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A FINITE ELEMENT SOLUTION
FOR PLASTICITY WITH STRAIN-HARDENING (*)

by Ivan HiavAZex (1)

Communique par P G CIARLET

Abstract — Three basic boundary value problems are formulated in terms of stresses and hardening
parameters Piecewise hinear simplicial elements are employed and some error estimates derwed,
provided certainregularity of the exact solution holds If the solution 1s not regular, the convergence is
proven

Resume — Trois problemes aux lintes fondamentaun sont exprimes en fonctton des contramtes et
de parameti¢s d eciouissage On utihise des elements fuus stmphiciaun linearies par moiceaun et on
etablit des majorations d’erreur, moyennant une certaine regularite de la solution exacte 51 la solution
n'est pas reguliere, on demontre la convergence

The flow theory of plasticity with strain-hardening material (¢f. {5]) has been
studied recently by C. Johnson 8], Groger [3] and Negas [6] from a new point of
view, proneered by Nguyen Quoc Son [14] and Halphen-Nguyen Quoc Son [4]
The common 1dea of their existence proofs is to formulate the problem by means
of variational mequality of evolution and to use a penalty method.

Various incremental finite element solutions have been published 1n the
engineering literature. To the author’s knowledge, however, the only theoretical
convergence analysis have been presented by C. Johnson [9] In the present
paper, we propose another variant of the incremental finite element method,
starting from the formulation of the quast-static problem 1n terms of stresses and__
hardening parameters only. Whereas 1n the mixed method of [9] the stresses and
hardening parameters are approxiumated by piecewise constant functions and the
displacements by piecewise linear functions, we employ piecewise linear
functions for both the stresses and the hardeming parameters. The stress
approximations consist of equihbriated trangular or tetrahedral block-
elements respectively (¢f [15, 7, 11, 12])

(*) Regu novembre 1979

() Mathematical Institute of the Czechoslovak Academy of Sciences, Zitna 25, Praba 1,
Tchecoslovaque
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348 1. HLAVACEK

Following the approach of C. Johnson [9, 10], we are able to prove some
a priori error estimates for the three basic types of boundary conditions: the zero
displacements on the whole boundary, the surface tractions on the whole
boundary and the mixed case, provided certain regularity of the exact solution
holds. Finally, we prove the convergence of the approximations without any
regularity assumption.

1. BASIC RELATIONS

Let Q be a polyhedral bounded domain in R", n=2, 3, x=(x,.....x,) a
Cartesian coordinate system. Denote by { =[0, 7],0< T < 0, a fixed interval of
time. Let R, be the space of symmetric n x n matrices {stress tensors ). A repeated
index implies summation over the range 1. .... n. C denotes a generic constant,
which is not necessarily the same at different places.

Assume that a yield function f : R, — R is given, which is convex, continuous
in R,, continuously differentiable in R,— {0} and

fo)=|\| f(o), YieR, VoeR,. (1.1)
Note that such function satisfies also the following condition
[0f/0o:;| < C, i,j=1,...,n, VoeR,—{0}. (1.2)

Rrmark 1.1: An example of a function, satisfying all these conditions is the
von Mises yield function
D . D\1/2
f(0)=(5ij0ij) 2,
where
D
cijzcij'“;sijo-kk

is the stress deviatoric.

Let us introduce the following notations
il THR,,=(TUTU)1/2,
S={1:Q->R,[1,;€L*(Q), Vi, j},
1/2
Ilrlls=<J ilfllé,dX> ,  H=SxL*(Q).
Q
Let
Q=r,uT, T,nT,=0,
where I', and T'; are either empty or open in Q.

R.A.LR.O. Analyse numérique/ Numerical Analysis



PLASTICITY WITH STRAIN-HARDENING 349

Assume that a (reference) body force vector F°e[C (Q)]" and a (reference)
surface traction vector g°e[L? (I',)]" be given. If I', =@, the total equilibrium
conditions for F°, g° are satisfied.

Let the actual body forces and surface tractions be
F(t,x)=y(t)F°(x) in IxQ,
g(t, x)=7(t)g°(x) on IxT,.

Here y : I - R is a non-negative function from C2(I) such that
31t,>0, v(t)=0, Vitel0, ], (1.3)

Y(t)G[Y(tn—l): 'Y(tn)] if Y(tn-—l)éy(tn)9 }

1.4
YOl ), Y(Eae)] I Y(E) ST (Eams), (1-4)

holds in any subinterval I,=[t,_,, t,] of all time discretizations, which will be
considered in the following.

