£1 with radius R = CAh2y(s), where
s is the arc length of 32fi and y(s) is a function which vanishes at the end points Pj
and P2 and rises smoothly with derivatives bounded above independently of h to
take on the constant value 1 on the interior of 32Q. We omit the details of this

construction, since in general for problems where 3!Qn32fi # {<£} we will not be
able to ensure the regularity of the resulting boundary-value problem on C^h), see
Remark 3.2(c).

Remark 3.2. Sufficient conditions for (3.5) to hold

(a) If fi(/i) = fi, then the conditions (3.5) are those for the original problem.
(b) Suppose 82Q(/i) is a smooth closed curve, fe L2(ft(fi)) and gx e H2(d{h)). The

estimate (3.5) then follows from the standard estimates for elliptic equations
when fl is convex with respect to dtQ, {/, g2} are smooth in Jf*a and the
derivatives of the curves defining 32ft(/i) are bounded independently of h by
the construction in Remark 3.1. (See Grisvard, 1980, and Agmon et al, 1959).

(c) If QiQ n 32f2 ^ {<p} then the regularity of the solution u(h) for any h e [0, h0]
depends on the behaviour of the data in the neighbourhood of the vertices and
on the vertex angles. In general singularities are present, unless compatibility
conditions hold, and it is not the purpose of this paper to consider the
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problem of singularities. Although we are unable to give conditions to ensure
that (3.5) holds for a family of domains in this situation, in Example 3 of
Section 5 we give results of a numerical calculation.

We now present a lemma relating the solution u of the mixed boundary-value
problem (2.2) to the solution u[h) of the perturbed problem (3.4). To simplify the
notation in the remainder of this paper we omit the dependence on h of the
perturbed problem; that is, we refer to u{h) as u, etc.

LEMMA 3.2

(i) If n eft, then
. - 9«

(ii) //(3.3) and (3.5) hold, then
0.02(1

(3.7a)

du
: C6h (3.7b)

S Cnh, (3.7c)

where nh is the outward-pointing unit normal to d2Clh and the constants C5, C6 and C7

are independent ofh.

Proof.
(i) Setting w = u — ii, then w satisfies —V2w = 0 in Q £ ft, w = 0 on dtCl and

9w/8n = g2—Qii/dn on 92ii and Green's theorem implies

w;
/ 3w\

(3.8)

For the domain Q one has the standard trace inequality

Mo.wi < C5 |w| l in V w e H&Q).

Applying this inequality to the right-hand side of (3.8) yields the desired result (3.7a).
(ii) For e e @h such that er\ 92flh # {<£} we may write

du du

0,en

(3.9)

Noting that 9u/6n = g2 on d2ft we obtain

-
du

(3.10)
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Expanding the first term on the right-hand side of (3.10) yields

"*

317

8fi

—(X,/e

-*

Now (3.2), (3.3), (3.5) and the smoothness of g2 imply that

(3.11)

(3.12)

through combining (3.10) and (3.11). The inequality (3.7b) follows from (3.9), (3.12)
and the fact that the number of boundary elements in OQi'1). In a similar fashion
we obtain (3.7c) since

2

= Z f*" \P-(xe, o)-g2(X', o)]2dx*
and noting 3u/3n = g2 on d2d we have

— •

The smoothness of g2, (3.3) and (3.5) imply the desired result. •

4. The Error Estimate

To estimate the error in the approximation (2.7) it is convenient to consider the
perturbed problem (3.4) studied in the last section. Let U* be the best fit to u in
S^SJ with respect to the Dirichlet norm over ilh, then we have the following
approximation result
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LEMMA 4.1 Let U* e S^^) be the unique solution of the projection

{ , On. 0(g, (4.1)

|fi-t/*li.a^C8fc||fi| |2i f l. • (4.2)

Proof. The projection (4.1) implies that

and the interpolation estimate (2.6) together with the extension result (3.1) yield the
desired result (4.2). •
LEMMA 4.2 There exist constants C9 and C10, independent ofh and w, such that

Mo.* < C9\w\uah V w 6 tf|0(rU (4.3a)

M O . . A < ^ b M i . o . V w 6 H i o ( n 0 . (4.3b)

Proof. For a domain G s f i 2 there exists a constant C independent of w and G such
that HO.G < C[m(G)]*|w|ltC, see Ladyzhenskaya & Ural'tseva (1968, p. 46). Thus
(4.3a) holds. The proof of (4.3b) follows from the proof of the trace theorem in Necas
(1967, p. 15), (4.3a) and the inclusion Qfc £ d(h0). m

The error between u, the solution of (2.2), and U, the solution of (2.7), on fi n Clh

satisfies
-U\unh. (4.4)

The first term on the right-hand side of (4.4) is the perturbation in the exact
solutions due to the change of domain J2 to Cl, the second term is the approximation
error due to the choice of trial space and the third term is the difference in the
discrete solutions due to the change of domain. Lemma 3.2 relates the difference
between the exact solutions; its analogue for the discrete solutions is given below.
LEMMA 4.3 //(3.3c) holds then the solutions of (2.1) and (4.1) satisfy

du_
dnb

-92 (4.5)
0.

