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A FINITE ELEMENT SOLUTION
FOR PLASTICITY WITH STRAIN-HARDENING (*)

by Ivan HLAVÂCEK (X)

Communique par P G CIARLET

Abstract — Three basic boundary value problems areformulated in terms of stresses and hardening
parameters Piecewise hnear simphcial éléments are employed and some error estimâtes derived,
provided certain regulanty of the exact solution holds Ifthe solution is not regular, the convergence is
proven

Resumé — Trois problèmes aux limites fondamentaux sont exprime s en font tion des contraintes et
de patamettes deaouissage On utilise des éléments finis simplutain (ineaues paf moueaux et on
établit des majorations d'erreur, moyennant une certaine régulante de la solution exacte Si la solution
n'est pas reguliere, on démontre la convergence

The flow theory of plasticity with stram-hardenmg matenal (cf. [5]) has been
studiedrecentlybyC. Johnson [8],Groger [3]andNeöas [6] from a new point of
view, pioneered by Nguyen Quoc Son [14] and Halphen-Nguyen Quoc Son [4]
The common idea of their existence proofs is to formulate the problem by means
of vanational mequahty of évolution and to use a penalty method.

Vanous incrémental fmite element solutions have been published in the
engineering literature. To the author's knowledge, ho wever, the only theoretical
convergence analysis have been presented by C. Johnson [9] In the present
paper, we propose another variant of the incrémental fini te element method,
startmg from the formulation of the quasi-staticj^roblem in terms of stresses and^
ïïârdenmg parameters only. Whereas m the mixed method of [9] the stresses and
hardemng parameters are approximated by piecewise constant functions and the
displacements by piecewise hnear functions, we employ piecewise hnear
functions for both the stresses and the hardemng parameters. The stress
approximations consist of equihbnated tnangular or tetrahedral block-
elements respectively (cf [15, 7, 11, 12])

(*) Reçu novembre 1979
(*) Mathematical Institute of the Czechoslovak Academy of Sciences, Zitna 25, Praha 1,

Tchécoslovaquie
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348 I. HLAVAÖEK

Following the approach of C. Johnson [9, 10], we are able to prove some
a priori error estimâtes for the three basic types of boundary conditions: the zero
displacements on the whole boundary, the surface tractions on the whole
boundary and the mixed case, provided certain regularity of the exact solution
holds. Finally, we prove the convergence of the approximations without any
regularity assumption.

1. BASIC RELATIONS

Let Q b e a polyhedral bounded domain in R \ w = 2, 3, x = (xs xn) a
Cartesian coordinate System. Dénote by ƒ = [0, 7 ] , 0 < r < o o , afixed interval of
time. Let Ua be the space of symmetrie n x n matrices (stress tensors). A repeated
index implies summation over the range 1 n.C dénotes a generic constant,
which is not necessarily the samc at different places.

Assume that a yield function ƒ : Ua -> R is given, which is convex, continuous
in Ua, continuously differentiable in IRO — {0 } and

f{Xa)=\X\f(a\ VXeR, VaeiRa. (1.1)

Note that such function satisfies also the following condition

\df/doij\<C, i,j=l9...,n, VaeŒC T -{0}. (1.2)

REMARK 1.1: An example of a function, satisfying all these conditions is the
von Mises yield function

/ ( o ) = (o?.c^)1 '2,

where

is the stress deviatoric.

Let us introducé the following notations

Let

where Tu and Ta are either empty or open in 3D.

R.A.I.R.O. Analyse numérique/Numerical Analysis



PLASTICITY WITH STRAIN-HARDENING 349

Assume that a (référence) body force vector F°e[C (Q)]n and a (référence)
surface traction vector g°e[L2 (Ta)]

n be given. If Tu = 0, the total equilibrium
conditions for F0, g0 are satisfied.

Let the actual body forces and surface tractions be

F(t,x) = y(t)F°(x) in JxQ,

9{t,x) = y(t)g°(x) on IxT9.

Hère y : I -*• R is a non-negative function from C2 (ƒ ) such that

3 ^ 0 , y(t)-O, Vte[0, t j , (1.3)

(1.4)

holds in any subinterval /„ = [£„_ i, tn] of all time discretizations, which will be
considered in the following.

For any tel wc introducé the set of statically admissible stress tensors

if y(tw_1)^y(rn), )

h

•i
where

Let us define

eu (v) = -y

= {(T, a)efl|(T(x), a(x))eBa.e. in Q}9

) = (E(t)xL2{Q))nP, tel.