For any tel we introduce the set of statically admissible stress tensors

E(t)=E(F(t), g (t))={ceS f o;je;;(v)dx

=J F,-(t)v,-dx+J g;(t)v,ds,Yve V},
Q r,
where

V={ve[H'(Q)"|lv=00nT,},

1
eij(v)=E(avi/axj+3vj/5x,-)‘
Let us define
.g'-('f, (X)’:f(T)—a,
B={(1, 0)eR,x R| & (1, )0},
P={(r, 2)eH|(x(x), a(x))eBa.e.in Q},
K(t)=(E(t)xL*(Q))n P, tel.
Let the elasticity coefficients A4;;,€ L* (Q) be given (i, j, k, I=1, ..., n) such
that .
Aijkl=Ajikl=Aklij’ a. e.mQ
and 3¢, >0 such that

Aijx1€ijEiZCo EijEijs VeeR,
holds a. e. in Q.

vol. 14, n°4, 1980



350 I. HLAVACEK

Moreover, let positive constants xR and o, € R be given.
We introduce the following bilinear forms for 6, e H, 6 =(o, a), t=(t, B):

<8’%>=Gij‘cij+a[3’ I%,:<%a%>1/2a
6, T)o= j (5 ydx, 1G] =@ W,
Q

{ S, %}ZJ Aijklcijrkldx+uj afdx,
Q Q
ol ={oc, o}
Note that the norms |}. || and ||| . ||| are equivalent. Denote by || . ||,  the norm in
L*(Q).
Let CL (1, S) be the space of continuously differentiable mappings T : I — S
such that T (0)=0. Let H} (I, S) be the closure of C} (I, S) by means of the norm

T 2 1/2
([Jsf)”
0 s
Similarly, let H* (I, L?) be the closure of C* (I, L? (Q)) by means of the norm

T 1/2
U (IBNIGa+ ;dB/dtH&Q)dt> .
0

fil
dt

A weak solution of the plasticity problem with strain-hardening is a pair of
functions

o=(c, a)e HY(I, S)x H' (I, L?)
such that
a(0)=ay, o(t)eK(t)
and
{do(t)/dt,t—c(t)}20, Vi=(r,x)eK(t) (1.5)

holds for a. e. tel.

The existence and uniqueness of a weak solution has been discussed in [6] for
0Q =T, and in [8] for 0Q =T, (see also {3]). Let us recall, for instance, that in [6]
the following condition

Ic6eCi(,8), o(t)eE(), Vtel,
is sufficient for the existence and uniqueness of a weak solution.

R.A.IR.O. Analyse numérique/Numerical Analysis



PLASTICITY WITH STRAIN-HARDENING 351
2. FINITE ELEMENT APPROXIMATIONS

In the present section, some results of C. Johnson [10] will be extended to the
case of plasticity with strain-hardening, using also several procedures of the same
author, published in {8] and [9].

We shall use the following internal approximations of the set E(t):

E,)=%()+ES,  O<h<hy<oo, @2.1)

where ye H} (I, S) is a fixed stress field such that y(¢)eE (t) a.e. in I and
E) < E(0, 0) is a finite-dimensional subspace of self-equilibriated stress fields.
Then E,(t) = E(t). For the existence of the functions y —see lemma 2.2.

Let ¥, = L? (Q) be a finite-dimensional subspace, an approximation of L2 (Q).
Assume that ¥}, contains constant functions.

Define
Ky(t)=(E,(t)x V)N P
so that K,(t) = K (¢).

We introduce a discretization of the time interval as follows: let N be a
positive integer, k=T/N, t,=nk, n=0,1,..., N, I,={[t,_,, t,}, t"=1 (,),
ot =("—-1""1)/k.

Instead of the problem (1. 5) we introduce the following approximate problem:

to find a 64, € K,(t,) such that

{00h, T— 05 } 20, ) VieK,(t,), 2.2)
n=13-"a Na 02k=(07 0‘0)'

Since 67, minimizes the strictly convex functional
Lo~ 2 ~ An—1
sl —{o,0" '} (2.3)

over the closed convex set K, (t,,), there exists a unique %, provided K, (¢,) # Q.
From lemma 2.2 below we obtain a sufficient condition for K, (¢)# @, since
E(1)eK,(1).

First we prove an important lemma. Define

N 12
fi ‘I”!Z(H)=( Zl I qnllzk)

for g=(q', ..., ¢"), q"€H.

vol. 14, n°4, 1980



352 I. HLAVACEK
LemMma 2.1: Assume that, if T, #Q, there exists a function
x’e[L= Q) nE(F°, ¢°). (2.4)
Then positive constants C, k, exist such that
06 il =C 2.5)
holds for any k<kq, and any hel0, h,).
REMARK 2.1: Let F° be continuous in Q. Then ther? exists
2t eSn[L= Q)"
such that
divy'=—-F® in Q

(x* can be obtained by an integration).

