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Abstract 

 A gel is an aggregate of polymers and solvent molecules.  The polymers crosslink into a 

three-dimensional network by strong chemical bonds, and enable the gel to retain its shape after 

a large deformation.  The solvent molecules, however, interact among themselves and with the 

network by weak physical bonds, and enable the gel to be a conduit of mass transport.  The 

time-dependent concurrent process of large deformation and mass transport is studied by 

developing a finite element method.  We combine the kinematics of large deformation, the 

conservation of the solvent molecules, the conditions of local equilibrium, and the kinetics of 

migration to evolve simultaneously two fields: the displacement of the network and the chemical 

potential of the solvent.  The finite element method is demonstrated by analyzing several 

phenomena, such as swelling, draining and buckling.  This work builds a platform to study 

diverse phenomena in gels with spatial and temporal complexity. 
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1. In tro ductio n  

 Long-chain polymers may crosslink by strong chemical bonds into a three-dimensional 

network.  The resulting material, an elastomer, is capable of large and reversible deformation.  

The elastomer may imbibe a large quantity of solvents, aggregating into a gel (Fig. 1).  The 

solvent molecules in the gel interact by weak physical bonds and can migrate.  The dual 

attributes of a solid and a liquid make the gel a material of choice in nature and in engineering.  

For example, gels constitute many tissues of animals and plants.  The solid attribute enables 

the tissues to retain shapes, while the fluid attr ibute enables the tissues to transport nutrients 

and wastes.  Gels are also synthesized for diverse applications, including food processing 

(Pilnik and Rombouts, 1985), drug delivery (Fischelghodsian, et al., 1988; J eong, et al., 1997; 

Langer, 1998; Duncan, 2003), tissue engineering (Nowak, et al., 2002; Luo and Shoichet, 2004), 

actuators in miniaturized devices (Beebe, et al., 2000; Dong, et al., 2006; Sidorenko, et al., 

2007), and packers in oil wells (Kleverlaan, et al., 2005). 

 Many processes in gels involve concurrent deformation and migration.  For example, a 

drug loaded in a gel can migrate out in response to a change in the physiological conditions (i.e., 

the temperature, the level of pH, or the concentration of an enzyme).  The rate of the release 

may be modulated by the deformation of the gel (e.g., Lee, et al., 2000).  As another example, 

patterns of crease often appear on the surface of a swelling gel (e.g., Tanaka, et al., 1987; Trujillo, 

et al., 2008), along with many other forms of buckling (Tanaka and Fillmore, 1979; Li and 

Tanaka, 1990; Mora and Boudaoud, 2006; Suarez, et al., 2006).  Furthermore, swelling may 

induce stress localization in gels, which leads to cavitation and delamination (Murata, et al., 
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2004).  Hydrogels with sub-millimeter size have been extensively used as valves in 

microfluidics due to the short swelling time and large deformation (e.g., Beebe, et al., 2000).   

 This paper studies the concurrent deformation and migration in the gel by a finite 

element method.  Our method builds upon a theory dating back to Gibbs (1878), who 

formulated a thermodynamic theory of mobile molecules in an elastic solid.  Biot (1941) 

combined the thermodynamic theory and Darcy’s law for mass transport in a porous medium.  

Both Gibbs and Biot used phenomenological free-energy functions, and their works were not 

specific for the polymeric gel.  Using statistical mechanics, Flory and Rehner (1943) developed 

a free-energy function for the gel, including the effects of the entropy of stretching the network, 

the entropy of mixing the network polymers and the solvent molecules, and the enthalpy of 

mixing.  Reviews of subsequent contributions to the theory of polymeric gels are found, among 

others, in Tanaka and Fillmore (1979), Sekimoto (1991), Durning and Morman (1993), Dolbow 

et al. (2004), Tsai et al. (2004), Baek and Srinivasa (2004), Li et al. (2007), Hong et al. (2008a). 

 There have been several previous efforts to develop finite element methods for gels.  

Westbrook and Qi (2008) and Hong et al. (2008a) have developed finite element methods for 

gels in a state of equilibrium.  Suematsu (1990) conducted the three-dimensional explicit finite 

element analysis to study the pattern formation of swelling gels by introducing a friction 

constant between the polymeric chains and solvents (Tanaka and Fillmore, 1979).  As pointed 

out by Suematsu et al (1990), this method is not suited for larger systems over longer time 

intervals.  Dolbow et al. (2004) used a hybrid eXtended-Finite-Element/ Level-Set Method to 

study the swelling of gels.  Li et al. (2007) used an explicit method to alternately solve the 
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coupled problems for gels, namely, the deformation of gels is solved after the convergent results 

for mass transport is obtained.  Birgersson et al. (2008) conducted transient analysis of 

temperature-sensitive two-dimensional gels by using finite element solver, COMSOL 

Multiphysics.   

