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Abstract. We consider a recently introduced new finite element approach for the discretization
of elliptic partial differential equations on surfaces. The main idea of this method is to use finite
element spaces that are induced by triangulations of an “outer” domain to discretize the partial
differential equation on the surface. The method is particularly suitable for problems in which there
is a coupling with a flow problem in an outer domain that contains the surface, for example, two-phase
incompressible flow problems. It has been proved that the method has optimal order of convergence
both in the H1 and in the L2-norm. In this paper we address linear algebra aspects of this new finite
element method. In particular the conditioning of the mass and stiffness matrix is investigated. For
the two-dimensional case we present an analysis which proves that the (effective) spectral condition
number of both the diagonally scaled mass matrix and the diagonally scalled stiffness matrix behaves
like h−2, where h is the mesh size of the outer triangulation.
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1. Introduction. Certain mathematical models involve elliptic partial differen-
tial equations posed on surfaces. This occurs, for example, in multiphase fluids if
one takes so-called surface active agents (surfactants) into account. These surfactants
induce tangential surface tension forces and thus cause Marangoni phenomena [5, 6].
In mathematical models surface equations are often coupled with other equations that
are formulated in a (fixed) domain which contains the surface. In such a setting a
common approach is to use a splitting scheme that allows to solve at each time step
a sequence of simpler (decoupled) equations. Doing so one has to solve numerically
at each time step an elliptic type of equation on a surface. The surface may vary

from one time step to another and usually only some discrete approximation of the
surface is (implicitly) available. A well-known finite element method for solving el-
liptic equations on surfaces, initiated by the paper [4], consists of approximating the
surface by a piecewise polygonal surface and using a finite element space on a trian-
gulation of this discrete surface, cf. [2, 5]. If the surface is changing in time, then this
approach leads to time-dependent triangulations and time-dependent finite element
spaces. Implementing this requires substantial data handling and programming effort.

In the recent paper [7] we introduced a new technique for the numerical solution of
an elliptic equation posed on a hypersurface. The main idea is to use time-independent
finite element spaces that are induced by triangulations of an “outer” domain to
discretize the partial differential equation on the surface. This method is particularly
suitable for problems in which the surface is given implicitly by a level set or VOF
function and in which there is a coupling with a flow problem in a fixed outer domain.
If in such problems one uses finite element techniques for the discetization of the
flow equations in the outer domain, this setting immediately results in an easy to
implement discretization method for the surface equation. If the surface varies in
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time, one has to recompute the surface mass and stiffness matrix using the same
data structures each time. Moreover, quadrature routines that are needed for these
computations are often available already, since they are needed in other surface related
calculations, for example surface tension forces.

In [7] it is shown that this new method has optimal order of convergence in H1

and L2 norms. The analysis requires shape regularity of the outer triangulation, but
does not require any type of shape regularity for discrete surface elements.

In the present paper we address linear algebra aspects of this new finite element
method. In particular the conditioning of the mass and stiffness matrix is investi-
gated. Numerical experiments in two- and three-dimensional examples (treated in
section 2.2) clearly indicate and h−2 behaviour of the (effective) spectral condition
number both for the diagonally scaled mass and stiffness matrix. Here h denotes the
mesh size of the outer triangulation, which is assumed to be quasi-uniform (in a small
neighbourhood of the surface). For the two-dimensional case we present an analysis
which proves this h−2 conditioning property under reasonable assumptions. We be-
lieve that this analysis can be extended to the three-dimensional, but would require
a lot of additional technical manipulations.

The remainder of the paper is organized as follows. In section 2.1 we describe the
finite element method that is introduced in [7]. In section 2.2 we give results of some
numerical experiments. These results illustrate the optimal order of convergence of the
method and show the h−2 conditioning property. In section 3 we present an analysis
of conditioning properties for the two-dimensional case. We start with an elementary
introductory example (section 3.1). In section 3.2 we collect some preliminaries for
the analysis. A condition number bound for the diagonally scaled mass matrix is
derived in section 3.3. Finally, the stiffness matrix is treated in section 3.4.

2. Surface Finite Element method.

2.1. Descripton of the method. In this section we describe the finite element
method from [7] for the three-dimensional case. The modifications needed for the
two-dimensional case are obvious.

We assume that Ω is an open subset in R
3 and Γ a connected C2 compact hyper-

surface contained in Ω. For a sufficiently smooth function g : Ω → R the tangential
derivative (along Γ) is defined by

∇Γg = ∇g −∇g · nΓ nΓ. (2.1)

The Laplace-Beltrami operator on Γ is defined by

∆Γg := ∇Γ · ∇Γg.

We consider the Laplace-Beltrami problem in weak form: For given f ∈ L2(Γ) with
∫

Γ fds = 0, determine u ∈ H1(Γ) with
∫

Γ u ds = 0 such that

∫

Γ

∇Γu∇Γv ds =

∫

Γ

fv ds for all v ∈ H1(Γ). (2.2)

The solution u is unique and satisfies u ∈ H2(Γ) with ‖u‖H2(Γ) ≤ c‖f‖L2(Γ) and a
constant c independent of f , cf. [4].

For the discretization of this problem one needs an approximation Γh of Γ. We
assume that this approximate manifold is constructed as follows. Let {Th}h>0 be a
family of tetrahedral triangulations of a fixed domain Ω ⊂ R

3 that contains Γ. These
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triangulations are assumed to be regular, consistent and stable. Take Th ∈ {Th}h>0

and denote the set of tetrahedra that form Th by {S}. We assume that Γh is sufficiently
close to Γ (cf. (2.8), (2.9) below) and such that

• Γh can be decomposed as

Γh = ∪T∈Fh
T, (2.3)

where for each T there is a corresponding tetrahedron ST ∈ Th with T =
ST ∩Γh and meas2(T ) > 0. To avoid technical complications we assume that
this ST is unique, i.e., T does not coincide with a face of a tetrahedron in Th.

• Each T from the decomposition in (2.3) is planar, i.e., either a triangle or a
quadrilateral.

Each quadrilateral T ∈ Fh can be subdivided into two triangles and thus we obtain a
family of triangular subdivisions {Fh}h>0 of (Γh)h>0. We emphasize that although the
family {Th}h>0 is shape-regular the family {Fh}h>0 in general is not shape-regular. In
our examples Fh contains strongly deteriorated triangles that have very small angles
and neighboring triangles can have very different areas, cf. Fig. 2.1.