Proof. Subtracting (2.7) from (4.1), we obtain

-Vl / , VK)nh = (Vfi, VV)ah-(f, V)nh-(g2,

(4.6)

by recalling (3.4) and that Clk £ & Then the result (4.5) follows by taking
V =• U* — U in (4.6) and applying the trace inequality (4.3b). •

Combining Lemmas 3.2, 4.1 and 4.3 with Equation (4.4) results in the following
theorem.

THEOREM 4.1 Assuming that the domain ft can be constructed such that (3.3) and (3.5)
hold then the solution u of (2.2) and the approximation U defined by (2.7) satisfy the
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following error estimate:
lu-l/lx.nncu^Cufc, (4.7)

where

Remark 4.1. The preceding analysis holds for fitted meshes.
Remark 4.2. If fl is concave with respect to the surface 32O, then Q c f l , and the
error analysis given in Strang & Fix (1973) for fitted meshes may be generalized to
apply to the approximation (2.7). Let u be the extension Shu of u from fi to the plane
as defined in (3.1). Then we have

-U\unh, (4-8)

where 17* is defined by (4.1) and satisfies (4.2) with Cl = £1 Hence it only remains to
bound \U*-U\unh. Subtracting (2.7) from (4.1) yields

(Vl/*- \U, VV)nh = (Vfi, VK)nh-(/, V)ah-<g2, K ^ a .

(4.9)

The "skin" 9t is then Q,,\ft and m(0) ^ Oi2 by the construction of Clh. Taking
K = e* = I/* — Urn (4.9) and noting that u = u on Q implies

Consider the case g2 = 0, and setting g.2 = 0, that is homogeneous Neumann
boundary condition on 92ii. Then assuming that Vu and / a r e bounded on St we
have

|liQll + |«*|o.Qj. (4-10)

since S c Q,,. As e* = 0 on 8,Q we can apply the Poincare-Friedrichs inequality
(4.3a) to obtain

\e*\unh^Ch. . (4.11)

Thus substituting (4.11) and the approximation error (4.2) into (4.8) we have shown
that

\u-U\ua£Ck (4.12)

This result applies to an important class of problems—for example exterior flow
past a convex body. One can view (4.12) as a generalization of a result buried in
Oganesyan (1966). Oganesyan shows that for any domain Ji if one constructs an
approximation Qh such that Q <= Qh and which satisfies dist (8Q, d£lj ^ Ch2, then a
piecewise linear approximation U based on a triangulation of Clh, that is £)h = Clha
fitted mesh, satisfies (4.12). Oganesyan gives a construction for Clh which is extremely
technical and certainly not easy to implement.

5. Implementation and Numerical Examples

For a given fi and Q)* the construction of Clh is straightforward. Then to obtain
the approximation U e S£(^) defined by (2.7) integrals over this polygonal domain
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(a)

(b)

FIG. 3. (a) Examples of typical subregions e n d , when using triangular elements, (b) Examples of
typical subregions e n f l , when using rectangular elements.

Q,, and the piecewise linear curve 32Dh have to be calculated. These integrals are
performed in each element e individually as in the normal manner, but now, as we
are dealing with an unfitted mesh, in some elements the integration is calculated
only over the subregion e n £lh; examples of which are given in Fig. 3. Since Clh is
polygonal these integrals are easy to evaluate.

In evaluating the left-hand side of (2.7) for each basis function of SQ{2^ a constant
function has to be integrated over e n d , when using a piecewise linear trial space
on triangles or a quadratic function when using a piecewise bilinear trial space on
rectangles. In either case, by inspecting Fig. 3, the region enClh can be split into
one, two or three subtriangles t on which an appropriate integration rule can be
used to evaluate the integral exactly: that is sampling the integrand at the centroid
for a linear trial space and averaging the value of the integrand at the midpoint of
the sides for a bilinear trial space. Therefore it is a simple matter to evaluate the left-
hand side of (2.7) exactly.