 Given various theories and numerical methods, as well as a large number of phenomena 

and applications, ample room exists for more computational work to connect principles of 

mechanics, thermodynamics and kinetics to experiments and to molecular models.  In 

particular, we will develop a finite element method using the free-energy function of Flory and 

Rhener (1943) and the kinetic model proposed by Hong et al. (2008a).  The implicit method for 

time discretization is used, and transport and deformation are solved concurrently.  We will 

implement the method in ABAQUS via a user-defined element (UEL). 

 The plan of the paper is as follows.  Section 2 outlines the theory in a form suitable for 

the finite element method.  The gel undergoes an irreversible thermodynamic process that 

simultaneously evolves two fields:  the displacement of the network and the chemical potential 

of the solvent.  Section 3 describes the material model: the free-energy function and the 

mobility tensor.  Section 4 describes aspects of finite element implementation.  Section 5 

demonstrates the method by analyzing several time-dependent processes for three-dimensional 

gels, including swelling, draining, and buckling.   

 

2 . The o ry o f co n curre n t de fo rm atio n  an d m igratio n  in  a  ge l 

 This section summarizes the theory of concurrent deformation and migration, describing 
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in turn the kinematics of the network, the conservation of the solvent, the conditions of local 

equilibrium, and the kinetics of migration.  The theory is essentially that of Gibbs (1978) and 

Biot (1941), and the notation follows that of Hong et al. (2008a, b).   

 

Kinem atics of the netw ork  

 We use a standard approach in continuum mechanics to describe the kinematics of the 

network.  The gel moves in a three-dimensional space.  Imagine that each differential element 

of the network is attached with a marker.  Any configuration of the gel can serve as a reference 

configuration (Fig. 2).  When the gel is in the reference configuration, the marker occupies in 

the space a place with coordinates X , which we will use to label the marker.  In the reference 

configuration, let ( )XdV  be an element of volume, ( )XdA  be an element of area, and 

( )XKN  be the unit vector normal to the element of area.   

 At time t , the gel is in the current configuration, and the marker X moves in the space 

to a new place with coordinates x .  The functions ( )tx i ,X  specify the kinematics of the 

network.  As usual, the deformation gradient of the network is defined as 

  ( ) ( )
K

i
iK

X

tx
tF

∂
∂

=
,

,
X

X . (1) 

We will use F  to characterize the state of deformation of an element of the gel. 

 

Conservation of the solvent m olecules 

 We next use nominal quantities to describe the conservation of the solvent molecules.  



 6

Let ( )tC ,X  be the nominal concentration of the solvent in the gel in the current configuration, 

namely, ( ) ( )XX dVtC ,  is the number of solvent molecules in the element of volume.  Let 

( )tJ
K

,X  be the nominal flux of the solvent in the gel, namely, ( ) ( ) ( )XXX ANtJ
KK

,  is the 

number of the solvent molecules per unit time migrating across the element of area.  Imagine 

that the network is attached with a field of pumps, which inject the solvent into the gel.  In the 

current configuration, the pumps inject ( ) ( )XX dVtr ,  number of the solvent molecules into the 

element of volume per unit time, and ( ) ( )XX dAti ,  number of the solvent molecules into the 

element of area per unit time.  We assume that no chemical reaction occurs, so that the number 

of the solvent molecules is conserved, namely, 

  
( ) ( ) ( )tr

X

tJ

t

tC

K

K ,
,,

X
XX

=
∂

∂
+

∂
∂

 (2) 

in the volume of the gel, and 

  ( ) ( ) ( )tiNtJ KK ,, XXX −=  (3) 

on the part of the surface of the gel where the pumps inject solvent molecules. 