The main idea of the method from [7] is that for discretization of the problem
(2.2) we use a finite element space induced by the continuous linear finite elements
on Th. This is done as follows. We define a subdomain that contains Γh:

ωh := ∪T∈Fh
ST . (2.4)

This subdomain in R
3 is partitioned in tetrahedra that form a subset of Th. We

introduce the finite element space

Vh := { vh ∈ C(ωh) | v|ST
∈ P1 for all T ∈ Fh }. (2.5)

This space induces the following space on Γh:

V Γ
h := {ψh ∈ H1(Γh) | ∃ vh ∈ Vh : ψh = vh|Γh

}. (2.6)

This space is used for a Galerkin discretization of (2.2): determine uh ∈ V Γ
h with

∫

Γh
uhdsh = 0 such that

∫

Γh

∇Γh
uh∇Γh

ψh dsh =

∫

Γh

fhψh dsh for all ψh ∈ V Γ
h , (2.7)

with fh an extension of f such that
∫

Γh
fhdsh = 0 (cf. [7] for details). Due the

Lax-Milgram lemma this problem has a unique solution uh. In [7] we analyze the
discretization quality of this method. In this analysis we assume Γh to be sufficiently
close to Γ in the following sense. Let U ⊂ R

3 be a neighborhood of Γ and d : U → R

the signed distance function: |d(x)| = dist(x,Γ)|. We assume that

ess supx∈Γh
|d(x)| ≤ c0h

2, (2.8)

ess supx∈Γh
‖∇d(x) − nh(x)‖ ≤ c̃0h, (2.9)

hold, with nh(x) the outward pointing normal to Γh at x ∈ Γh. Under these assump-
tions the following optimal discretization error bounds are proven:

‖∇Γh
(ue − uh)‖L2(Γh) ≤ C h‖f‖L2(Γ), (2.10)

‖ue − uh‖L2(Γh) ≤ C h2‖f‖L2(Γ), (2.11)

with ue a suitable extension of u and with a constant C independent of f and h.
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2.2. Results of numerical experiments. In this section we present results of
a few numerical experiments. As a first test problem we consider the Laplace-Beltrami
equation

−∆Γu+ u = f on Γ,

with Γ = {x ∈ R
3 | ‖x‖2 = 1} and Ω = (−2, 2)3 + b with b = (29−1, 31−1, 37−1)T .

This example is taken from [1]. The shift over b is introduced for the following reason.
The grids we use are obtained by regular (local) refinement as explained below. For
the case b = 0 there are grid points of the outer triangulation that lie exactly in Γ.
To avoid this special case we introduce the shift. The zero order term is added to
guarantee a unique solution. The source term f is taken such that the solution is
given by

u(x) = a
‖x‖2

12 + ‖x‖2

(

3x2
1x2 − x3

2

)

, x = (x1, x2, x3) ∈ Ω,

with a = − 13
8

√

35
π . A family {Tl}l≥0 of tetrahedral triangulations of Ω is constructed

as follows. We triangulate Ω by starting with a uniform subdivision into 48 tetrahedra
with mesh size h0 =

√
3. Then we apply an adaptive red-green refinement-algorithm

(implemented in the software package DROPS [3]) in which in each refinement step
the tetrahedra that contain Γ are refined such that on level l = 1, 2, . . . we have

hT ≤
√

3 2−l for all T ∈ Tl with T ∩ Γ 6= ∅.

The family {Tl}l≥0 is consistent and shape-regular. The interface Γ is the zero-level
of ϕ(x) := ‖x‖2 − 1. Let ϕl := I(ϕ) where I is the standard nodal interpolation
operator on Tl. The discrete interface is given by Γhl

:= {x ∈ Ω | I(ϕl)(x) = 0 }. Let
{φi}1≤i≤m be the nodal basis functions corresponding to the vertices of the tetrahedra
in ωh, cf. (2.4). The entries

∫

Γh
∇Γh

φi · ∇Γh
φj + φiφjds of the stiffness matrix are

computed within machine accuracy. For the right-handside we use a quadrature-rule
that is exact up to order five. The discrete problem is solved using a standard CG
method with symmetric Gauss-Seidel preconditioner to a relative tolerance of 10−6.
The number of iterations needed on level l = 1, 2, . . . , 7, is 14, 26, 53, 104, 201, 435,
849, respectively.
In [7] a discretization error analysis of this method is presented, which shows that it
has optimal order of convergence, both in the H1- and L2-norm. The discretization
errors in the L2(Γh)-norm are given in table 2.1 (from [7]).

level l ‖u− uh‖L2(Γh) factor
1 0.1124 –
2 0.03244 3.47
3 0.008843 3.67
4 0.002186 4.05
5 0.0005483 3.99
6 0.0001365 4.02
7 3.411e-05 4.00

Table 2.1

Discretization errors and error reduction.
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Fig. 2.1. Detail of the induced triangulation of Γh (left) and level lines of the discrete solution uh

These results clearly show the h2
l behaviour as predicted by the analysis given in

[7], cf. (2.11). To illustrate the fact that in this approach the triangulation of the ap-
proximate manifold Γh is strongly shape-irregular we show a part of this triangulation
in Figure 2.1. The discrete solution is visualized in Fig 2.1.

The mass matrix M and stiffness matrix A have entries

Mi,j =

∫

Γh

φiφj dsh, Ai,j =

∫

Γh

∇Γh
φi · ∇Γh

φj dsh, 1 ≤ i, j ≤ m.

Define DM := diag(M), DA := diag(A) and the scaled matrices

M̃ := D
− 1

2

M MD
− 1

2

M , Ã := D
− 1

2

A AD
− 1

2

A .

for different refinement levels we computed the largest and smallest eigenvalues of M̃

and Ã. The results are given in Table 2.2 and Table 2.3.

level l m factor λ1 λ2 λm λm/λ2 factor
1 112 - 3.8 e-17 0.0261 2.86 109 -
2 472 4.2 4.0 e-17 0.0058 2.83 488 4.5
3 1922 4.1 0 0.0012 2.83 2358 4.8
4 7646 4.0 0 0.00029 2.83 9759 4.1

Table 2.2

Eigenvalues of scaled mass matrix M̃

level l m factor λ1 λ2 λ3 λm λm/λ3 factor
1 112 - 0 0 0.055 2.17 39.5 -
2 472 4.2 0 0 0.013 2.26 174 4.4
3 1922 4.1 0 0 0.0028 2.47 882 5.0
4 7646 4.0 0 0 0.00069 2.61 3783 4.3

Table 2.3

Eigenvalues of scaled stiffness matrix Ã

These results show that for the scaled mass matrix there is one eigenvalue very
close to or equal to zero and for the effective condition number we have λm

λ2
∼ m ∼ h−2

l .
For the scaled stiffness matrix we observe that there are two eigenvalues close to or
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Fig. 2.2. 100 smallest nonzero eigenvalues of M̃ (+) and Ã (o) on level l = 3.

equal to zero and an effective condition number λm

λ3
∼ m ∼ h−2

l . In Fig. 2.2 for both
matrices the 100 smallest eigenvalues away from zero are shown.

We also performed a numerical experiment with a very structured two-dimensional
triangulation as illustrated in Fig. 3.3. The number of vertices is denoted by nV (nV =
11 in Fig. 3.3). The interface is given by Γ = [0, 1] = [m1,mnV −1]. The mesh size
of the triangulation is h = 2

nV −3 . The vertices v1, v3, . . . , vnV −2 and v0, v2, . . . , vnV −1

are on lines parallel to Γ and the distances of the upper and lower lines to Γ are given
by δ

2h and 1−δ
2 h, respectively, with a parameter δ ∈ (0, 1) (δ = 1

2 in Fig 3.3). In
this case a dimension argument immediately yields that both the mass and stiffness
matrix are singular. For different values of nV and of δ we computed the eigenvalues
of the scaled mass and stiffness matrix. The results are given in tables 2.4 and 2.5.
These results clearly suggest that the condition numbers of both the diagonally scaled
mass and the diagonally scaled stiffness matrix behave like h−2 for h→ 0. Moreover,
one observes for this particular example that the conditioning is insensitive to the
distance of the interface Γ to the nodes of the outer triangulation.