Let the vector-function g° —x'.v, where v denotes the unit outward normal,
be piecewise linear on I'; with respect to a simplicial partition of T'y. Then the
assumption (2.4) is satisfied.

In fact, there exists a simplicial partition of Q and % € E}}, where E{ consists of
piecewise linear stress fields —cf. section 3 below, such that

y2v=g¢°—y'.v.
Setting x° =" +%2, we obtain
e[l @), divy’=-—F° in Q,
’.v=¢° on I,
which implies y° e E(F?, ¢°).
The proof of lemma 2.1 is based on the following auxiliary lemmas.
Lemma 2.2: Let (2.4) be satisfied. Then there exists
E@)=(x(1), L(1))eK(t), Veel, £(0)=(0, a)

and positive constants C, 8, such that

&l
sup —a—t]“ =C, j=0, 1,2 (26)
tel
dist (€ (x, t), 6B)=3d,, Vtel, a.e.inQ. 2.7)

Proof: We use 10 in case that Ty # @ and
1 e[L2 QI N E(F°)

R.A.LR.O. Analyse numérique/Numerical Analysis



PLASTICITY WITH STRAIN-HARDENING 353
defined by integration of the equilibrium equation
divy®= —F°

in case that [,=0Q.

Let us set
r()=v()x°  L)=v(t)Ci+a,,

where C, is a suitable constant.
Then obviously y (t)€ E (¢) holds in I and

Sf@°(x)SC, a.e.inQ
holds for some C, >0 by virtue of the boundedness of x°. Consequently, we have
F 0 O=f)-C=7Of ) —Cil -2 < — 0, <0 (2.8)
for all tel and almost all xeQ. Hence
E=(. 0)eP, Viel, g()eK(t), £(0)=(0, a).
Since ° is bounded and v (t)e C? (I), (2.6) follows easily.
To verify (2.7), we realize that (2.8) and (1.2) imply that a fixed 8, >0 exists
MR g () +p)=0,  VpeR.xR, Ip| S8y.

Consequently, £(t)+ pe B and (2.7) follows. QED

We shall prove lemma 2. 1 by means of a penalty method. Let  be the operator
of the orthogonal projection in R, x R onto the closed convex set B. Introduce
the following penalty functional

J,,(%):zl—uu%—n%uz, u>0, teH. (2.9)

Define new approximations
8:kp€Eh(tn)XV}n n=0) 1""1N
by the equations (we omit the subscripts hk p for the time being):

{86", T} + (46", T)o=0, VI€E}x V.

= 1
6°=(0, %), n=1,..., N. (2.10)

Note that the Gateaux derivative of J, is
~. 1 . -
Ju(o)= —l;(o—nc).

vol. 14, n°4, 1980



354 1. HLAVACEK

The problem (2. 10) has a unique solution for each n. In fact, o" minimizes the
functional

1. - “ “ey A

El\\ﬁ\\l2+ka(G)—{0 Lo},
which is coercive, convex and continuous, over the set E,(t,) x V,, which is
closed and convex in H.

LemMa 2.3: Let (2.4) be satisfied. Then positive constants C, kg exist such that
Jor k=<ky, 0<h=<hy, p>0 the following inequalities hold:

@) max ||| ok, Il C;
n=1,....N
X N -~
(if) Y kJ, (Gl SCs
n=1
(iii) Ykl (or) @ =C,
n=1 -
where

”f“Ll(n)=J‘ | fldx for feH.

Proof: (i) Let us consider £ =(y, {) from lemma 2.2 and set 6" =£"+p", n=0,
1, ..., N. Then we have

p'=(c", B"), o"eE,  p°=(0,0).
Let us insert T=p" in (2.10) and dc"=238E"+ p". We obtain
{0p", p"}+U(0™), p"o=—{08" p"}, n=1,...,N. (211)
Since J|, is monotone,
(J3.(6™), Po=( (6" =T (&M, p")o 20. (2.12)

Consequently, we may write
M M
Y k{opm, p"}=<— Y k{o&", p"}, M=1,...,N. (2.13)
n=1 n=1

On the other hand, we have

M

M

1
Y k{op" p"}= 3, E(Illp"lllz—Hlp"“lll2
n=1 n=1

- 1
+lllp"—p" " lllz)zilll PN (2.14)

R.A.LLR.O. Analyse numérique/Numerical Analysis



PLASTICITY WITH STRAIN-HARDENING 355

and therefore, by virtue of (2.6), we may write
M M
Zlkl{aé", p"H =Ck Z Il p™ il

S Ck Z 1+ {ile™(H )<C+CkZ el (2.15)