 

Conditions of local equilibrium  

 We now examine the conditions of local equilibrium.  Elements of the gel in different 

locations may not be in equilibrium with each other, and this disequilibrium motivates the 

solvent to migrate.  Each differential element of the gel, however, is taken to be locally in a 

state of equilibrium.  That is, the migration of the solvent is such a slow process that the effect 

of inertia is negligible, the viscoelastic process in the element has enough time to relax, and the 



 7

solvent in the element has enough time to equilibrate with the solvent in the pump attached to 

the element.  Furthermore, the gel is assumed to be held at a constant temperature.  We 

characterize the thermodynamic state of the differential element of the gel by the deformation 

gradient of the network, ( )t,XF , and the chemical potential of the solvent, ( )t,Xμ .  Let 

( )μ,ˆ FW  be a free-energy density function of the gel, namely, ( ) ( )XF dVW μ,ˆ  is the free 

energy associated with the element of the gel.  The conditions of local equilibrium requite that 

the nominal concentration be given by 

  
( )
μ

μ
∂

∂
−=

,ˆ FW
C , (4) 

and the nominal stress be given by   

  
( )

iK

iK
F

W
s

∂
∂

=
μ,ˆ F

. (5) 

When the free-energy density function ( )μ,ˆ FW  is prescribed for a gel, (4) and (5) constitute 

the equations of state. 

 Imagine that the network is attached with a field of weights, which apply forces to the gel.  

In the current configuration, the weights apply a force ( ) ( )XX dVtBi ,  to the element of 

volume, namely, ( )tBi ,X  is the applied forces in the current configuration per unit volume of 

the reference configuration.  Similarly, the weights apply a force ( ) ( )XX dAtTi ,  to the 

element of area, namely, ( )tTi ,X  is the applied forces in the current configuration per unit 

area of the reference configuration.  The conditions of local equilibrium require that the inertia 

effect be negligible and that the viscoelastic process in the element be fully relaxed, so that 
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( ) ( ) 0,

,
=+

∂
∂

tB
X

ts
i

K

iK X
X

 (6) 

in the volume of the gel, and 

  ( ) ( ) ( )tTNts iKiK ,, XXX =  (7) 

on the part of the surface of the gel where forces are applied. 

 

Kinetics of m igration  

 We will also use the nominal quantities to describe the kinetics of migration.  The flux 

of the solvent is taken to be linear in the gradient of the chemical potential of the solvent: 

  ( ) ( )
L

KLK
X

t
MJ

∂
∂

−=
,

,
X

F
μμ , (8) 

where 
KL

M  is the mobility tensor.  The mobility tensor is symmetric and positive-definite, 

and in general depends on the thermodynamic state of the element, namely, on local values of 

the deformation gradient and the chemical potential. 

 The above theory evolves the configuration of the gel, namely, evolves concurrently the 

two fields ( )t,Xx  and ( )t,Xμ , once the following items are prescribed:   

• the initial conditions ( )0,tXx  and ( )0,tXμ  at a particular time 0t  

• the applied force ( )tBi ,X  and the rate of injection ( )tr ,X  inside the gel  

• either ( )ti ,X  or ( )t,Xμ  on the surface of the gel 

• either ( )tTi ,X  or ( )t,Xx  on the surface of the gel 

• the free-energy function ( )μ,ˆ FW  and the mobility tensor ( )μ,FKLM . 
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3 .  Mate rial m o de l 

 Within the theory presented in the previous section, a material model is specified by the 

functions ( )μ,ˆ FW  and the mobility tensor ( )μ,F
KL

M .  Following Hong et al. (2008b), we 

rewrite the free energy of Flory and Rehner (1943) in the form 

  

( ) ( )[ ]

( ) ( )1det
det1det

det
log1det

detlog23
2

1
,ˆ

−−⎥
⎦

⎤
⎢
⎣

⎡
+⎟
⎠
⎞

⎜
⎝
⎛

−
−−

−−=

F
FF

F
F

FF

vv

kT

FFNkTW iKiK

μχ

μ
, (9) 

where N  is the number of polymer chains in the gel divided by the volume of the gel in the 

reference state, kT is the temperature in the unit of energy, v  is the volume per solvent molecule, 

and χ  is a dimensionless parameter characterizing the enthalpy of mixing.  In writing (9), the 

reference configuration is taken to be the dry network, and 0=μ  when the solvent is in the 

pure liquid state in equilibrium with its own vapor. 

 Assuming that the small molecules diffuse in the gel and that the coefficient of diffusion 

of the solvent molecules, D, is isotropic and independent of deformation gradient and 

concentration, Hong et al. (2008a) expressed the mobility tensor as 

  ( )
iLiKKL

HH
vkT

D
M 1det −= F , (10) 

where iKH  is the transpose of the inverse of the deformation gradient, namely, KLiLiK FH δ= .  

In writing (10) the reference state is taken to be the dry network. 