δ nV λ1 λ2 λnV
λnV

/λ2 factor
0.3 17 0 1.01e-2 2.42 239 -

33 0 2.20e-3 2.42 1.10e+3 4.60
65 0 5.14e-4 2.42 4.70e+3 4.27
129 0 1.24e-4 2.42 1.95e+4 4.13
257 0 3.06e-5 2.42 7.89e+4 4.06

0.5 65 0 5.14e-4 2.40 4.72e+3 -
0.1 0 5.14e-4 2.46 4.79e+3
0.01 0 5.14e-4 2.50 4.86e+3
0.001 0 5.14e-4 2.50 4.86e+3

Table 2.4

Eigenvalues of scaled mass matrix M̃

3. Analysis.
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δ nV λ1 λ2 λ3 λnV
λnV

/λ3 factor
0.3 17 0 0 5.25e-2 2.0 38.1 -

33 0 0 1.54e-2 2.0 130 3.41
65 0 0 4.27e-3 2.0 468 3.60
129 0 0 1.13e-3 2.0 1.77e+3 3.77
257 0 0 2.92e-4 2.0 6.85e+3 3.88

0.5 65 0 0 4.27e-3 2.0 468 -
0.1 0 0 4.27e-3 2.0 468
0.01 0 0 4.27e-3 2.0 468
0.001 0 0 4.27e-3 2.0 468

Table 2.5

Eigenvalues of scaled stiffness matrix Ã

3.1. Mass and stiffness matrices and an introductory example. We take
Γ = [0, 1] and consider a family of quasi-uniform triangulations {Th}h>0 as illustrated
in Fig 3.1, i.e., for each T ∈ Th we have meas1(Γ ∩ T ) > 0 and the endpoints x = 0
and x = 1 of Γ lie on an edge of some T ∈ Th. The numbering of vertices vi

and intersection points mi is as indicated in Fig. 3.1. We distinguish between the
set of leafs L with corresponding index set ℓ and the set of nodes N (= vertices
that are not leafs) with corresponding index set {1, 2, . . . , n}. In the example in
Fig. 3.1 we have L = {v1,1, v6,1, v9,1, v9,2, v13,1}, ℓ = {(1, 1), (6, 1), (9, 1), (9, 2), (13, 1)},
N = {v1, v2, . . . , v13}. Note that for i = (i1, i2) ∈ ℓ we have 1 ≤ i1 ≤ n. The set
of all vertices is denoted by V = L ∪ N , and |V | = nV . The corresponding index
set is denoted by I = {1, 2, . . . , n} ∪ ℓ. This distinction between leafs and nodes is
more clear, if in the triangulation we delete all edges between vertices that are on the
same side of Γ. For the example in Fig. 3.1 this results in a directed graph shown in
Fig. 3.2. For each node vi ∈ N the number of leafs attached to vi is denoted by li
(in our example: l1 = l6 = l13 = 1, l9 = 2, lj = 0 for all other j). The intersection
points mj are numbered as indicated in Fig. 3.1. In the analysis it is convenient to
use the following notation: if vi, vi+1 ∈ N we define mi,0 := mi, mi,li+1 := mi+1, and
m1,0 := m1,1, mn,ln+1 := mn,ln . Using this the subdivision of Γ into the intersections
with the triangles T ∈ Th can be written as

Γ = ∪1≤i≤n ∪1≤j≤li+1 [mi,j−1,mi,j ]. (3.1)

We define h := sup{ diam(T ) | T ∈ Th }, ωh := ∪{T | T ∈ Th }, the linear finite
element space Vh = { v ∈ C(Ωh) | v|T ∈ P1 for all T ∈ Th } of dimension nV , and the
induced finite element space V Γ

h = {w ∈ C(Γ) | w = v|Γ for some v ∈ Vh } as in (2.5)
and (2.6), respectively. These spaces Vh and V Γ

h are called outer and interface finite
element spaces, respectively.

For the implementation it is very convenient to use the nodal basis functions of

the outer finite element space for representing functions in the interface finite element

space. Let { φi | i ∈ I } be the set of standard nodal basis functions in Vh, i.e., φi has
value one at node vi and zero values at all other v ∈ V, v 6= vi. Clearly

V Γ
h = span{ (φi)|Γ | i ∈ I }

holds. A dimension argument shows that these functions are not independent and thus
do not form a basis V Γ

h . This set of generating functions is used for the implementation
of a finite element discretization of scalar elliptic partial differential equations on Γ,
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using the interface space V Γ
h . The corresponding mass and stiffness matrices are given

by

〈Mu,u〉 =

∫ 1

0

uh(x)2 dx, 〈Au,u〉 =

∫ 1

0

u′h(x)2 dx,

with uh =
∑

i∈I

ui(φi)|Γ, u := (ui)i∈I ∈ R
nV .

(3.2)

Both matrices are singular. The effective condition number of M (or A) is defined as
the ratio of the largest and smallest nonzero eigenvalue of M (or A). Below we derive
bounds for the effective condition of diagonally scaled mass and stiffness matrices .

An introductory example. First we consider a simple example with a uniform
triangulation as shown in Fig. 3.3. The number of vertices is denoted by nV (nV = 11
in Fig. 3.3) and h := 2

nV −3 is a measure for the mesh size of the triangulation. The
interface Γ = [0, 1] = [m1,mnV −1] is located in the middle between the upper and
lower line of the outer triangulation. The nodal basis function corresponding to vi is
denoted by φi, i = 0, 1, . . . , nV − 1. We represent uh ∈ V Γ

h as uh =
∑nV −1

i=0 ui(φi)|Γ.
The vector representation is given by u = (u0, u1, . . . , unV −1)

T ∈ R
nV . Now note that

∫ 1

0

uh(x)2 dx =

nV −2
∑

i=1

∫ mi+1

mi

uh(x)2 dx

∼ h

nV −2
∑

i=1

(

uh(mi)
2 + uh(mi+1)

2
)

∼ h

nV −1
∑

i=1

uh(mi)
2

=
h

4

nV −1
∑

i=1

(

uh(vi−1) + uh(vi)
)2

=
h

4

nV −1
∑

i=1

(

ui−1 + ui)
)2

=
h

4
〈Lu,Lu〉,
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Fig. 3.3. Example with a uniform triangulation.

with

L =











1 1
1 1 ∅
∅ . . .

. . .

1 1











∈ R
(nV −1)×nV .

Thus the diagonally scaled mass matrix is spectrally equivalent to LTL. This matrix
has one zero eigenvalue λ1 = 0, with corresponding eigenvector (1,−1, 1,−1, . . .)T .
The smallest nonzero eigenvalue is λ2 ∼ h2, and thus for the effective condition

number we obtain
λnV

λ2
∼ h−2.

For the stiffness matrix we obtain the following:

∫ 1

0

u′h(x)2 dx =

nV −2
∑

i=1

∫ mi+1

mi

u′h(x)2 dx ∼ h

nV −2
∑

i=1

(uh(mi+1) − uh(mi)

mi+1 −mi

)2

∼ 1

h

nV −2
∑

i=1

(

(uh(vi) + uh(vi+1)) − (uh(vi−1) + uh(vi))
)2

=
1

h

nV −2
∑

i=1

(

ui+1 − ui−1

)2
=

1

h
〈L̂u, L̂u〉,

with

L̂ =











−1 0 1 ∅
−1 0 1

. . .
. . .

. . .

∅ −1 0 1











∈ R
(nV −2)×nV .

Thus the diagonally scaled stiffness matrix is spectrally equivalent to L̂T L̂. This
matrix has two zero eigenvalues λ1 = λ2 = 0, with corresponding eigenvectors
(1,−1, 1,−1, . . .)T , (1, 1, . . . , 1)T . The smallest nonzero eigenvalue is λ3 ∼ h2, and

thus for the effective condition number we obtain
λnV

λ3
∼ h−2.