Let the elasticity coefficients Aijkl e U° (Q) be given (i, j , k, l = 1, ..., n) such
that

and 3 cn > 0 such that

holds a. e. in Q.

vol. 14, n°4, 1980



350 I. HLAVÂtEK

Moreover, let positive constants KBR and aoeR be given.
We introducé the following bilinear forms for a, xe/ï, è = (a, a), x=(x, p):

Jn JQ

Note that the norms ||. || and |||. ||| are equivalent. Dénote by ||. ||0 Q the norm in
L2(Q).

Let CQ{Î, S) be the space of continuously differentiable mappings x : I -»• S
such that x (0) = 0. Let Hl (/, S) be the closure of Cj (ƒ, S) by means of the norm

2 \ 1/2

Similarly, let H1 (/, L2) be the closure of C1 (/, L2 {Q)) by means of the norm

Ü
T \ 1 / 2

(IIPII0Q+ \d$ldt\\la)dt\ .

A weak solution of the plasticity problem with strain-hardening is a pair of
functions

such that

a(0) = a0, è{t)eK(t)

and

{da(t)/dt9 î-5(t)}^0, VÎ = (T, a)eK(t) (1.5)

holds for a. e. tel.

The existence and uniqueness of a weak solution has been diseussed in [6] for
3Q = FG and in [8] for dQ = r„ (see also [3]). Let us recall, for instance, that in [6]
the following condition

35eCh(I,S)y ô(t)eE(t), Vte/,

is sufficient for the existence and uniqueness of a weak solution.

R.AXR.O. Analyse numérique/Numerical Analysis



PLASTICITY WITH STRAIN-HARDENING 351

2. FINITE ELEMENT APPROXIMATIONS

In the present section, some results of C. Johnson [10] will be extended to the
case of plasticity with strain-hardening, using also several procedures of the same
author, published in [8] and [9].

We shall use the following internai approximations of the set E{t):

(2.1)

where %€HQ (I, S) is a fixed stress field such that %(t)eE (t) a. e. in ƒ and
El cz E(0, 0) is a finite-dimensional subspace of self-equilibriated stress fields.
Then Eh(t) <=£(£). For the existence of the functions %~see lemma 2.2.

Let Vh <= L2 (Q) be a finite-dimensional subspace, an approximation of L2 (Q).
Assume that Vh contains constant functions.

Define
Kh(t) = (Eh(t)xVh)nP

Kh(t)czK(t).

We introducé a discretization of the time interval as foliows: let N be a
positive integer, k = T/N, tn = nk9 n = 0, 1, . . . , N , /„ = [ t n - i , tn], T" = T (tn),

Instead of the problem (1.5) we introducé the following approximate problem:

to find a hn
hkeKh{tn) such that

{ôôk.î-akJèO, VteKja ) {22)

n = l , . . . ,AT , a°hk = (0, oo). )

Since â^fc minimizes the strictly convex functional

jlllâr-^â"-1} (2.3)

over the closed convex set Kk (tn), there exists a unique a2k} provided Kh (tn) ̂  0 .
From lemma 2.2 below we obtain a sufficient condition for Kh(t)^<J>y since

First we prove an important lemma, Defme

i/2

Z k"ll2fcj

vol. 14, n°4, 1980



352 I. HLAVAÖEK

LEMMA 2.1: Assume thaï, i / T a ^ 0 , there exists afunction

gö). (2.4)

Then positive constants C, k0 exist such that

\\dhhk\\P{H)^C (2.5)

holdsfor any k%k0 and any /ie]O, h0].

REMARK 2.1: Let F° be continuous in Q. Then there exists

such that
- F 0 in Q

(X1 can be obtained by an intégration).

Let the vector-function g° — x l-v, where v dénotes the unit outward normal,
be piecewise linear on F c with respect to a simplicial partition of r c . Then the
assumption (2.4) is satisfied.

In fact, there exists a simplicial partition of Q and %2 e El, where Ej consists of
piecewise linear stress fields — c/. section 3 below, such that

Setting x°==X1 + X2> w e obtain

X° e [L00 (Q)f2, div x° - - F° in Q,

£°.v = #° on F 0

which implies %°eE{F°, g°).

The proof of lemma 2.1 is based on the following auxiliary lemmas.