 We normalize the free-energy density by vkT / , the stress by vkT / , and the chemical 

potential by kT .  The theory has no intrinsic length scale or intrinsic time scale.  Let L be a 

characteristic length in a boundary-value problem.  We normalize all the other lengths by L, 
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and normalize the time by DL /2
.   

 A representative value of the volume per solvent molecule is 
328 m10 −=v .  At room 

temperature, 
21104 −×=kT J  and 7104/ ×=vkT Pa .  The Flory-Rehner free-energy density 

function introduces two dimensionless material parameters: Nv  and χ .  The dry network 

has a shear modulus NkT under the small-strain conditions, with the representative values 

74 10~10=NkT
2N/ m , which gives the range 

14 10~10 −−=Nv .  The parameter χ  is a 

dimensionless measure of the enthalpy of mixing, with representative values χ  = 0  ~ 1.2.  For 

applications that prefer gels with large swelling ratios, materials with low values of χ are used.  

In the numerical examples below, we will take the values 310 −=Nv  and 2.0=χ .  The 

coefficient of diffusion for water is sm108 210−×=D .   

 

4 . Fin ite  e le m e n t fo rm ulatio n  

 Subject to external forces and immersed in an environment, a gel will deform and 

exchange solvent molecules with the environment.  If the applied forces are time-independent, 

and the chemical potential of the solvent in the environment is homogenous and 

time-independent, after some time the gel will reach a state of thermodynamic equilibrium, in 

which the chemical potential of the solvent inside the gel becomes homogeneous and takes the 

same value as that in the environment.  The time needed for the gel to equilibrate scales with 

DL
2

, where the length L is a characteristic length of the gel.  When the gel equilibrates, both 

the deformation of the network and the concentration of the solvent in the gel can still be 

inhomogeneous, as studied by Zhao et al. (2008) and Hong et al. (2008b). 
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 In many applications, however, the gel may not be in a state of thermodynamic 

equilibrium, so that the chemical potential of the solvent in the gel is inhomogeneous.  The 

field of chemical potential of the solvent, ( )t,Xμ , and the field of displacement of the network, 

( )tx i ,X , evolve concurrently.  To study this co-evolution, we now use the above theory to 

formulate a finite element method.   

 Multiply (6) by a test function ( )X
i
ξ , integrate over the volume of the gel, and then 

apply the divergence theorem, we obtain that 

  ∫∫∫ +=
∂
∂

∂
∂

dATdVBdV
XF

W
iiii

K

i

iK

ξξξˆ
. (11) 

In deriving (11), we have used the condition of mechanical equilibrium on the surface, (7), and 

the equation of state, (5).  The last integral in (11) extends to the part of the surface over which 

the traction iT  is prescribed.  On the remaining part of the surface, the position of the 

network must be prescribed, and the test function ( )X
i
ξ  is set to be zero.  The conditions of 

mechanical equilibrium, (5)-(7), are equivalent to a single statement:  the gel is in mechanical 

equilibrium if the weak form (Eq. 11) holds for any arbitrary test function ( )X
i
ξ .  Indeed, this 

statement is a direct consequence of the conditions of local equilibrium, as discussed in Hong et 

al. (2008a,b).   

 Multiply (2) by another test function ( )Xζ , integrate over the volume of the gel, and 

then apply the divergence theorem, we obtain that 

  ∫∫∫∫ −−=
∂
∂

∂
∂

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

+
∂
∂

∂∂
∂

dAidVrdV
XX

MdV
t

W

t

F

F

W

KL

KL

jL

jL

ζζζμζμ
μμ 2

22 ˆˆ
. (12) 

In deriving (12) we have replaced the concentration using the equation of state (4), and replaced 
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the flux by using the kinetic equation (8).  The last integral in (12) extends to the part of the 

surface over which the rate of injection i  is prescribed.  On the remaining part of the surface, 

the chemical potential of the solvent must be prescribed, and the test function ( )Xζ  is set to be 

zero.  Thus, the number of solvent molecules is conserved if the weak form (Eq. 12) holds for 

arbitrary test function ( )Xζ .   

 We now discretize the governing equations (11) and (12) in space.  Interpolate the 

position vector ( )tx i ,X  and the chemical potential ( )t,Xμ  as 

  ( )tuNXtx aiaii )(),( XX =− , (13) 

  ( )tNt aa μμ )(),( XX = . (14) 

The index a, as well as the index b below, is reserved for nodes; repeated a  (or b) implies 

summation over all nodes in the body.  The quantities ( )tuai  and ( )taμ  are the displacement 

and chemical potential associated with node a.  The shape functions ( )XaN  can be 

constructed in several ways; we adopt the 8-node brick elements.  The same approach of 

discretization is applied to the test functions ( )X
i
ξ  and ( )Xζ .  