We employ the following discrete analogue of Gronwall’s lemma (see [1},
chapt. 3, lemma 3.3) :
let M1
o(M)SY(M)+ Zox(m)cp(m), M=1,...,n=N,

x(m)=0, Vm.
Then

o(n=v(n)+ Z x(m) Y (m) ﬂ (1 +x(s))-

s=m+1

From (2.13), (2.14) and (2.15) it follows
M-1

Ilp" N2 =C+C Y killp™H?,  M=1,...,N.

m=1

Setting o™= ||| p™ ||, ¥ (M)=C, x (m)=Ck, we obtain
n-1

lp"li?sC+ ¥ Ck(1+Cky~'"m<Cy, (2.16)

m=0
because (1 4+ Ck)N<C, for k<k,.
Finally,
Mol < el + Mg =C, n=1,...,N

follows from (2.6).
(ii) We use the convexity of J, and lemma 2.2 to obtain

Ju(8")+(4(6"), §"—6")o £J,(E")=0.
From (2.11), (2.12), (2. 14) we deduce

N

N N
Y k(T (6™, p")S — Zlk{aE_,", p = X kMg It Il SCT, (2.17)
n=1 n=

using also (2.16) and (2.6). Consequently,

Mz

") = Z k(J,(c"), o"—E") <C.

3
[}
[

vol. 14, n°4, 1980



356 I. HLAVACEK

(iii) Let us consider
S"(x)=E"(x)+p"(x) ¢ B
and define
o" (x)—mo"(x)
|6 (x)—mc"(x)|

Jjlx)=

j(x)is the unit normal with respect to the hyperplane L, separating B and 6" at
the point o (x), where

L={TeR,xR|{j(x), ty=4d}
and deR is a constant.

Since 6"(x)¢ B and £"(x)+8,j(x)e B follows from (2.7), we have

(Jjx), ' (x)+p"(x) > 24,

((x), EM(x)+3,j(x)>=d.
Hence

<j> P”)gd"<1, én>;81 <J>]>=81

Inserting the definition of j, we obtain
- - 1 - -
|6"(x)—nc"(x)] £ 5-C0"(x) —mo™(x), p"(x).
1

Obviously, the same inequality is irue even for "€ B.
Integration over x€Q yields that

- 1 - -
”JL(G")“U(Q)T‘ E [ IO'"*‘RO'"Idx

O

1 . 1.
< n__. n’nd=___Jr0n,n.
—aluL“’ 7", 0 dx= £-(J,,(5"), P
The estimate (iii) is an easy consequence of (2.17).
LemMa 2.4: Let (2.4) be satisfied. Then positive constants C, ky and hy exist
such that .
ookl pen=C (2.18)

holds for any k<ky, O<hZhy, n>0.
Proof: From (2.10) it follows that

(026", 1} +(0(J,(6™), 1)0=0, VIeERxV,,
for n=2,..., N.

R.A.LR.O. Analyse numérique/Numerical Analysis
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Choosing T=0p" and inserting 6" ="+ p", we obtain
(8%p", 8p"} +(3(J4(6™), 96" = — | 22 E", 3p" } +(3(J (S, OE™o-

The second term on the left side is non-negative, due to the monotonicity of J .
Summing by parts in the last term, we may write

M M
sz{azp”, op"} =~ sz{ﬁzi", op"}
B "= M—1

_ ;2 k(J,(c™), B2E" 1o+ (T (™), DEM),.

Here we have used the fact that 062 =(£2—£')/k=0 holds for k<(1/2)¢,, by
virtue of the definition of &(¢) and (1.3).

From (2.6) and lemma 2. 3-(iii), it follows that

M-1 M-1
Y k(Ju(o™), @ ) SC Y ki (0"l =C:-
n=2 n=2

Furthermore,

M 1
Y, k{2 p" ap"} Z5(ll3p" II*— lll 30" 1),
n=2

consequently, we have for any M=2, ..., N:

M
1op" 12 SC+C Wy (cY), 38"+ p"lI*+ 3, Ckilldp™|II*.

n=2

The discrete analogue of the Gronwall’s lemma yields
ll9p™ 12 SC +C(W, (5™, aa")o+c"i_ll kU4(E™), ™o,
for n=2, ..., N. Using again lemma 2.3-(iii) in the last term, we obtain
lop" IS Cy+C (T u(6™), Mo,  n=2,..., N,
'ﬁ:zk lap™lii* < CT+£§24€ (Jy(e"), &M =C;.
Thus we may write

Ioc™ 11> <21 ag™ 1>+ 21 dp™ 1> = C+ 211 9p™ I,

d ~ N i (2.19)
Y kllos" 2 =CT+2 Y kil dp™I2£Cs.
n=2 n=2
It remains to prove that
klllas I*=C. (2.20)

vol. 14, n°4, 1980



358 1. BLAVACEK

Inserting o' =& +p', T=0p* into (2.10), we obtain
1op* lI1? + { 98, 9p } +(J4(51), 861 )o—(J(S"), E1)o=0.

