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A FINITE ELEMENT MODEL FOR
NONLINEAR SHELLS OF REVOLUTION
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P.O. Box 1663, Los Alamos, New Mexico 87545, U.S.A.

A shell-of-revolution model was developed to analyze impact problems associated with the
safety analysis of nuclear material shipping containers. The nonlinear shell theory pre-
sented by Eric Reissner in 1972 was used to develop our model. Reissner's approach includes
transverse shear deformation and moments turning about the middle surface normal. With these
features, this approach is valid for both thin and thick shells. His theory is formulated in
terms of strain and stress resultants that refer to the undeformed geometry.

This nonlinear shell model is developed using the virtual work principle associated with
Reissner's equilibrium equations. First, the virtual work principle is modified for incre-
mental Toading; then it is linearized by assuming that the nonlinear portions of the strains
are known, By fiteration, equilibrium is then approximated for each increment. A benefit of
this approach is that this iteration process makes it possible to use nonlinear material
properties.

To interface with finite element continuum models with two- and three-nodal-point bound-
aries, our model has hoth two- and three-nodal-point isoparametric elements. The two-nodal-
point element is a conical element, whereas the three-nodal-point element includes curvature
terms obtained from a quadratic curve fit of the geometry of the three nodal points. The
displacements and meridional rotation are the basic field variables in the elements. For
the conical element, these are approximated with Tinear functions; for the higher order ele-
ment, these variables are approximated with quadratic functions.

Several analytical problems were studied using this model in the NONSAP computer code.

° A plate and a cylinder, both with shear loadings, and a portion of a hemisphere with
an applied bending moment were analyzed. These loadings were all small, and the
model converged quickly to the linear solutions.

[} A hemispherical shell was pressurized. The pressure was large enough to cause a
normal displacement equal to the original radius of the shell,

[ An axially loaded cylinder was stretched to double its original length.

The Tast two problems demonstrate the ability of the model to calculate large membrane dis-
placements and nonlinear membrane strains.

[ A cylindrical shell was deformed into a spherical shape. The loads required for
this problem were calculated from the initial and final configurations and the
equilibrium conditions.

This last exercise demonstrates the ability of the model to be used in analyzing problems
with large rotations.



1. Introduction

Nuclear material shipping containers have shells of revolution as basic structural com-
ponents. Analytically modeling the response of these containers to severe accident impact
conditions requires a nonlinear shell-of-revolution model that accounts for both geometric
and material nonlinearities. Existing models are limited to large displacements, small
rotations, and nonlinear materials. This paper presents a finite element model for a non-
Tinear shell of revolution that will account for large displacements, large strains, large
rotations, and nonlinear materials. The nonlinear shell theory presented by Eric Reissner
in [1] and [2] was used to develop our model and is described in Sec. 2. We used an incre-
mental/iteration approach to solve nonlinear shell-of-revolution equations, and the resulting
technique is presented in Sec. 3. The finite element method was used in this incremental/
jteration technique, and its use is described in Sec. 4. Section 5 describes several example
problems that were used to verify the accuracy of this model.

2. Basic Theory
Figures 1 and 2 show an incremental deformed shell of revolution. From these figures,

the equilibrium equations can be derived as
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where S = S cosY - p siny and p =S siny + p cosy .

These equations include transverse shear deformation, v, and moments turning about the sur-
face normal, P. These terms are extensions to the usual thin shell theories and make it
possible to model thicker shells.

If we define q and 9 such that ds = qdp and ds0 =4, dp (the subscript o refers
that quantity to the undeformed geometry), then the stress resultants, bending moments, and
loads transform as
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When these transformations are applied and the force equilibrium equations are rotated from
meridional and normal to horizontal and vertical, the Reissner equilibrium equations are
obtained as
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The virtual work as presented by Reissner in [1] and [2] is
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where
T
{Nso = (Nso Noo % Mso Moo Po) stress resultants and bending moments,
o T A
{ sof = (Eso €0 7o so K60 0) membrane and bending strains,
T
{pHO = Py, Py, 0) initial surface Toads,
T
{ur} = (ur u, B) displacements and meridional rotation, and

_ T
{H } = (H V_WM_) applied stress resultants and applied bending moment.

Lo is the undeformed length of the neutral surface, and B0 represents both
boundaries at the ends of the shell.

Uy, and u, are the vertical (radial) and horizontal (axial) displacements.
B is the rotation ¢ - bge

§ is the variational operator.

The variations of the strains are

X d(6u,) d(su,) Su,
565 = cosd _J_ - sing —d_ sinY 8B Geeo —

ﬁo and Vo are applied stress resultants, and ﬁso is an applied bending moment.

(3)

(4)
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3. Nonlinear Shell-of-Revolution Model

The computational technique used to develop this nonlinear shell-of-revolution model

consists of the following four steps:

° Modify the virtual work that satisfies equilibrium for incremental loadings.

[} Linearize the virtual work such that it may be solved directly.