 Substituting (13) and (14) into (11), and invoking the arbitrariness of the test function 

( )X
i
ξ , we obtain that 

  ∫∫∫ +=
∂
∂

∂
∂

dANTdVNBdV
X

N

F

W
aiai

K

a

iK

ˆ
. (15a) 

Equation (15a) is valid at all time.  Taking a derivative with respect to time, we obtain that 

∫∫∫∫ +=
∂
∂

∂∂
∂

+
∂
∂

∂
∂

∂∂
∂

dAN
dt

dT
dVN

dt

dB
dVN

X

N

F

W

dt

d
dV

X

N

X

N

FF

W

dt

du
a

i
a

i
b

K

a

iK

b

L

b

K

a

jLiK

bj

μ
μ ˆˆ 22

. (15b) 

Substituting (13) and (14) into (12), and invoking the arbitrariness of the test function ( )Xζ , we 
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obtain that 

  

∫∫

∫∫∫

−−=

∂
∂

∂
∂

−
∂
∂

+
∂
∂

∂∂
∂

dAiNdVNr

dV
X

N

X

N
MdVNN

W

dt

d
dVN

X

N

F

W

dt

du

aa

K

a

L

b
KLbab

b
a

L

b

jL

bj μ
μ

μ
μ 2

22 ˆˆ

. (16) 

 Equations (15b) and (16) are ordinary differential equations that concurrently evolve the 

nodal values of the displacement and the chemical potential, ( )tubj  and ( )tbμ .  The ordinary 

differential equations can be rewritten in a matrix form: 

  PKR =+ φφ
dt

d
. (17) 

The column φ  lists values of ( )tubj  and ( )tbμ  of all nodes.  The column P  collects terms on 

the right-hand side of (15a) and (16).  The matrix R  collects the integrals in (15) and (16) 

involving the second derivatives of the free-energy function.  The matrix K collects the 

integral in (16) involving the mobility tensor. 

 We next discretize the problem in time.  It is straightforward to solve Eq. (17) by an 

explicit method.  However, the stability condition for explicit scheme is very restrictive, 

especially when the mobility tensor varies with swelling.  The peak in the mobility tensor will 

cut down the allowable time step.  Therefore, we use an implicit method to discretize the 

equation in time.  The increment of the generalized nodal variable φΔ  at current time t+Δt is 

obtained by solving the following equation: 

  
tt YA =Δφ , (18) 

with 

  
t

t
t

t
K

R
A +

Δ
= , (19) 
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tt

t
ttt d φφ

KRPY −−=
dt

. (20) 

The superscript denotes the time of the iterative step . 

 There are number of ways to solve Eq. (18).  One way is to use direct solver, which 

requires that the matrix A be positive-definite.  However, effective stiffness matrix A is 

indefinite in the present formulation because the positive definite mobility tensor M contributes 

to the negative of matrix A (Eq. 16).  To overcome it, we replace A by 

  IAA α+=*
, (21) 

where I is the identity matrix and α  is a positive number as a penalty to ensure the positive 

definiteness of 
*A .  It is important to note that the solution to (18) is independent of α .  

This is because that the convergence is characterized by 0=Y , or 
ttt

t
t d

PKR =+ φφ
dt

, 

whether we use A or
*A . 

 Another way to solve Eq. (18) is to use an iterative solver, which does not require positive 

definiteness of matrix A.  However, in numerical implementation, the iterative solver may 

“overshoot” the results for the current iteration step based upon the previous iteration step, 

which might lead to non-physical phenomena, for instance, 1det <F .  Conceptually, Fdet  

must be greater than one in this formulation to ensure the dry gel is incompressible.  To resolve 

this non-physical prediction, a very small incremental step should be used.  Alternatively, the 

modification of the effective stiffness matrix A of (21) can be used for this purpose.    

 A common issue in modeling the swelling and shrinking of gels is the instability, which 

leads to zero eigenvalues of effective stiffness matrix A.  To maintain the stability and 
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convergence, the modification of the effective stiffness matrix A (Eq. 21) is employed.  This 

finite element formulation has been implemented in the ABAQUS/ Standard finite element 

program via its USER-ELEMENT subroutine, where the implicit time discretization and direct 

solver are employed. 