LEMMA 2.2: Let (2.4) be satisfied. Then there exists

£,(t) = (%(t)i C,(t))eK(t), V t e / , ^(0)~(0, a0)

and positive constants C, bi such that

sup -T-j =C> J = §A,1 (2*6)

dist (̂  (x> t), 35 )è8 i , V t e / , a.e.inQ. (2.7)

Proof: We use x° in case that Fo # Ç) and

e [£ -

R.A.I.R.O. Analyse numérique/Numerical Analysis



PLASTICITY WITH STRAÏN-HARDENING 353

defined by intégration of the equilibrium équation

divx°=-F°

in case that r a = Ç).

Let us set

where Ct is a suitable constant.
Then obviously %{t)eE (t) holds in I and

/ V M J S C i a .e . inQ

holds for some Cj >0by virtue of the boundedness of %°. Consequently, we have

f (x, 0 = ƒ(X)-C = Y(O[/(X o ) -CJ-ao^ - a o < 0 (2.8)

for all tel and almost all xeQ. Hence

Ç = (X,QeP, Vte/ , Ç(t)eK(t), Ç(0)=(0, a0).

Since x° is bounded and j (t)eC2 (ƒ), (2.6) follows easily.

To verify (2.7), we realize that (2.8) and (1.2) imply that a fixed ôt >0 exists

suchthat jF f t ( t ) + p)^o, VpeRaxR, I p l ^ ö ^

Consequently, ^(t)-\-peB and (2.7) follows.

We shall prove lemma 2.1 by means of a penalty method. Let TI be the operator
of the orthogonal projection in Ra x R onto the closed convex set B. Introducé
the following penalty functional

^ ^ (2.9)

Define new approximations

èn
hkueEh(tn)xVhy n = 0 , 1, . . . , J V

by the équations (we omit the subscripts hk u for the time being):

Note that the Gâteaux derivative of J^ is

1J^(â)=-(â-

vol. 14, n°4, 1980



354 I. HLAVAÖEK

The problem (2.10) has a unique solution for each n. In fact, a" minimizes the
functional

which is coercive, convex and continuous, over the set Eh(tn)x Vh, which is
closed and convex in H.

LEMMA 2.3: Let (2.4) be satisfied. Then positive constants C, k0 exist such that
for k^ko,O<h^ho, \x>0 the following inequalities hold:

(i) max |
n = l N

N

(ü) £ kJ
n=l

(iü) f

/or

Proof: (i) Let us consider ^ = (%9Q from lemma 2.2 and set a" = Çn + p", n = 0,
1, ..., JV. Then we have

PB = (^", P"), â"G£g, p°=(0,0).

Let us insert T = p" in (2.10) and dan = d£,n + dpn. We obtain

{dp", p«}+(j;(â"), p")o= - { 3 ^ , P"}, n = l, ..-, N. (2.11)

Since J'M is monotone,

(j;(ân), p")o=(^(a")-j;(4"), P")o^O. (2.12)

Consequently, we may write

I fc{3p",p"}g- £ k{3Ç"> P"}, M=1, . . . ,AT. (2.13)

On the other hand, we have

p", p»}= £ ^(lllp-r-lllp"-1!!!2

« = 1 L

+ | | |p"-p"-1 | | |2)^jl l lpM | | |2 (2.14)

R.A.I.R.O. Analyse numérique/Numerical Analysis



PLASTICITY WITH STRAIN-HARDENING 355

and therefore, by virtue of (2.6), we may write

M M

j M M

^ - C f c YJ (1+ lllp"lll2)=C-hCk £ | | |p n | | | 2 . (2.15)

We employ the following discrete analogue of Gronwall's lemma {see [1],
chapt. 3, lemma 3.3) :

let M_i
m), M = l , . . . , n^N,

m = 0

Vm.

m=0 s=m+l

From (2.13), (2.14) and (2.15) it follows
M - l

|||pM|||2^C + CX fe|llpmlll2, M=1,
m = 1

Setting (p m = HlpmHl2, \|>(M) = C, %{m) = Ck, w e obtain
n - l

(2.16)
m-0

because {\ + Ck)N^C2 for k^k0.

Finally,

l i | â " | l l ^ t i l p n l l l + t H n I I I ^ C ) n = l , . . , , N

follows from (2.6).

(ii) We use the convexity of J^ and lemma 2.2 to obtain

From (2.11), (2.12), (2.14) we deduce

using also (2.16) and (2.6). Consequently,

n=l n=

vol. 14, n°4, 1980
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356 I. HLAVÂÔEK

(iii) Let us consider

<jn (x) = ̂ " (x) + p" (x) ̂  B

and define
ân(x)-7C0"(x)

j (x) is the unit normal with respect to the hyperplane L, separating B and a" at
the point rcâ(x), where

and deR is a constant.
Since ân(x)£B and ^n(x) + 5J(x)eB follows from (2.7), we have

Hence

Inserting the définition of 7, we obtain

15" (x) - icô" (x) | ^ -J- < ô" (x) - icô" (x), p" (x) >.