[ Use the finite element method to approximate the linearized incremental virtual
work. This step is identical to solving a linear problem.

(] By iteration, approximate the original nonlinear virtual work. This iteration is
necessary because the virtual work was linearized, and iteration ensures that
equilibrium is satisfied. The iteration step is identical to the increment step
except that the applied loads do not change. Also, this iteration step makes it
possible to include nonlinear materials.

The incremental loads for the j increment are defined as

1%ofs = {Phof 541 = Puoks and  {RGL = 4Rt say - {Roly - 7

The incremental displacements, the incremental stress resultants and bending moments, and
the incremental membrane and bending strains for the J increment are defined as

iA”rEj = i“rEj+1 - gur‘j’ iANso%j = ,Nso‘j+1 - ;Nsotj’ and iAésosj =,€so‘j+1 - 3€so$j'(8)
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Thus the virtual work for the j increment can be written as
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This equation can be linearized by assuming (Aur)j’ (Auz)j, and (AB)j are small
Thus the incremental strains are (¢)j, (?o)j, and (€So)j are known from the last

increment.
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Assume the following constitutive relations

%Nso§j = [D]sj ’éso‘j + ’Nsoifj and ,ANso‘j = [D]tj ’Aéso&j + ,ANsoi‘j ()

where
[D]sj and [D]t' are the secant and tangent material matrix for the j increment. {Nsoi}j
and {ANsoi}' are the inftial stress resultants and initial bending moments (thermal stresses

can be included through these matrices). Thus the incremental virtual work for the j incre-
ment can be written as
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Again, the iteration step i1s the same as the incremental step except the loads {pHo}J+1
and {ﬁ;}3+1 do not change. Also, the material matrix [D]tJ can change for each itera-
tion.

4, Finite Element Approximation

The finite element approximation for this shell of revolution can be either two- or
three-nodal point elements.

Thus the approximations for displacements and the rotation for the J element are
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where m 1s the number of nodal points in this element and hmi are the shape functions.
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For isoparametric elements, o and z, are approximated with the same shape
functions. Thus r, ds, is ro(E) uo(E) d& where -1< g > 1. In matrix notation
faud] = HET fapl (16)
ryj ri§j °
where
fatt = (ta.); (3,5 (ag) (ag,)) and
r1)j r1’] 21’3 g17§ * * * 8m
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Also
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where [B] ; is obtained using the linearized form of {Aeso}j and the finite element
approximations for{Aur}j.

—8— M 4/5



Ma/5
With the finite element approximations presented, }he incremental virtual work may be

written

J
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where

J is the number of elements used in the problem;

.
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and is the stiffness matrix for the j element; and
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+ {Boundary applied forces and moments)j
and is the force vector for the j element.

5. Example Problems

This section describes the example problems used to check our model. This nonlinear
shell model solves

[ linear problems,

[ problems with large membrane strains,

[} problems with large rotations, and

] problems with nonlinear material.

Grafton and Strome developed a finite element shell-of-revolution code in the early six-
ties. In their paper [3] they checked their linear code with several example problems. We
used the nonlinear model described in this report to solve three of these.

(1) A circular plate with a shear load on the boundary of an interior hole and the

outer boundary fixed. This problem was modeled with 21 equally spaced nodal points.

(?) A cylindrical shell with a shear load on one end and the other end fixed. This
problem used 25 nodal points with a very fine spacing next to the shear load and
the space between nodal points increasing to a coarse spacing next to the fixed
boundary edge.

(3) A sixty-degree segment of a hemisphere. At one boundary edge the radial coordinate
was one half of the radius of the hemisphere. This boundary edge is loaded with an
applied moment, and the other boundary was fixed. Again the spacing of nodal points
was very fine next to the applied moment and increasing to coarse next to the fixed
boundary. There were 29 nodal points.
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This model solved all three linear problems in a nonlinear mode and converged to the linear
solutions. It also solved all three linear problems in a linear mode (one increment and no
iterations). Reduced integration was used for these problems and was necessary to obtain
accurate answers.

The next two example problems were solved to check whether this model could effectively

calculate large membrane strains.

(1) An axially loaded cylinder, which is shown in Fig. 3. This problem, which degener-
ates to a linear solution, can be solved with one increment and does not require
any equilibrium iteration. Only four nodal points were used for this problem.

(2) A pressure-loaded hemisphere, which is shown in Fig. 4. This problem was modeled
with 9 nodal points and solved with one load increment and one equilibrium itera-
tion.

These problems demonstrate the ability of this model to calculate large membrane strains.

The Tlast problem solved was to load a cylinder such that it deforms into a portion of a

hemisphere. This problem is shown in Fig. 5 and demonstrates the ability of this model to
calculate Targe rotations. This problem was modeled with 21 nodal points and was solved
with one load increment and 15 equilibrium iterations.

The use of our model for nonlinear materials has not been investigated thoroughly but we

expect to do so in the near future.
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