We now consider a case as illustrated in Fig. 3.4 in which there is one vertex vk

(k = 4 in Fig. 3.4) for which dist(vk,Γ) = ǫ = δ h
2 , with δ ∈ (0, 1] and k such that nV

k
is a fixed number if the mesh is refined.
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For this case we obtain:

∫ 1

0

uh(x)2 dx ∼ h

nV −1
∑

i=1

uh(mi)
2

∼ h

k−1
∑

i=1

(

ui−1 + ui

)2
+ h(δuk−1 + uk)2 + h(uk + δuk+1)

2

+ h

nV −1
∑

i=k+2

(

ui−1 + ui

)2 ∼ h〈L̃u, L̃u〉,

with

L̃ =

























1 1
. . .

. . . ∅
1 1

δ 1
1 δ

∅ 1 1
. . .

. . .

























∈ R
(nV −1)×nV .

Thus the diagonally scaled mass matrix is spectrally equivalent to L̃T L̃. A straight-
forward calculation yields that this matrix has one zero eigenvalue λ1 = 0 and for
δ ≤

√
h the first nonzero eigenvalue is of size λ2 ∼ hδ2. Hence for the effective condi-

tion number of the scaled mass matrix we obtain
λnV

λ2
∼ h−1δ−2. Comparing this with

the results of the 2D numerical experiment in the previous section, cf. Table 2.4, we
see that the dependence of the effective spectral condition number on the distances of
the vertices of the outer triangulation to Γ is a delicate issue and that in the analysis
the variation of these distances should play a role .

3.2. Preliminaries. In this section we derive some results that will be used in
the analyses of the mass- and stiffness matrix in the following sections.

The following identities hold for u ∈ Vh:

u(mi) = φi−1(mi)u(vi−1) + φi(mi)u(vi) for 1 ≤ i ≤ n, (3.3)

u(mi) = φi1 (mi)u(vi1 ) + φi(mi)u(vi) for i = (i1, i2) ∈ ℓ. (3.4)
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We introduce the notation

ũi := φi(mi)u(vi) for i ∈ I,
ψi := u(mi) for i ∈ I,

ξi :=







φi(mi+1)
φi(mi)

for 1 ≤ i ≤ n− 1,

φi1
(mi)

φi1
(mi1

) for i = (i1, i2) ∈ ℓ,
(3.5)

and obtain the relations

ψi = ξi−1ũi−1 + ũi for 2 ≤ i ≤ n, (3.6)

ψi = ξiũi1 + ũi for i = (i1, i2) ∈ ℓ. (3.7)

For vi = (xi, yi) ∈ V we denote the distance of vi to the x-axis by |yi| =: d(vi). We
introduce the following assumption on the triangulations {Th}h>0: For vi ∈ N let
vj , vr ∈ V be such that vivj and vivr intersect Γ. We assume:

d(vj)

d(vr)
≤ c1, with c1 independent of i, j, r and h. (3.8)

Remark 1. If d(v) > c0h is satisfied for all v ∈ V this implies that (3.8) holds.
The condition d(v) > c0h for all v ∈ V implies that for each triangle T ∈ Th the two
parts of T on each side of Γ have a size that is uniformly (for h ↓ 0) proportional
to the size of T . Furthermore it implies that the subdivision of Γ into subintervals
[mi,j−1,mi,j ] as in (3.1) is quasi-uniform. In our applications (where Γ is an approxi-
mation of the zero level of a level set function, cf. section 2.2) this is not very realistic.
The assumption in (3.8) allows that Γ separates a triangle T ∈ Th into two parts such
that one of them has arbitrarily small size.

In the remainder of the paper, to simplify the notation, we use f ∼ g iff there are
generic constants c1 > 0 and c2 independent of h, such that c1g ≤ f ≤ c2g.

Lemma 3.1. For ξi as in (3.5) we have

Πi
k=jξk =

( 1

d(vj−1)
+

1

d(vj)

) 1
1

d(vi)
+ 1

d(vi+1)

for 1 ≤ j ≤ i ≤ n− 1. (3.9)

Furthermore, if (3.8) is satisfied we have

ξi ∼ 1 for 1 ≤ i ≤ n− 1, i ∈ ℓ. (3.10)

Proof. From geometric properties we get

φi(mi) =
d(vi−1)

d(vi) + d(vi−1)
for 1 ≤ i ≤ n, (3.11)

φi1(mi) =
d(vi)

d(vi1 ) + d(vi)
for i = (i1, i2) ∈ ℓ. (3.12)

Using this in the definition of ξi we obtain

ξi =







d(vi+1)
d(vi−1)

d(vi−1)+d(vi)
d(vi)+d(vi+1)

for 1 ≤ i ≤ n− 1,

d(vi)
d(vi1−1)

d(vi1−1)+d(vi1
)

d(vi1
)+d(vi)

for i = (i1, i2) ∈ ℓ.
(3.13)
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In both cases ξi is of the form

ξi = a
( 1

a + z

1 + z

)

,

namely with a = d(vi+1)
d(vi−1)

, z = d(vi)
d(vi+1)

if 1 ≤ i ≤ n − 1, and a = d(vi)
d(vi1−1)

, z =
d(vi1

)

d(vi)
if

i ∈ ℓ. Note that z > 0 and from (3.8) it follows that a ∼ 1. Furthermore:

1

a
≤

1
a + z

1 + z
≤ 1 for z ≥ 0, a ≥ 1,

1 ≤
1
a + z

1 + z
≤ 1

a
for z ≥ 0, 0 < a ≤ 1.

This yields min{a, 1} ≤ ξi ≤ max{1, a} and thus the result in (3.10) is proved.

For 1 ≤ i ≤ n− 1 the representation of ξi in (3.13) can be rewritten as

ξi =
( 1

d(vi−1)
+

1

d(vi)

) 1
1

d(vi)
+ 1

d(vi+1)

.

Using this the result in (3.9) immediately follows.

We introduce the notation: ∆i := mi+1 −mi (= mi,j1+1 −mi,0) for i = 1, . . . , n, and
∆0 := ∆1, ∆n+1 := ∆n. Due to quasi-uniformity of {Th}h>0 the following holds:

|supp(φi) ∩ Γ| = ∆i1 for i = (i1, i2) ∈ ℓ,

|supp(φi) ∩ Γ| = ∆i−1 + ∆i + ∆i+1 ∼ h for 1 ≤ i ≤ n.

Lemma 3.2. Assume that (3.8) holds. Then we have

‖φi‖2
Γ :=

∫ 1

0

φi(x)
2 dx ∼ ∆i1φi(mi)

2 for all i = (i1, i2) ∈ ℓ, (3.14)

‖φi‖2
Γ ∼ hφi(mi)

2 for 1 ≤ i ≤ n, (3.15)

‖(φi)x‖2
Γ :=

∫ 1

0

φ′i(x)
2 dx ∼ 1

∆i1

φi(mi)
2 for all i = (i1, i2) ∈ ℓ, (3.16)

‖(φi)x‖2
Γ ∼

( 1

∆i−1
+

1

∆i

li+1
∑

j=1

(

ξi,j − ξi,j−1

)2
+

1

∆i+1

)

φi(mi)
2 for 1 ≤ i ≤ n.