Obviously, the same inequaiity is true even for â"eB.
Intégration over xeQ yields that

^ii(^n)IL»(fl)=- \on~non\dx

81 H J Q '
=^-(J'„(a"), p")o-

The estimate (iii) is an easy conséquence of (2.17).

LEMMA 2.4: Let (2.4) be satisfied. Then positive constants C, k0 and h0 exist
such thaï

ô (2.18)

holdsfor any k^k0,

Proo/* From (2.10) it follows that

{Ô2 a\ x} +(3(J^(â")

for n = 2, . . . ,N.

R.A.I.R.O. Analyse numérique/Numerical Analysis



PLASTICITY WITH STRAIN-HARDENING 357

Choosing x = dpn and inserting a" = ^n + p", we obtain

[d2p"9 dç>"}HHJ'A°n)),don)0 = - {32S\ 3

The second term on the left side is non-negative, due to the monotonicity of J^.
Summing by parts in the last term, we may write

« = 2

-I
Here we have used the fact that 3Ç2=(Ç2-^)/fc = 0 holds for fc^(l/2)rls by
virtue of the définition of \{i) and (1.3).

From (2.6) and lemma 2.3-(iii), it follows that
M - l M - l

Furthermore,
1

3 M | | | 2 - III V I I I 2 ) ,

consequently, we have for any M = 2, ..., N:

The discrete analogue of the Gronwall's lemma yields

for n=2, ..., Af. Using again lemma 2.3-(iii) in the last term, we obtain

I I I d p " I I I 2 ^ C i + C ( / ; , ( £ " ) , Ô$")o, n = 2 , . . . , N ,

Thus we may write

It remains to prove that

vol. 14, n°4, 1980
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358 1* HLAVAÖEK

Inserting â1=^1-hp1
s x^ôp1 into (2.10), we obtain

The third term is non-negative [JJi(a°) = 0 since o°eB]. Hence using (iii) of
lemma 2.3, we deduce

and (2.20) follows easily.

The estimate (2.18) is a conséquence of (2.19), (2.20) and the équivalence of
the noms |||.Hl and||. | | . Q E D

To prove lemma 2.1, we now let ji tend to zero through some séquence of
positive numbers. From lemma 2.3-(i) we obtain the existence of a positive
constant C such that

In fact, we have

iï)^CN/cmax||| è»hk||| £

Consequently, there exists a subsequence of |i and ohk such that for \i -> 0:

aftJtM -+ èhk (weakly) in l2 (H). (2.21)

From lemma 2.4 we conclude that for u -• 0:

dohk, ^ Shk (weakly) in l2 {H). (2.22)

It is not difficult to verify that Shk = dohk.

We are going to prove that ohk is a solution of the problem (2.2). Since JM is
convex, we have

If T" G Eh (ta) x Vh, then T0 = x" - ajfcp G £ j x F h and we may use (2.10) to obtain
(omitting the subscripts hk |i):

Consequently, we arrive at the inequality

{5a",î"-aM}+JM(?)-

Setting TneKh{tn), we obtain Jil(i
n) = 0 and

{Ôa",T"-â"}^0, V

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Hence we may write, using (2.21) and (2.22):

= lim sup - |

~ E Ill^-â"-1!!!^!
Z n = 1 n = 1

Choosing xm = â fc for m<My we obtain

It remains to verify that ôîkeKk{tn) = (Eh(tn)xVk)r\P. We recall that
Ghk»GEh(tn), cJÏfc = x" + örn. Since Eh(tn) is convex and closed in S, it is weakly
closed in S. Furthermore, (2.21) implies that Ohkil^<Jhk weakly in S,
consequently <jlkeEh(tn).