The use of numerical integration plays a more important role in evaluating the
terms on the right-hand side of (2.7). The numerical integration rules chosen should
be of sufficiently high order so as to retain the optimal rate of convergence given.by
(4.7), but at the same time it would be desirable that their sampling points were
contained in Q for evaluating the integral over Clh and on 32Q for evaluating the
integral on 92flfc, respectively; for then the numerical approximation U would be
independent of the extensions of/and g2- In employing numerical integration our
approximation scheme (2.7) becomes: find Uh e Sh^3^ such that

where (wlf w2&2 and (jwu w2>|J2nii are approximations to the integrals (w,, w2)nh

<wi» W2>a2a,> respectively. We now have the following result:

LEMMA 5.1 If the numerical integration rules are such that

C(f»\V\i.a>, V V e (5.2a)
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and
\<92,V>eiah-<92,Vyiinh\^C{g2)h\V\unh, V K e S ^ ; (5.2b)

then the solutions U o/(2.7) and Uh of (5.1) satisfy

\U-U"\iin^Cl2h, (5.3)

where Cl2 is a constant independent ofh.
Proof. Subtracting (5.1) from (2.7) with V = U- Uh and using the bounds (5.2) yields
the desired result. •

Thus if the assumptions of Lemma 5.1 hold we have that the approximation Uh

has the optimal rate of convergence in the Dirichlet norm through combining (5.3)
with (4.7).

A numerical integration rule (/, F)o. which depends only on f and not on / is to
average the value of the integrand at the vertices of each subtriangle t, since each
vertex lies in £1 through the construction of Clh. It is a simple matter to show that
this rule satisfies the condition (5.2a). For it is equivalent to integrating exactly the
piecewise linear interpolate sl(fV) oifV, which is linear on each subtriangle t and
interpolates fV at the vertices, and so we have

U V)Qh-(f, V&J = I [ \JV-sl(fV)] dx dy

a>- (5-4)

From s tandard interpolation theory (see Ciarlet, 1978, p. 123) we have for
sufficiently smooth/

\fV-sl(fV)\o.t < Chf\fV\2tl, (5.5)

where h, is the diameter of the triangle t. Note that for (5.5) to hold we do not
require that the smallest angle of each subtriangle t to be bounded below
independently of ht, which we could not guarantee with the given construction of Clh

and t. Combining (5.4) with (5.5) yields

K/.

Z , y . (5.6)
However, we have that

\fV\2,t
For the case S*(^J linears on triangles we have |K|2r==0. For bilinears on
rectangles we have the inverse inequality |P]2 , , .^ Ch^l\V\Ut. Thus in both cases the
right-hand side of (5.6) can be bounded as follows

iv (5-7)

The desired result (5.2a) follows by applying the Poincare-Friedrichs inequality
(4.3a) to the right-hand side of (5.7).
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If the trapezium rule is used for each section end2Clh of the boundary integral,
then once again this rule depends only on g2, and not on the extension g2. However,
we shall see that the bound (5.2b) only holds when S\@J is the space of piecewise
linear functions on triangles. In the case of bilinears on rectangles a higher order
numerical integration rule, such as Simpson's rule, has to be used to satisfy the
bound (5.2b) with the disadvantage that it is dependent on the extension g2. The
trapezium rule on the boundary edge [0, h J = e n d2Qh is equivalent to integrating
exactly the linear interpolate ql{g2V) of g2V, which is linear on end2Qh and
interpolates g2 V at the end points, and so we have

K>JlQJ < C\g2V-qi{g2V)\o.^

(5.8)

for sufficiently smooth g2 from standard interpolation theory. Expanding
. we obtain

192 M2,e n 32n>i ^ C{ W2I2. 00,« n «jtlh I ^lo.e n d2nh + W211, eo. e n « 2 n j ^11, e n

\92\0. « , « n a 2 nj

For the case Sh(@J linears on triangles we have \V\2,ena2ah = 0 a n ( i applying the
inverse inequality

\V\i..ntA<Ch;l\V\0,.ntMt, (5.9)
we obtain

tiiVli.e.,^ < C{g2)h;'\V\Q_endiati. (5.10)

Substituting (5.10) into (5.8) yields

and applying the trace inequality (4.3b) we obtain the desired result (5.2b). For the
case S(Q^ bilinears on rectangles we have the inverse inequalities:

which imply that

l ^ k . n a ^ < C(g2)K*\V\0,ena2^ (5.12)

instead of (5.10). Thus the desired bound (5.2b) is not obtained. Indeed, in practice
0{h) convergence of the error u — Uh in the Dirichlet norm was not observed in this
case.

If Simpson's rule is used for the case Sh(@J bilinears on quadrilaterals we do
recover the bound (5.2b). For Simpson's rule is equivalent to integrating exactly the
quadratic interpolate ql(g2 V) of g2 V on each segment [0, h J = e n d2Clh and so we
have

\<9i, V\lQh-Q2, VyhaJ ^ C\g2V-ql(g2V)\0,e2Qh

, (5.13)

for sufficiently smooth g2. Expanding \g2V\3,end2ah and noting that \V\3>tndinh = 0
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TABLE 1

Results for Example 5.1

nodes |u(xj) —

2/4
2/5
2/6
2/8
2/10
2/12

113017
0-87594
0-74415
0-55648
O44503
0-37033

0-24544
0-15422
0-10979
0-06120
003975
0-02711

014771
0-07636
0-07993
0-03953
0-03147
0-01819

and using the inverse inequalities (5.11) we obtain

Substituting (5.14) into (5.13) and applying the trace inequality yields the desired
result (5.2b).