(3.17)

Proof. First we consider i = (i1, i2) =: (p, q) ∈ ℓ. Note that supp(φi) ∩ Γ =
[mp,q−1,mp,q+1] and that φi(mp,q−1) = φi(mp,q+1) = 0. For a linear function g we

have
∫ b

a
g(x)2 dx ∼ (b− a)

(

g(a)2 + g(b)2
)

. Thus we get

∫ 1

0

φi(x)
2 dx =

∫ mp,q

mp,q−1

φi(x)
2 dx+

∫ mp,q+1

mp,q

φi(x)
2 dx

∼ φi(mp,q)
2
(

mp,q −mp,q−1

)

+ φi(mp,q)
2
(

mp,q+1 −mp,q

)

= φi(mi)
2
(

mp,q+1 −mp,q−1

)

= φi(mi)
2|supp(φi) ∩ Γ| ∼ ∆i1φi(mi)

2.
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This proves the result in (3.14). Furthermore:
∫ 1

0

φ′i(x)
2 dx =

∫ mp,q

mp,q−1

φ′i(x)
2 dx+

∫ mp,q+1

mp,q

φ′i(x)
2 dx

∼ φi(mp,q)
2
( 1

mp,q −mp,q−1
+

1

mp,q+1 −mp,q

)

∼ 1

∆i1

φi(mp,q)
2,

which proves the result in (3.16).
We now consider 1 ≤ i ≤ n. We use the notationm0,j = 0 for all j andmn+1,j = 1

for all j. The support supp(φi) ∩ Γ = [mi−1,li−1
,mi+1,1] is split into subintervals (cf.

(3.1)) as:

[mi−1,li−1
,mi−1,li−1+1] ∪

(

∪1≤j≤li+1 [mi,j−1,mi,j ]
)

∪ [mi+1,0,mi+1,1].

Note that φi(mi−1,li−1
) = φi(mi+1,1) = 0 and mi−1,li−1+1 = mi, mi+1,0 = mi+1. We

obtain
∫ 1

0

φi(x)
2 dx =

∫ mi−1,li−1+1

mi−1,li−1

φi(x)
2 dx +

li+1
∑

j=1

∫ mi,j

mi,j−1

φi(x)
2 dx +

∫ mi+1,1

mi+1,0

φi(x)
2 dx

∼
(

mi−1,li−1+1 −mi−1,li−1

)

φi(mi)
2

+

li+1
∑

j=1

(

mi,j −mi,j−1

)(

φi(mi,j)
2 + φi(mi,j−1)

2
)

+
(

mi+1,1 −mi+1,0

)

φi(mi+1)
2

=φi(mi)
2
[

mi−1,li−1+1 −mi−1,li−1
+

li+1
∑

j=1

(

mi,j −mi,j−1

)(

ξ2i,j + ξ2i,j−1

)

+ (mi+1,1 −mi+1,0)ξ
2
i

]

,

with ξi,j , ξi as in (3.5), ξi,0 =
φi(mi,0)
φi(mi)

= 1, and for i < n, ξi,li+1 =
φi(mi,li+1)

φi(mi)
=

φi(mi+1)
φi(mi)

= ξi. Using (3.10) we get

∫ 1

0

φi(x)
2 dx ∼ φi(mi)

2
[

mi−1,li−1+1 −mi−1,li−1

+

li+1
∑

j=1

(

mi,j −mi,j−1

)

+ (mi+1,1 −mi+1,0)
]

= φi(mi)
2|supp(φi) ∩ Γ| ∼ hφi(mi)

2.

Hence the result in (3.15) holds. We also have:

∫ 1

0

φ′i(x)
2 dx =

∫ mi−1,li−1+1

mi−1,li−1

φ′i(x)
2 dx+

li+1
∑

j=1

∫ mi,j

mi,j−1

φ′i(x)
2 dx+

∫ mi+1,1

mi+1,0

φ′i(x)
2 dx

∼ φi(mi)
2

∆i−1
+

li+1
∑

j=1

(

φi(mi,j) − φi(mi,j−1)
)2

∆i
+
φi(mi+1)

2

∆i+1

= φi(mi)
2
( 1

∆i−1
+

1

∆i

li+1
∑

j=1

(

ξi,j − ξi,j−1

)2
+

ξi
∆i+1

)

.

Using ξi ∼ 1 this proves the result in (3.17).
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3.3. Analysis for the mass matrix. In this section we derive bounds for
the (effective) condition number of the mass matrix M defined in (3.2). We define
DM := diag(M) = diag(‖φi‖2

Γ)i∈I . By 〈·, ·〉 we denote the Euclidean inner product.

Lemma 3.3. Assume that (3.8) is satisfied. For all u = (ui)i∈I ∈ R
nV , u 6= 0,

we have

〈Mu,u〉
〈DMu,u〉 ∼

h
∑n

i=2 ψ
2
i +

∑

i=(i1,i2)∈ℓ ∆i1ψ
2
i

h
∑n

i=1 ũ
2
i +

∑

i=(i1,i2)∈ℓ ∆i1 ũ
2
i

(3.18)

with ψi = u(mi), u :=
∑

i∈I uiφi, ũi = φi(mi)ui.

Proof. The identity 〈DMu,u〉 =
∑

i∈I ‖φi‖2
Γu

2
i follows directly from the definition

of DM . Furthermore, using lemma 3.2 we obtain:

∑

i∈I

‖φi‖2
Γu

2
i =

n
∑

i=1

‖φi‖2
Γu

2
i +

∑

i∈ℓ

‖φi‖2
Γu

2
i ∼ h

n
∑

i=1

φi(mi)
2u2

i +
∑

i∈ℓ

∆i1φi(mi)
2u2

i

= h

n
∑

i=1

ũ2
i +

∑

i∈ℓ

∆i1 ũ
2
i .

We now consider the nominator. For two neighboring point mp and mq we introduce
the mesh sizes h−p := mp − mq if mq < mp, h

+
p := mq − mp if mq > mp and

hp := h−p + h+
p . Furthermore, h1 := h+

1 , hn,1 := h−n,1. Using this we get

〈Mu,u〉 =

∫ 1

0

u(x)2 dx =

n
∑

i=1

li+1
∑

j=1

∫ mi,j

mi,j−1

u(x)2 dx

∼
n

∑

i=1

li+1
∑

j=1

(

mi,j −mi,j−1

)(

u(mi,j)
2 + u(mi,j−1)

2
)

=

n
∑

i=1

li+1
∑

j=1

h−i,j
(

ψ2
i,j + ψ2

i,j−1

)

∼
n

∑

i=1

li
∑

j=0

hi,jψ
2
i,j

=

n
∑

i=2

hiψ
2
i +

∑

i∈ℓ

hiψ
2
i ∼ h

n
∑

i=2

ψ2
i +

∑

i∈ℓ

hiψ
2
i .

From this and hi ∼ ∆i1 for i = (i1, i2) ∈ ℓ the result in (3.18) follows.

Theorem 3.4. Assume that (3.8) is satisfied. There exists a constant C inde-

pendent of h such that

〈Mu,u〉
〈DMu,u〉 ≤ C for all u ∈ R

nV , u 6= 0.

Proof. Using (3.6) and (3.10) we obtain, for 2 ≤ i ≤ n,

ψ2
i ≤ c(ũ2

i−1 + ũ2
i ).

Hence,

h

n
∑

i=2

ψ2
i ≤ c h

n
∑

i=1

ũ2
i . (3.19)

14



For i = (i1, i2) ∈ ℓ we have, using (3.7) and (3.10),

∆i1ψ
2
i ≤ c∆i1(ũ

2
i1 + ũ2

i ) ≤ c(hũ2
i1 + ∆i1 ũ

2
i ).