 

5 . Num e rical e xam ple s  

 This section demonstrates the finite element method by analyzing several 

time-dependent processes of concurrent deformation and migration.  Wherever possible, 

efforts are made to compare the numerical results with solutions obtained by using other 

methods, and with experimental observations. 

 

A gel drains under a w eight 

 The performance of the finite element method is tested by comparing the numerical 

results obtained by using the finite element method with those using a finite difference method 

for a problem studied by (Hong, et al., 2008b).  Figure 3 illustrates a thin layer of a gel 

immersed in a pure liquid solvent.  The gel first undergoes free swelling subject to no 

constraint and no applied forces.  The swollen gel is then bonded to a rigid substrate, and 

subject to an applied weight.  The solvent can migrate out from the top surface of the gel, and 

the gel thins down.  The layer will eventually attain a new state of equilibrium.  

 Let L be thickness of the dry network subject to no mechanical forces.  This dry and 

undeformed configuration is used as the reference configuration, where a marker has the 



 16

coordinates X 1 and X 2 in the plane of the layer, and the coordinate X 3 normal to the layer and 

pointing downwards.  After free swelling and equilibrating with the pure liquid solvent, the 

layer swells by an isotropic stretch, 215.3321 === λλλ .  The gel is then bonded to the rigid 

substrate, and subjected to a traction s, the weight divided by the area of the dry polymer.  As 

the solvent migrates out, 1λ  and 2λ  remain unchanged, but 3λ  changes with time and 

position.  The thickness of the gel is taken to be much smaller than the lateral dimensions of 

the gel, such that the field in gel is independent of X 1 and X 2.  The functions ( )tX ,33λ  and 

( )tX ,3μ  are to be determined.   

 In a finite element model, we use twenty 8-node brick elements, stacked up one on top of 

another in the direction of the thickness.  To model the full layer of the gel, we impose 

vanishing displacements and flux in lateral directions.  The top surface of the gel is prescribed 

with the traction s and the vanishing chemical potential, while the bottom surface of the gel is 

prescribed with the vanishing displacement and flux.  Let mint  be the smallest time over 

which the solution is of interest to us, the size of the elements le must be chosen such that 

minDtle < .  Once le is chosen, the time step tΔ  must also be limited by Dlt e

2>Δ .   

 Figure 4 compares the functions ( )tX ,33λ  and ( )tX ,3μ  obtained from the finite 

element method in this paper and that from a finite difference method by Hong et al. (2008b).  

The agreement is good.  At the short-time limit, the weight is applied, but the solvent has no 

time to migrate out, so that the stretch is unchanged, ( ) 215.30,33 =Xλ , but the chemical 

potential jumps to a value higher than that of the external solvent, ( ) 00,3 >Xμ .  At the 

long-time limit, the chemical potential in the gel equilibrates with that of the solvent, 
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( ) 00,3 =Xμ , and the stretch reduces to a new value.  As a consequence of the conditions of 

local equilibrium, the top surface of the gel ( )03 =X  reaches the long-time limit 

instantaneously, with the vanishing chemical potential as fixed by the external solvent, and the 

low stretch.  In a short time, the interior of the gel is still largely in  the state of short-time limit.  

As the time processes, the solvent migrates out gradually, and the entire gel evolves toward the 

long-time limit. 

 

Free sw elling of a cube of a gel 

 The free swelling of a cube of a gel, side L in the dry state is studied.  Conditions of 

symmetry are imposed, so that only one-eighth of the cube is modeled, using 512 brick elements. 

Figure 5 shows the distribution of dimensionless true stress kTv xx /σ  on swelling 

configurations (keeping the relative ratio of volumes) at different time, characterized by 

non-dimensional parameter 
2

LDt .  The true stress σij relates to the nominal stress siK by 

  
Fdet

jKiK

ij

Fs
=σ . (22)   

Immediately upon the beginning of the swelling, the homogeneous gel (Fig. 5a) swells 

inhomogeneously (Fig. 5b for 25.12 =LDt ).  The corners that have the largest contact 

surface with the solvent swell first, followed by the edges and then other parts of the gel, which 

leads to a bowl-like surface of the gel and generates compressive stress to the gel, similar to 

beam bending.  As time goes on (Fig. 5c for 252 =LDt ), the swelling at the edges and the 

centers catch up with the swelling at the corners, so that the bowl-like surfaces become less 
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concave.  However, the deformation of the swelling gel is still inhomogeneous.  This 

bowl-liked surface in swelling gels have been observed experimentally that the gels swell faster 

at the corners than at the sides and the centers (Achilleos, et al., 2000).  It is also noticed that 

the compressive stress decreases during swelling.  As the swelling process reaches equilibrium 

(Fig. 5d for ∞→2
LDt ), the fully swelling gel recovers the shape identical to the original one 

and becomes totally homogeneous with vanishing stress and large volumetric change. 