The third term is non-negative [J,(c°)=0 since 6° € B]. Hence using (jii) of
lemma 2.3, we deduce
kllloptlli*=C

and (2.20) follows easily.

The estimate (2. 18) is a consequence of (2.19), (2.20) and the equivalence of
the norms [||.}]] and ||.|]. QED.

To prove lemma 2.1, we now let u tend to zero through some sequence of
positive numbers. From lemma 2.3-(i) we obtain the existence of a positive
constant C such that

”&hkp“F(H)§C7 Vu>0.

In fact, we have
I (’}hkﬂl/z(y)éCNk max ||} é‘Ska =C, T
Consequently, there exists a subsequence of y and &, such that for p— 0:

Ghiw — On  (weakly) in 2 (H). (2.21)

0Giew = Sw  (weakly) in 12 (H). (2.22)

It is not difficult to verify that $,, =066y,.

We are going to prove that Gy, is a solution of the problem (2.2). Since J , is
convex, we have

Ju(%") .ZJ((};ku)+(J:1(8Zku)’ %" - 8Zku)O'

If t"€ E, (t,) X V), then To=1"— G}y, € ES x ¥, and we may use (2. 10) to obtain
(omitting the subscripts hk p):

(J,(c"), "= G")p=— { 8", 1" 3" }.
Consequently, we arrive at the inequality

{oc", 1" —o"} +J,(Z")—J,(c") 20.
Setting 1" K, (t,), we obtain J“(%")=O and

{oc", 1"—c"} 20,  V1"eK,(t,).

R.A.LR.O. Analyse numérique/Numerical Analysis



PLASTICITY WITH STRAIN-HARDENING 359

Hence we may write, using (2.21) and (2.22):

M M
0<lim sup[-— Y k{soc", c"}+ 3 k{&&",%"}]
n=1 n=1

u—=0

, 1. 1.
=lim sup [EHI c? |||2—5||| oM II?

p=0

M
_5 Z ”lcn G”_1|”2+ Z k{ao.n’ ‘C"}]
n=1
1. - 1.4 i -
=EIIIG°|||2—§|HG%¢|HZ—— Z i om—onc >

+Zk{a°hk’f }= Zk{achk, — G}
Choosing t™ =67, for m<M, we obtain
{och, T—oM} 20, VieK,(t,), M=1,...,N

It remains to verify that of,eK,(t,)=(E,(t.)x V,)nP. We recall that

Ohn€En(t,), om=x"+0c" Since E,(t,) is convex and closed in S, it is weakly
closed in S. Furthermore, (2.21) implies that oj,, — o weakly in S,
consequently on, € E, (t,).

To verify that %, P, we use lemma 2.3-(ii). Thus

k -
CzkJ (thp)"' ”thp chﬁkpnza
- . .2
| 63— S |2 Slim inf | cﬁku—nc;,'kllz Slim inf =Cp=0,
u—0 u—0
which implies ol EP.

Finally, by virtue of (2 22) and lemma 2.4, we may write

Z k(oo 12 < Z k lim inf|| 66 |12 Slim inf Lkl[acuq,ﬂ2<c

u—0 w=0 n=1

which concludes the proof of lemma 2.1.
QED

TueoreMm 2.1: Let us denote
£(h, K)=infl| G 71|,
b2
where
A ={"eK,(t,),n=1,...,N}.

vol. 14, n°4, 1980



360 1. HLAVACEK
Assume that if Iy # @, there exists
x°e[L> Q)" N E(F°, ¢°).