This yields

∑

i∈ℓ

∆i1ψ
2
i ≤ c

(

h
n

∑

i=1

ũ2
i +

∑

i∈ℓ

∆i1 ũ
2
i

)

. (3.20)

Combination of (3.19), (3.20) and the result in lemma 3.3 proves the result.

For the derivation of a lower bound we will need a further assumption on the trian-
gulations {Th}h>0 which is as follows
Assumption 2. Assume that there exists a constant c0 > 0 such that d(vj) ≥
c0 h

1
2 maxi=j,j+2,... d(vi) for all j. Define, for α ∈ [0, 1

2 ]:

N(α) := { vj ∈ N | d(vj) ≤ hα max
i=j,j+2,...

d(vi) }, (3.21)

and assume that there is a constant c1 such that |N(α)| ≤ c1h
2α−1 for all α ∈ [0, 1

2 ].

Remark 2. Note that N(α2) ⊂ N(α1) for 0 ≤ α1 ≤ α2 ≤ 1
2 and |N(1

2 )| =
O(1). The condition |N(α)| ≤ c1h

2α−1 means that the set of nodes having a certain
(maximal) distance to Γ (as specified in (3.21)) becomes smaller if this distance gets
smaller. In the 3D experiment in section 2.2 we observe that nodes with (very) small
(i.e., ≪ h) distances occur but that the size of this set decreases if this distance
decreases. In the 2D experiment in section 2.2 we can have many nodes (namely
∼ 1

2n) with arbitrarily small distances to Γ. In that experiment, however, we have
d(vj) = maxi=j,j+2,... d(vi) for all j (the triangulation is “parallel” to Γ). Thus we
have N(0) = N , N(α) = ∅ for all α ∈ (0, 1

2 ] and assmption 2 is fulfilled.
Theorem 3.5. Assume that (3.8) and Assumption 2 are satisfied. There exists

a constant C > 0 independent of h such that

〈Mu,u〉
〈DMu,u〉 ≥ Ch2| lnh|−1 for all u = (ui)i∈I ∈ R

nV , u 6= 0, with u1 = 0.

Proof. For 2 ≤ i ≤ n we have, using (3.6), (3.9) and u1 = 0:

|ũi| ≤ |ψi| + ξi−1|ũi−1| ≤
i

∑

j=2

(

Πi−1
k=jξk

)

|ψj |.

From this we get

n
∑

i=2

ũ2
i ≤

(

n
∑

i=2

i
∑

j=2

(

Πi−1
k=jξk

)2
)

n
∑

j=2

ψ2
j .

Using Assumption 2 the factor
∑n

i=2

∑i
j=2

(

Πi−1
k=jξk

)2
can be estimated as follows. To

shorten notation we write di := d(vi). Using the result in (3.9) we obtain

(

Πi−1
k=jξk

)2 ≤ min{di−1, di}2
( 1

dj−1
+

1

dj

)2

,
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hence,

i
∑

j=2

(

Πi−1
k=jξk

)2 ≤ 4

i
∑

j=1

min{di−1, di}2

d2
j

,

and

n
∑

i=2

i
∑

j=2

(

Πi−1
k=jξk

)2 ≤ 4
n

∑

i=2

i
∑

j=1

min{di−1, di}2

d2
j

≤ 4
n

∑

j=1

n
∑

i=j

min{di−1, di}2

d2
j

≤ 8
n

∑

j=1

n
∑

i=j,j+2,j+4,...

d2
i

d2
j

≤ 8n
n

∑

j=1

(maxi=j,j+2,... di

dj

)2

=: 8n
n

∑

j=1

β2
j .

Note that for βj =
maxi=j,j+2,... di

dj
we have βj ≤ c−1

0 if j ∈ N(1
2 ) and βj ∈ [1, h−

1
2 ) if

j /∈ N(1
2 ). Furthermore, for 0 ≤ α1 ≤ α2 ≤ 1

2 we have #{ βj | βj ∈ [h−α1 , h−α2) } =
|N(α1)| − |N(α2)|. Using this and Assumption 2 we obtain:

8n
n

∑

j=1

β2
j = 8n

∑

j∈N( 1
2
)

β2
j + 8n

∑

j /∈N( 1
2
)

β2
j ≤ ch−2 + ch−1

∫ 1
2

0

h−2α d|N(α)|

≤ ch−2 + c h−2

∫ 1
2

0

h−2α dh2α ∼ h−2| lnh|.

Thus we obtain

n
∑

i=2

ũ2
i ≤ ch−2| lnh|

n
∑

j=2

ψ2
j . (3.22)

For i = (i1, i2) ∈ ℓ we get, using (3.7) and (3.10):

|ũi| ≤ c|ũi1 | + |ψi|,

hence,

∆i1 ũ
2
i ≤ c

(

hũ2
i1 + ∆i1ψ

2
i

)

,

which yields, using (3.22),

∑

i∈ℓ

∆i1 ũ
2
i ≤ c

(

h

n
∑

i=2

ũ2
i +

∑

i∈ℓ

∆i1ψ
2
i

)

≤ ch−2| lnh|
(

h

n
∑

i=2

ψ2
i +

∑

i∈ℓ

∆i1ψ
2
i

)

. (3.23)

Combination of (3.22) and (3.23) with the result in lemma 3.3 completes the proof.

Theorem 3.6. Let 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λnV
be the eigenvalues of D−1

M M.

Assume that (3.8) and Assumption 2 are satisfied. Then

λ1 = 0,
λnV

λ2
≤ Ch−2| lnh|

holds, with a constant C independent of h
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Proof. The matrix M has dimension nV ×nV . The number of intersection points
mj is nV − 1 and thus dim(V Γ

h ) ≤ nV − 1 holds. This implies

dim(range(M)) = dim(V Γ
h ) ≤ nV − 1

and thus dim(ker(M)) ≥ 1, which implies λ1 = 0. From the Courant-Fischer repre-
sentation and theorem 3.5 we obtain, with W1 the family of 1-dimensional subspaces
of R

nV ,

λ2 = sup
S∈W1

inf
u∈S⊥

〈Mu,u〉
〈DMu,u〉 ≥ inf

u∈R
nV , u1=0

〈Mu,u〉
〈DMu,u〉 ≥ Ch2| lnh|−1.

In combination with the result in theorem 3.4 this yields
λnV

λ2
≤ Ch−2| lnh|.

3.4. Analysis for the stiffness matrix. In this section we derive bounds for
the (effective) condition number of the stiffness matrix A defined in (3.2).

Let DA = diag(A) be the diagonal of the stiffness matrix.
Lemma 3.7. Assume that (3.8) holds. For all u = (ui)i∈I ∈ R

nV , u 6= 0, we

have

〈Au,u〉
〈DAu,u〉 ∼

∑n
i=1

1
∆i

∑li+1
j=1 (ψi,j − ψi,j−1)

2

∑n
i=1

(

1
∆i−1

+ 1
∆i

∑li+1
j=1

(

ξi,j − ξi,j−1

)2
+ 1

∆i+1

)

ũ2
i +

∑

i∈ℓ
1

∆i1

ũ2
i

,

(3.24)

with ψi = u(mi), u :=
∑

i∈I uiφi, ũi = φi(mi)ui.