 

Free sw elling of a thin sheet 

 The compressive stress generated due to free swelling may lead to buckling of gels that 

have been extensively observed in experiments (e.g., Sayil and Okay, 2001).  This paper studies 

the buckling of a free swelling thin film gel.  The aspect ratio of the in-plane dimension and the 

thickness is 12.  Figure 6 shows the generation of wrinkling during swelling (Fig. 5b) starting 

from a homogeneous gel (Fig. 5a).  The similar patterns of crease were observed experimentally 

by Tanaka et al. (1987).  Besides the gels with geometric features (e.g., thin film), the gels have 

geometric imperfections that exist for almost all experiments also have buckling patterns during 

free swelling, such as in Sayil and Okay (2001)’s experiments. 

 The wrinkles generated during free swelling may be troublesome in applications.  

Experimentally, the swelling ratio of gels, one of the most important parameters to characterize 

gels, is usually measured gravimetrically as a function of time.  In other words, one usually 

measures the weight change as a function of time during swelling.  The gained weight of a gel is 

proportional to the total number of the small molecules vC absorbed by the swelling gel.  To 
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study whether the wrinkles really affect the weight change, we compare the finite element 

results having wrinkles (Figs. 6b) with the numerical solution restraining the wrinkles during 

free swelling (Zhou et al., 2008, manuscript in preparation).  

 Figure 7 shows the total number of the small molecules vC inside the swelling gel as a 

function of time.  The finite element results are marked by discrete dots and the numerical 

solution is given by a solid line.  The finite element results fairly agree with the numerical 

results, although there are some discrepancies, which could be attributed to the different aspect 

ratios used, namely 12 for finite element results and infinite for numerical results.  This study 

concludes that the wrinkles do not significantly affect the weight change as a function of time.  

Therefore, people can ignore the wrinkles if they only concern the weight change. 

  

Sw elling of a partially  constrained gel 

 A soft gel bonded to a stiff gel provides a model system to study pattern formation in 

elastic bodies.  The kinetics of swelling soft gels on stiff gels are very important, especially in 

biological problems, such as the development of embryos (Brouzes and Farge, 2004).  In this 

section, we will study the kinetics of swelling of soft gels bonded to non-swelling stiff gels in 

stripe and circular geometries.  This system was experimentally studied and an equilibrium 

state was determined theoretically (Mora and Boudaoud, 2006). 

 Figure 8a shows the strip geometry consisting of one thin strip of soft gel bonded to 

another thin strip of stiff gel.  Let h and w  denote the thickness and width of the soft gel, 

respectively.  The soft gel is subjected to vanishing displacements and flux at the interface 
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between soft and stiff gels.  The zero chemical potential is enforced at the gel/ solvent interface.  

Figures 8b and 8c show the buckling patterns with the same scale at 4.1/ 2 =hDt  and 

∞→2/ hDt (long-time limitation or equilibrium state).  It is observed that the transient 

problem has distinct buckling pattern compared with the equilibrium state.  The buckling 

results from the fact that fast swelling at the free edges (e.g., top of the soft gel) generates 

compressive stress at the soft/ stiff gels interfaces, as clearly shown in the contour plot of 

non-dimensional stress 
kT

v xxσ
, which is also similar to beam bending.  The wavelength λ of the 

equilibrium state is consistent with Mora and Boudaoud’s theoretical analysis, i.e., h256.3=λ . 

 Figure 9a shows the geometry in which a disk of a soft gel is bonded to a stiff gel with the 

same shape, where R i and Ro are inner and outer radius, respectively.  We take R i = 3.5 mm and 

Ro = 5 mm in this study.  Vanishing displacement and flux boundary conditions are imposed at 

the inner radius and the vanishing chemical potential is used at the outer radius.  Figures 9b 

and 9c show the buckling patterns at 45.4)/ ( 2 =− io RRDt  and ∞→− 2)/ ( io RRDt  (i.e., 

equilibrium state).  A coronal buckling pattern (Fig. 9b) observed during the swelling finally 

disappears at the equilibrium state (Fig. 9c). 