Then positive constants C and k, exist such that for k<ky:
max ||6"— G ll £C (/e h, k)+./k). (2.23)
n=1,....N

Proof: Let us extend o7, onto the whole interval I as follows
ow()=A() ot ' +(L-A()oh,  tel,
where
Y (1) —7(,)
rMl)=—-"—,
= =1
A)=(t,—t)/k,  tel,, if y(t)=v(t,-1).

tel,, if v(t)#v(ta-1),

Then for G =(Ghr, %ni), S (t) € E (¢) holds for all t e I. From the convexity of P
in H and the fact that 0 <A(t)<1 by virtue of (1.4), we obtain o, (t)eP.
Consequently, 6,.(t)€ K (t) and we may insert T= 0y, (t) into (1.5) to obtain

{c,om—0}20 ae.inl
Integration over I, yields

{ oo™, 8zk"&"}§%J {0, Op—G"+G(t)— O() } dt. (2.24)
I,

Let us consider 7€ K,(t,), n=1, ..., N, such that
6 —Thllpen=2e(h, k)
and insert T=1} into (2.2). Thus we obtain
{00, Th— O } 20. (2.25)
For the error e=06— Gy, it follows from (2.24), (2.25):
{Oe", "} < {05, Th—~S"} + [ 1ul, (2.26)
where r, is the right-hand side of (2.24). Multiplying by k and summing over n

yields

N
max [le"I*SCNoSulnenllth—06llaw+2k X 174l (2.27)
n=1

a=1 .., N

R.ALLR.O. Analyse numérique/Numerical Analysis
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For r, we may write

1 . R . 1,2
[7al ézj lUG'(t)Hl[kl”@Gﬁkm+k”2(J. ch'lllzds) }dt

1/2
<kYZ ookl (J lo’ ()11 dt) +f 16 (2) l1I? dt
1, 1,

- 3 -
ék!llﬁcﬁklllzwLEJ o' ()l dt.
'u
Inserting into (2.27) leads to the following estimate

max Il " 12 £2C | 00w lp g € (h, k)

=1

+3k< ) kmaéﬂkllf”’jlliff’(t)llizdt)éCl(S(h, k)+k),
n i

if we realize that
JIH o' (f*dtsC J (lo’@NZ+ o' li7:) dt< oo
I I

and use lemma 2.1.
QED.

3. A PRIORI ERROR ESTIMATE IN TWO-DIMENSIONAL PROBLEMS

In the following we shall consider the problems in R? and evaluate the
quantity € (h, k), introduced in theorem 2. 1, for a piecewise linear finite element
model, assuming certain regularity of the exact solution o.

We assume that the reference body forces F° are constant and the reference
surface tractions g° are piecewise linear on T,
reference surface tractions g° are piecewise linear on T,

Let us consider a regular family {7, }, 0<h<h,, of triangulations of the
domain Q (i.e., a positive 9, exists such that all angles in all triangulations are
not less than 8,). Let h denote the maximal length of all sides in 77,

We employ the self-equilibriated triangular block-elements of Watwood and
Hartz {15], which correspond to the Clough-Tocher element via the slab
analogy. The model consists of triangular block-elements, each of them being
generated by connecting the vertices of the triangle K with its centre of gravity.
On each subtriangle K; three linear functions—components of a self-
equilibriated stress tensor — are defined. The stress vector has to be continuous
when crossing any common boundary between the subtriangles.
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Some approximability properties of the spaces N, (Q), generated by these
elements have been studied in [7] and [11]. We shall need the following result (see
{71, Thm. 2.3):

Let 1€ S N [C?(Q)]*. Then a linear mapping
i E0,0n[CTQ) - N (@)
exists such that for any triangle Ke.7

max ||t —("hT)i ”[C(K()]‘ =C h12< I ||[c2u<)1‘ 3.1
i=1,2,3

holds, where (r,t)'=(r,7) |, hg is the maximal side of K and C is independent
of hy and 1.
Let us define the finite element spaces

Ef=N,(Q)nE(0,0)={teN,(Q)|t.v=00n T},
th{ﬁeL‘Z(Q)lBlK,epl(Ki)a VK; <= Keg_h}-

Note that under the assumptions on F° and g°, the auxiliary function %° can be
chosen piecewise linear with respect to the triangulation J, — see remark 2.1.
Then x (t,)=7v(t,) x° is piecewise linear, as well. In the following, we assume that
each .7, of the family { .#,} of the triangulations is generated by a regular
refinement of .7, .

THEOREM 3. 1: Let the solution 6 =(o, &) be such that for 5o=0—y and « and
for any K°e 7,

supll So (O ey = 11 0 < iy < €
tel

sup [l o0 ey = 10 ooy < 00, i=1, 2, 3.
tel

Then
e(h, k)= inf“6—%HF(H) <Ch?

(4
holds, where C=C (o, %) is independent of h, k.

Proof: Let us recall that t"=(1", B"), t"€E,(t,)=¢"+E}, c"=%"+ob,
T"=y"+15, where o3eE(0,0) and t3€E}. Consequently, omitting the
superscript n, we may write for any n=1, ..., N:

lo—tiP=lloo—10 i+ lla—Bli o (3.2)

Let us set tg=r, o,. Then r, 6o E), because 7, G6,.v=0 follows from the
definition of the mapping r,, (see [7]).
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Let us consider an arbitrary triangle K; = K, K € 7, and denote its vertices by
aj. Then lf BePl (Kl) and

Blajy) = fx+ris o) (ap)=d;, i=12,3 3.3)
then
B= f(x+rsce) in K,

This follows easily from the linearity of x +r, 5., B and from the convexity of f.