Proof. The identity 〈DAu,u〉 =
∑

i∈I ‖(φi)x‖2
Γu

2
i follows directly from the defini-

tion of DA. Furthermore, using lemma 3.2 we obtain, with gi :=
∑li+1

j=1 (ξi,j −ξi,j−1

)2
:

∑

i∈I

‖(φi)x‖2
Γu

2
i =

n
∑

i=1

‖(φi)x‖2
Γu

2
i +

∑

i∈ℓ

‖(φi)x‖2
Γu

2
i

∼
n

∑

i=1

( 1

∆i−1
+
gi

∆i
+

1

∆i+1

)

φi(mi)
2u2

i +
∑

i∈ℓ

1

∆i1

φi(mi)
2u2

i

=

n
∑

i=1

( 1

∆i−1
+
gi

∆i
+

1

∆i+1

)

ũ2
i +

∑

i∈ℓ

1

∆i1

ũ2
i .

For the nominator we have:

〈Au,u〉 =

∫ 1

0

u′(x)2 dx =
n

∑

i=1

li+1
∑

j=1

∫ mi,j

mi,j−1

u′(x)2 dx

=
n

∑

i=1

li+1
∑

j=1

(

u(mi,j) − u(mi,j−1)
)2

mi,j −mi,j−1
∼

n
∑

i=1

1

∆i

li+1
∑

j=1

(ψi,j − ψi,j−1)
2.

This completes the proof.

Theorem 3.8. Assume that (3.8) holds. There exists a constant C independent

of h such that

〈Au,u〉
〈DAu,u〉 ≤ C for all u ∈ R

nV , u 6= 0.
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Proof. We use lemma 3.7 . Using (3.6) and (3.7) we obtain

ψi,1 − ψi,0 = ψi,1 − ψi = ũi,1 − ξi−1ũi−1 + (ξi,1 − 1)ũi

= ũi,1 − ξi−1ũi−1 + (ξi,1 − ξi,0)ũi

and for 2 ≤ j ≤ li + 1

ψi,j − ψi,j−1 = ũi,j − ũi,j−1 + (ξi,j − ξi,j−1)ũi.

Using ξi ∼ 1 this yields, with ũi,0 := ũi−1,

(ψi,j − ψi,j−1)
2 ≤ c

(

ũ2
i,j + ũ2

i,j−1 + (ξi,j − ξi,j−1)
2ũ2

i

)

for 1 ≤ j ≤ li + 1.

Hence, with gi :=
∑li+1

j=1 (ξi,j − ξi,j−1)
2 we obtain

li+1
∑

j=1

(ψi,j − ψi,j−1)
2 ≤ c

(

ũ2
i−1 + ũ2

i+1 + giũ
2
i +

li
∑

j=1

ũ2
i,j

)

and thus

n
∑

i=1

1

∆i

li+1
∑

j=1

(ψi,j − ψi,j−1)
2 ≤ c

n
∑

i=1

1

∆i

(

ũ2
i−1 + ũ2

i+1 + giũ
2
i

)

+ c
∑

i=(i1,i2)∈ℓ

1

∆i1

ũ2
i

≤ c

n
∑

i=1

( 1

∆i−1
+
gi

∆i
+

1

∆i+1

)

ũ2
i +

∑

i=(i1,i2)∈ℓ

1

∆i1

ũ2
i ,

which completes the proof.

We now derive a lower bound for the smallest nonzero eigenvalue of D−1
A A. For this

it turns out to be more convenient to consider ui := u(vi) = φi(mi)
−1ũi instead of ũi.

Lemma 3.9. For ui = u(vi) we have the recursion

ui = (1 − αi)ui−1 + αiui−2 +
1

φi(mi)
(ψi − ψi−1), i = 2, . . . , n, (3.25)

with

αi :=
d(vi−1) + d(vi)

d(vi−2) + d(vi−1)
.

For u0 = u1 := 0 the solution of this recursion is given by

ui =
i−1
∑

j=1

(

d(vj) + (−1)i−j−1d(vi)
) 1

d(vj)
(ψj+1 − ψj), i = 2, . . . , n. (3.26)

Proof. From (3.3) we get

ψi = φi−1(mi)ui−1 + φi(mi)ui

ψi−1 = φi−2(mi−1)ui−2 + φi−1(mi−1)ui−1,
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and thus, using φj−1(mj) = 1 − φj(mj), we have

ui =
(

1 +
φi−1(mi−1) − 1

φi(mi)

)

ui−1 +
1 − φi−1(mi−1)

φi(mi)
ui−2 +

1

φi(mi)
(ψi − ψi−1)

= (1 − αi)ui−1 + αiui−2 +
1

φi(mi)
(ψi − ψi−1)

with αi := 1−φi−1(mi−1)
φi(mi)

. Using the formula in (3.11) we get

αi =
d(vi−1) + d(vi)

d(vi−2) + d(vi−1)
.

The representation

ui =

i
∑

k=2

k−1
∑

j=1

(−1)k+1−j
(

d(vk−1) + d(vk)
) 1

d(vj)
(ψj+1 − ψj) (3.27)

can be shown by induction as follows. For i = 2 we get (using (3.11)),

u2 =
(

d(v1) + d(v2)
) 1

d(v1)
(ψ2 − ψ1) =

1

φ2(m2)
(ψ2 − ψ1),

which also follows from the recursion formula if we take u0 = u1 = 0. Assume that
the representation formula (3.27) is correct for indices less than or equal to i− 1. We
then obtain

(1 − αi)ui−1 + αiui−2 +
1

φi(mi)
(ψi − ψi−1)

= −αi(ui−1 − ui−2) + ui−1 +
1

φi(mi)
(ψi − ψi−1)

= −αi

i−2
∑

j=1

(−1)i−j
(

d(vi−2) + d(vi−1)
) 1

d(vj)
(ψj+1 − ψj)

+

i−1
∑

k=2

k−1
∑

j=1

(−1)k+1−j
(

d(vk−1) + d(vk)
) 1

d(vj)
(ψj+1 − ψj) +

d(vi−1) + d(vi)

d(vi−1)
(ψi − ψi−1)

=

i−1
∑

j=1

(−1)i+1−j
(

d(vi−1) + d(vi)
) 1

d(vj)
(ψj+1 − ψj)

+
i−1
∑

k=2

k−1
∑

j=1

(−1)k+1−j
(

d(vk−1) + d(vk)
) 1

d(vj)
(ψj+1 − ψj)

=

i
∑

k=2

k−1
∑

j=1

(−1)k+1−j
(

d(vk−1) + d(vk)
) 1

d(vj)
(ψj+1 − ψj),

and thus the representation for ui in (3.27). From this we obtain, by changing the
order of summation:

ui =

i−1
∑

j=1

(

i
∑

k=j+1

(−1)k+1−j
(

d(vk−1) + d(vk)
)

) 1

d(vj)
(ψj+1 − ψj).
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The representation in (3.26) immediately follows from this one.

For the derivation of a lower bound we will need further assumptions on the triangu-
lations {Th}h>0:
Assumption 3. We assume that the angles between Γ = [0, 1] and all sides of the tri-
angles that intersect Γ are uniformly (w.r.t. h) bounded away from zero. Assume that
there exists a constant c0 > 0 such that d(vj) ≥ c0 hmax{hgj,maxi=j,j+2,... d(vi) } for

all j, with gj :=
∑jk+1

k=1 (ξj,k − ξj,k−1

)2
as in lemma 3.7. Define (cf. Assumption2), for

α ∈ [0, 1]:

N̂(α) := { vj ∈ N | d(vj) ≤ hα max{hgj, max
i=j,j+2,...

d(vi) }. (3.28)

Assume that there is a constant c1 such that |N̂(α)| ≤ c1h
α−1 for all α ∈ [0, 1].