We now report on some numerical examples, each solving a Poisson equation in a
square with a section removed. For our trial space we choose piecewise bilinears on
squares of size h, resulting from a uniform partition of the complete square.
Numerical integration of the type described previously in this section is employed.
Example 5.1. The domain £) consists of the square [—2,2] x [—2,2] with the unit
disc removed. Dirichlet conditions are specified on the sides of the square and a
Neumann condition on x2+y2 = 1 so that the solution u of Poisson's equation with
f=-(x2+y2)is

u(r, 6) = r- 2) cos 20 + — [sin4 9 + cos4 0], (5.15)

where
= x2+y2 and tan 0 = y/x.

From (5.15) we see that un = (x4 + y4)/3 on x2+y2 = 1 and thus for the extension g2

we choose the obvious candidate g2 = (x4+y4)/3. Owing to symmetry one can solve
this problem in the quadrant [0,2] x.[0,2] with x2 + y2 ^ 1. For our error estimate

(0,0)

(-1,-1) (0,-1)

FIG. 4. The domain ft for Example S.2.
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TABLE 2

Results for Example 5.2

h

1/4
1/5
1/6
1/8
1/10
1/12

0-14994
0-12462
0-10544
0-07997
0-06429
005372

l«-y*lo.oniu

0-01014
000661
0-00484
0-00274
0-00177
0-00126

mmi

nodes \u(Xj)—U {xj)\

0-01359
000791
0-00804
0-00509
0-00360
000282

to hold we have to construct a domain C\h) such that (3.3) and (3.5) hold. Clearly
this is easily achieved by taking Q2^h) to be the circle x2 + y2 = l — C^h2, where C4

is a sufficiently large positive constant such that H g ^ c £\h). The error between
the true solution and the finite-element solution is shown in Table 1 for various
values of h. We see that the predicted O{h) convergence in the Dirichlet norm is
obtained. Also the I 2 error appears to be O(h2) and the maximum error at a node
lying inside Q appears to be approximately O{h2), this maximum error usually being
attained at a node lying near the boundary 62Q.
Example 5.2. The domain SI is depicted in Fig. 4. Dirichlet conditions are specified
on the sides x = 0 and y = — 1 and a Neumann condition on the curved boundary
x2 + (y+1)2 = 1 so that the solution u of Laplace's equation is

u(r) = In r, (5.16)
where

r2 = {x-0-25)2 + y2.

From (5.16) we see that un = [x(x-0-25) + v(y+l)]r~2 on x2+(y+l)2 = 1 and this
is what we set the extension g2 to be. From the results given in Table 2 we see that
the error in the Dirichlet norm is O(h), the error in L2 norm is O(h2) and the
maximum nodal error is approximately O(h2). Since Q is convex, we have ilh £ fl
and so we can take Cl = £2 to apply our error estimate.

TABLE 3

Results for Example 5.3

\u-U\.OnOk nodes \U(XJ)-U\XJ)\
xjtO

1/4
1/5
1/6
1/8
1/10
1/12

0-07378
0-05880
004943
0-03494
002804
002350

0-00838
0-00609
0-00475
0-00201
0-00142
0-00090

0-03063
0-01386
001624
0-00715
0-00505
0-00326
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Example 5.3. This example is similar to Example 5.2, the only change being that we
take the curved boundary to be (y + i) = 4(x + ̂ )3, so now ft is not convex and
thus nk £ Cl. Dirichlet and Neumann boundary conditions are specified as before so
that the solution u is given by (5.16). From (5.16) we see that

on (y + i) = 4(x + i)3 and this is what we set the extension g2 to be. From the results
given in Table 3 we see once again that the error in the Dirichlet norm is O(h), the
error in the L2 norm is O(h2) and the maximum nodal error is approximately 0{h2).
However, in this case it is not obvious how to construct the domain Cl(h) such that
the conditions (3.3) and (3.5) hold in order for our error estimate to apply. The main
problem is that 82O is locally concave near the origin. Although u is smooth at the
origin, if we construct a curve 92ft(/i) satisfying (3.3) we cannot guarantee the
regularity of u at the origin.

To conclude, we see that the technique presented is easy to implement and
produces an approximation with the same convergence properties as one would
obtain with a fitted mesh. Thus the method retains accuracy with a considerable
saving in effort and computer time.
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