Let ITae Py (K;) be the linear Lagrange interpolate of o on K;. Define
re P, (K,) by the relations

r(a;)=max (0, d,—a(a;)) =[d;—a(a))]", (3.4)

Br=Ila+reP, (K)). (3.5)

Then obviously B,{a;) 2 4d;, j=1, 2, 3.
It is well-known that

lo—TTally x, £ Ch?* | ol (3.6)

where the seminorm of the second order derivatives stands on the right-hand side
(. [2]).
Using the assumptions (1.1), (1.2) and (3.1), we may write

[d;—f(x+00) (@) SN f+roce)—f X+ llex,
= Cllog—rwoollicry = Ch*|| oy llic oy = €1 (h).

Consequently, we have
[I7llo,x, = Chey(h). 3.7
From (3.6) and (3.7) we obtain

= e B;.UQ,K, =fo—Ila “9,1(,“" il K,é C(”L2 loclm(l(,)‘*ll'l3 [loe ”fcz(-ie’))“)-

Summations of the squares of these estimates leads to the following inequality

3
HO“'Bh”an = Ch4< z < Z ‘aliziz(K?)"' oo ||[2c2(1<°)]4>>- (3.8)
Koeffho i=1
From (3.1) we conclude that
loo—7400 “g <Cht Z floo ”[Z(:Z(KO)]"- (3-9)

Oc
X EJhu
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Inserting (3.8) and (3.9) in (3.2), we obtain

3
lo"—t"|> < Ch* ¥ (”08”[2(,‘2(1(0)]‘+ ) |°‘"|1211(K‘,?))
i=1

Koe'qho

3
=Ch* Z (” S0 lli=q,ic2xony + Zl I “12,°°(1,H’(K‘,-’))> =h*C, (0o, ).
e

Koeg-hu

It is readily seen that
~ ~ N ~ -~
lo—tlifm= 2 kllc"—1"II> £ Ci(o0, ) Th*
n=1

and the assertion of the theorem follows. or
ED.
RemARk 3.1: In three-dimensional problems one can employ an analogue of
the triangular block-element, i.e. a tetrahedron composed of four
subtetrahedrons. Estimates parallel to (3.1) and (3.6) hold —see the forthco-
ming paper [12] and the book [2], respectively. Thus the approach proposed
above leads to the assertion of theorem 3.1, as previously.

THEOREM 3.2: Let the assumptions of theorem 3. 1 be satisfied. Then constants C
and kg exist such that

max || 6" =Gk ll < Ch+/k)

n=1,...,.N
holds for k < kg, h < h,.
Proof is an immediate consequence of the theorems 2.1 and 3.1.

REeEMARK 3.2: An algorithm for solving the approximate problem (2.2).

Defining Ej and V, as previously, we obtain for 13€ E}:
(X" +75, BeP <« B"(a) 2/ (x"+75) (a)) (3.10)
at all vertices a;e K; « K of all triangles Ke 7,

Thus we have also nonlinear constraints for the parameters of " and t§. (In
case of the von Mises yield function —see remark 1.1 —these constraints are
quadratic.)

At each time level we have to minimize the quadratic functional (2.3) with the
nonlinear constraints (3.10) and with linear constraints (equations), which
guarantee the continuity of the stress vectors across the interelement boundaries.
Therefore we have to choose a suitable algorithm of convec programming
(e. g. feasible directions, linearization a. o0.).
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4. CONVERGENCE TO A NON-REGULAR SOLUTION

First we consider the two-dimensional problems. Let us preserve the
assumptions on F° and ¢° from section 3, so that the functions x° and % (t,) are
piecewise linear with respect to the triangulation 7, . The main result of the
present section is the following.

THEOREM 4.1: Let us assume that:

(i) if T =T, then Q is a starlike domain;

@i) if F=f,, U Fc, there exists a point A€ R?* such that if A coincides with the
origin, then for A=14¢ and ¢ > 0 sufficiently small, either

AT,cR22Q or AT,cQ.

Here XF,, denotes the image of T, by the dilatation mapping y = AX.
Let the family { #,} of triangulations be generated by regular refinements of the
triangulation S, .