Remark 3. Note that |N̂(1)| = O(1). The condition |N̂(α)| ≤ c1h
α−1 means

that the set of nodes having a certain (maximal) distance to Γ (as specified in (3.28))
becomes smaller if this distance gets smaller, cf. remark 2. In the 2D experiment in
section 2.2 we have d(vj) = maxi=j,j+2,... d(vi) and gj = 0 for all j (the triangulation is

“parallel” to Γ). Thus we have N̂(0) = N , N̂(α) = ∅ for all α ∈ (0, 1] and Assumption
3 is fulfilled.

Theorem 3.10. Assume that (3.8) and Assumption 3 hold. There exists a

constant C > 0 independent of h such that

〈Au,u〉
〈DAu,u〉 ≥ Ch2| lnh|−1 for all u = (ui)i∈I ∈ R

nV , u 6= 0, with u0 = u1 = 0.

Proof. We use the notation di := d(vi), ui := u(vi). We use the representation in
lemma 3.7 and first consider the term

∑n
i=1

(

1
∆i−1

+ gi

∆i
+ 1

∆i+1

)

ũ2
i in the denominator.

Due to the angle condition in Assumption 3 we have di ∼ ∆i (1 ≤ i ≤ n), and

ũi = φi(mi)ui ∼ di−1

h ui (1 ≤ i ≤ n). Using this and the result in (3.26) we get

ũ2
i ≤ c

d2
i−1

h2
u2

i ≤ c
d2

i−1

h2

(

i−1
∑

j=1

(d2
j + d2

i )
1

dj

)

n
∑

j=1

1

dj
(ψj+1 − ψj)

2.

For the last term we have

n
∑

i=1

1

di
(ψi+1 − ψi)

2 ≤ c

n
∑

i=1

1

∆i

li+1
∑

j=1

(ψi,j − ψi,j−1)
2,

and thus, using di−1 ∼ ∆i−1 ∼ ∆i+1, we get

n
∑

i=1

( 1

∆i−1
+
gi

∆i
+

1

∆i+1

)

ũ2
i ≤ c

n
∑

i=1

( 1

di−1
+
gi

di

)

ũ2
i

≤
[ c

h2

n
∑

i=1

(

di−1 +
gid

2
i−1

di

)

i−1
∑

j=1

(

dj +
d2

i

dj

)

]

n
∑

i=1

1

∆i

li+1
∑

j=1

(ψi,j − ψi,j−1)
2.
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We estimate the factor in the square brackets as follows. Using di−1di ≤ cmin{di−1, di}h
we get:

c

h2

n
∑

i=1

(

di−1 +
gid

2
i−1

di

)

i−1
∑

j=1

(

dj +
d2

i

dj

)

≤ c

h2

n
∑

i=1

i−1
∑

j=1

di−1d
2
i + d2

i−1di

dj
+

c

h2

n
∑

i=1

i−1
∑

j=1

di−1dj +
c

h2

n
∑

i=1

gid
2
i−1

di

i−1
∑

j=1

dj

≤ c
n

∑

i=1

i−1
∑

j=1

min{di−1, di}
dj

+ ch−2 +
c

h

n
∑

i=1

hgi

di
.

The first term on the right handside can be bounded by ch−2| lnh| using the same
arguments as in the proof of Theorem 3.5. The third term can be treated in a similar
way as follows. With Ñ(α) = { vj ∈ N | d(vj) ≤ hα+1gj } ⊂ N̂(α) and βj :=

hgj

dj
we

have βj ≤ c0h
−1 if j ∈ Ñ(1) and βj ∈ [1, h−1) if j /∈ Ñ(1). For 0 ≤ α1 ≤ α2 ≤ 1 we

have #{ βj | βj ∈ (h−α1 , h−α2 ] } = |Ñ(α1)| − |Ñ(α2)|. Using this and Assumption 3
we obtain:

c

h

n
∑

i=1

hgi

di
=
c

h

∑

j∈Ñ(1)

βi +
c

h

∑

j /∈Ñ(1)

βi ≤ ch−2 + ch−1

∫ 1

0

h−αd|Ñ(α)|

≤ ch−2 + ch−2

∫ 1

0

h−αdhα ≤ ch−2| lnh|.

Collecting these results we get

n
∑

i=1

( 1

∆i−1
+
gi

∆i
+

1

∆i+1

)

ũ2
i ≤ ch−2| lnh|

n
∑

i=1

1

∆i

li+1
∑

j=1

(ψi,j − ψi,j−1)
2. (3.29)

We now treat the term
∑

i∈ℓ
1

∆i1

ũ2
i in the denominator in lemma 3.7. Note that

∑

i∈ℓ

1

∆i1

ũ2
i =

∑

1≤i≤n, li>0

li
∑

j=1

1

∆i
ũ2

i,j .

Using (3.7) we get, for an i with li ≥ 2:

ũi,j − ũi,j−1 = ψi,j − ψi,j−1 − (ξi,j − ξi,j−1)ũi,

and with (3.6) and ψi,0 := ψi, ξi,0 := 1:

ũi,1 − ξi−1ũi−1 = ψi,1 − ψi,0 − (ξi,1 − ξi,0)ũi.

This yields, for 1 ≤ j ≤ li:

ũ2
i,j ≤ c

(

ũ2
i−1 +

li
∑

j=1

(ψi,j − ψi,j−1)
2 +

li
∑

j=1

(ξi,j − ξi,j−1)
2ũ2

i

)

≤ c
(

ũ2
i−1 +

li+1
∑

j=1

(ψi,j − ψi,j−1)
2 + giũ

2
i

)

.
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Thus we get

∑

1≤i≤n, li>0

li
∑

j=1

1

∆i
ũ2

i,j ≤ c

n
∑

i=1

1

∆i
ũ2

i−1 + c

n
∑

i=1

1

∆i

li+1
∑

j=1

(ψi,j − ψi,j−1)
2 + c

n
∑

i=1

gi

∆i
ũ2

i

≤ c

n
∑

i=1

( gi

∆i
+

1

∆i+1

)

ũ2
i + c

n
∑

i=1

1

∆i

li+1
∑

j=1

(ψi,j − ψi,j−1)
2

Using the bound in (3.29) we obtain

∑

1≤i≤n, li>0

li
∑

j=1

1

∆i
ũ2

i,j ≤ ch−2| lnh|
n

∑

i=1

1

∆i

li+1
∑

j=1

(ψi,j − ψi,j−1)
2,

and combination of this with the result in (3.29) completes the proof.

Theorem 3.11. Let 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λnV
be the eigenvalues of D−1

A A.

Assume that (3.8) and Assumption 3 are satisfied. Then

λ1 = 0,
λnV

λ3
≤ Ch−2| lnh|

holds, with a constant C independent of h.
Proof. A dimension argument as in the proof of theorem 3.6 yields λ1 = 0. From

the Courant-Fischer representation and theorem 3.10 we obtain, with W2 the family
of 2-dimensional subspaces of R

nV ,

λ3 = sup
S∈W2

inf
u∈S⊥

〈Au,u〉
〈DAu,u〉 ≥ inf

u∈R
nV , u0=u1=0

〈Au,u〉
〈DAu,u〉 ≥ Ch2| lnh|−1.

In combination with the result in theorem 3.8 this yields
λnV

λ3
≤ Ch−2| lnh|.
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