 The different swelling behaviors of a soft, strip gel and a soft, disk gel indicate that the 

geometric shapes of the gels play a very important role on the kinetics of swelling of gels.  

These differences (Figs. 8 and 9) can be qualitatively understood in the following.  The swelling 

of the strip gel bonded to a stiff gel has an analogy to beam bending, i.e., compressive stress at 

the interface between soft and stiff gels.  Therefore, no matter the thickness of the soft gel, the 

swelling-induced compressive stress leads to wrinkles, even at the equilibrium state as shown in 
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Fig. 8c.  However, the analogy to beam bending is not valid for the disk gel due to the 

geometric constrain in the circumferential direction.  In fact, it is noticed that the wrinkles for 

the disk gels (Fig. 9b) are very similar to that of the free swelling thin film gels (Fig. 6b), not 

buckling of strip gels (Figs. 8b and 8c).  Therefore, at the equilibrium state (Fig. 9c), the 

wrinkling disappears and the fully swelling state is similar to that of the free swelling thin film 

gels. 

 

6 . Sum m ary 

 We have developed a finite element method to simulate concurrent large deformation 

and mass transport for gels.  The method is implemented in ABAQUS/ Standard finite element 

program via its USER-ELEMENT Subroutine.  Numerical examples showed that this program 

is accurate by comparing with the available numerical solutions.  The program has been used 

to study several time-dependent processes of swelling gels, such as draining of fully swollen gels 

due to weight, free swelling induced surface instability, and buckling pattern formation due to 

partially confined swelling. 
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Figure  Captio n  

 

Figure 1. A schematic of structure of a gel. 

 

Figure 2. The reference and current configurations with an illustration of two ways doing work 

on a gel in the current configuration: a mechanical loading is applied by hanging a 

weight and a chemical loading is applied by using a pump to inject small molecules into 

the gel. 

 

Figure 3. An illustration showing a fully swelling gel bonded to a right substrate and subject to 

an applied weight via a plate permeable to the small molecules. 

 

Figure 4. A gel ( 2.0,10 3 == − χNv ) is subject to a nominal stress 05.0−=kTvs .  The finite 

element results are marked by discrete dots, compared with the analytical solution 

marked by solid lines.  The stretch λ3 (a) and chemical potential μ (b) are 

inhomogeneous and evolves from the short-time limit to the long-time limit, which 

shows the creep behavior of a gel subject to mechanical loading. 

 

Figure 5. Contour plots of the non-dimensional Cauchy stress kTv xxσ  for a free swelling 

cubic gel (size LLL ×× ) at different time scale characterized by non-dimensional 

parameter 
2

LDt .  The initial state (i.e., dry gel for 02 =LDt ) is shown in (a).  

During the free swelling, non-uniform deformations appear for (b) and (c) with 

25.12 =LDt  and 252 =LDt , respectively.  Compressive stresses are also developed 

during free swelling.  At the final state (or equilibrium state with ∞→2
LDt ), the 

fully swelling gel recovers the shape identical to the original one and becomes totally 

homogeneous with vanishing stress and large volumetric change.  The same scale is 

used to show the large volumetric change. 

 

Figure 6. Shapes of (a) a dry gel ( 02 =LDt ) and a swelling gel ( 5.72 =LDt ).  During the free 

swelling, the wrinkle patterns are developed.  The scales for (a) and (b) are different. 

 

Figure 7. The total mass of the small water molecules per unit volume of the dry gel as a function 

of time during free swelling of a thin film gel.  The finite element results are given by 

the discrete dots and the numerical solution is marked by the solid line.  It shows that 

the buckling pattern does not significantly affect the total mass of the small water 
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molecules inside the free swelling thin film gels that are important in many applications. 

 

Figure 8. A swelling soft, strip gel bonded to a non-swelling stiff, strip gel.  An illustration of 

the system of a soft gel and a stiff gel (a).  During swelling ( 4.12 =LDt ), the soft gel 

wrinkles due to the compressive stress (b).  The wrinkles grow and remain at the 

equilibrium state ( ∞→2
LDt ). 

 

Figure 9. A swelling soft, disk gel bonded to a non-swelling stiff, disk gel.  An illustration of the 

system of a soft gel and a stiff gel (a).  During swelling ( 45.42 =LDt ), the soft gel 

generates coronal wrinkles due to the compressive stress (b).  At the equilibrium state 

( ∞→2
LDt ), the coronal wrinkles disappear and the fully swelling gel recovers the 

shape similar to the original one. 
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