Then for any k sufficiently small

lim inf | 6 — 7T |l =0.
h=0 e

In the proof we shall need the {ollowing:

ProOPOSITION 4.1: Let the assumptions (i), (i1} of theorem 4.1 be satisfied. Then

the set _
E(0,0)n[C™@Q)*

is dense in E(0,0) (with respect to the L?>-norm).

For the proof, see [7], theorems 4.1-4.3.

REMARK 4.1: A more general result could be proven for the case I'=T"_, by
means of the Airy stress function [13].

Proof of theorem 4.1: Let us consider a fixed time ¢, and let us omit the

superscript n. Using proposition 4.1, one can find 6y, E(0,0) ~[C® (5)]4 such
that

loo—0o.lls S & 4.1)
By a regularization of o, we obtain a,e C*® (5) such that

lo—otello o < €. (4.2)
Defining
yzf(x+00)—aa 9"5=f(X+0'05)—°‘s,
we see that # < Oa.e.in (), but the same inequality is not true for & ., in general.
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Note that xe[P; (K°))* for all K°c.7, . We choose T=(3 4o, Bs), Where
To=ryO0s Pr=Il,a.+p; here II,0, and p are defined locally in every
K; = K = K, as follows: IT, o, coincides with the linear Lagrange interpolate
g o, of a; on K;,

peP(K;), P(aj)=(dj—°€s(aj))+a j=1,2,3
where a; are the vertices of the subtriangle K; and
d;=f(x+ru00e) (a;).
It is easy to verify that y +r, co.€ E(t,) and
fO+r,00.)—B =0 a.e. in Q.
Next we have to estimate p in L? (Q). We may write for any j=1, 2, 3:

0= P(aj)=(dj—°€a(aj))+ Sld;j—fx+oee) (a;)] + 7 (a)),
since

—a.(a;) £ F7 (a))— f (1 +00.) (ay).
Moreover, we have
ldj—f(x+0o0e) (@) = Ch|| Socllic:@p =81 (h, o0.)

and therefore

4.3)

p =g (h oo +1ig F, on K, 1
Pl x, <2¢ef mes K;+2||TT, & ”(?,K.'}

Lemma 4.1: The following estimate holds
| 7 lo.xe < CE, VK°eT, .
Proof: Using (1.1) and (1.2), we derive

| f(x+00)—f(Xx+00:)| = Clico—0Gocllz,
| fx+00)—f(X+00) ke £ Clloo—00.llf = Ce?

and therefore
HF —F ok SN+ 00)—f U+ C0e) llo, ke + =t |lg g0 < Ce.

Furthermore, denoting Q; =supp #; n K°, we have
NF ok = J (F&—FVdx=||F.~F 3o, = Ce”.
Q,
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Lemma 4.2: Let T1, # 7 be defined locally on every K; = K < K° by the linear
Lagrange interpolate Iy F .. Then

178 —TLF ok < e2(h),  €()—=0 for h—0 “4.4)

holds for any K°e 7

Proof: Since & e C(K"), also #; e C(K®). For any n > 0 there exists a
polynomial p such that

ho*

N7 _p“C(K°) <.
Moreover, we have for any K, = K < K
| I, p— IL, 7. “c(x,) = ”p__gr: “C(K,) = ||p—97g+ ”C(K")a
[l p~I,p HC(K,) =G h? ||P”c2(K°)-
Consequently, we may write
“rg::"nhy: ||cu<°) S|z —P”c(KO) +lp—11,p ”C(K")
+ [T, p =11, Z ooy £ 2N+ Co h*|ip llc2 oy =0 (A, K°)
and (4.4) follows with
g, (k)= max (5(h, K°)./mes K°).
T QED.
Using lemmas 4.1, 4.2 and (4.3), we deduce

lpllo ke < 2eimes KO+4(|F] o+ 1T, T —F 15 k)
< 2e?mes KO+ C(g? +¢€2).
Altogether, we have
o —lP=lo0 =74 00. 12+ —Bullge = 2(1 56— 0o I3
+lo0s—ra0clF)+3 (=, 3o+l — Ly I o+l p1I5.0)
S2(e2+Ch*| oo, ||[2c2(§)]4)+ C(e?+h*|a, |1212(Q)

=+ n* “ 0-05“[2(22(5)}‘ + g2 +8§ (h)).

Consequently,

lim||6"—7||=0, n=1,...,N.
h—0

If k=T/N is fixed, we are led to the assertion of theorem 4.1.

REMARK 4.2: In three-dimensional problems, the theorem 4.1 can be proved,
if we use tetrahedral block-elements (see remark 3.1). As the density of infinitely
smooth functions in E (0, 0) is concerned, an analogue of proposition 4.1 in R?
follows by means of the approach used in [7].
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