To verify that â ^ e P , we use lemma 2.3-(ii). Thus

which implies aJ|keP.
Finally, by virtue of (2.22) and lemma 2.4, we may write

E kWdo^W2^^ Himinf | |da£J2^liminf YJcWd
n-l n = l (a-^0 M~*0 n = l

which concludes the proof of lemma 2.1.
Q.E.D

THEOREM 2.1: Let us dénote

e(fc, fc) = inf||â-x||/2(H),

vol. 14, n°4, 1980



360 1. HLAVAÖEK

Assume that if F o # 0 , there exists

Then positive constants C and k0 exist such thatfor k^k0:

max ||ô"-ôïJk||^C(V6(ft, k)+y/k). (2.23)
n = l N

Proof: Let us extend alk O n t o the whole interval ƒ as follows

where

=(tn-t)/k, teln, if

Then for ohk = (aftfc, aAfc), afck (t) eE{t) holds for all t e ƒ. From the convexity of P
in H and the fact that O^X(t)^l by virtue of (1.4), we obtain ahk{t)eP.
Consequently, ohk{t)eK(t) and we may insert x = ahk(t) into (1.5) to obtain

{a ' , <jhk — a} ̂ 0 a.e. in 7.

Intégration over ïn yields

t. (2.24)

Let us consider T2eKh(tn), n = l, . . . , AT, such that

and insert T = ift into (2.2). Thus we obtain

{ôSïtoîZ-aHt}2ï0. (2.25)

For the error e = c - â h t it foliows from (2.24), (2.25):

"h-è"} + \rn\, (2.26)

where r„ is the right-hand side of (2.24). Multiplying by k and summing over n
yields

max | | | c" l ! l 2 ^C| |aâ h k | | , ] ( H ) | | î h -a | | / i w + 2fcX |r„|. (2.27)
n = l

R.A.I.R.O. Analyse numérique/Numerical Analysis
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For rn we may write

j / 2 | \è'(t)\\\2dt

2J/.
Inserting into (2.27) leads to the foliowing estimate

if we realize that

Ji

and use lemma 2.1.

Q.E.D.

3. A PRIORI ERROR ESTIMATE IN TWO-DIMENSIONAL PROBLEMS

In the following we shall consider the problems in R2 and evaluate the
quantity e (h, fc), introduced in theorem 2.1, for a piecewise linear finite element
model, assuming certain regularity of the exact solution 0.

We assume that the référence body farces F° are constant and the référence
surface tractions g0 are piecewise linear on F c ,
référence surface tractions g0 are piecewise linear on FCT.

Let us consider a r égu la^ fami ly j^ j j , OKh^h^ oLtriangulations o t the
domain Q (Le., a positive 90 exists such that ail angles in ail triangulations are
not less than 90). Let h dénote the maximal length of all sides in S~h.

We employ the self-equilibriated triangular block-elements of Watwood and
Hartz [15], which correspond to the Clough-Tocher element via the slab
analogy. The model consists of triangular block-elements, each of them being
generated by Connecting the vertices of the triangle K with its centre of gravity.
On each subtriangle K,- three linear fonctions — components of a self-
equilibriated stress tensor —are defined. The stress vector has to be continuous
when crossing any common boundary between the subtriangles.

vol. 14, n°4, 1980



362 I. HLAVAÖEK

Some approximability properties of the spaces Nh(Cl), generated by these
éléments have been studied in [7] and [11]. We shall need the following result (see
[7], Thm. 2.3):

Let x e S n [C2 (Q)]4. Then a linear mapping

exists such that for any triangle

max \\i-{rhTy\\[C(KirSCh2
K\\%\\[c2(Kr (3.1)

i = l , 2, 3

holds, where {rhxY = (rhx)\Ki9 hK is the maximal side of K and C is independent
of hK and x.

Let us define the finite element spaces

Note that under the assumptions on F° and g°, the auxiliary function x° can be
chosen piecewise linear with respect to the triangulation &~ho — see remark 2.1.
Then x (f „) = y (t„) %° is piecewise linear, as well. Tn the following, we assume that
each Jh of the family { Jh} °f ^ e triangulations is generated by a regular
refmement of -fhn.

THEOREM 3. i: Lei the solution a = (o,a)be such that for <IO = CT —

/or any K°G^rhö:

\\(t)\\C2(Kor~\\Go\\L,il[C2{K,)r) < 0 C s

oo, i = l, 2, 3.

holds, where C = C(a0, ot) is independent of /i, A'.

Proo/ Let us recall that ? J E=(T\ P"), x n e£ f t (O =
x"^x n + To> where age£ (0 ,0 ) and Xoe£^. Consequently, omitting the
superscript n, we may write for any n = 1, . . . , N:

Let us set xo = rh a0 . Then rA o^eE®, because rha0.v~0 follows from the
définition of the mapping rh (see [7]).

R.A.I.R.O. Analyse numérique/Numencal Analysis
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Let us consider an arbitrary triangle K^a KyKe$~h and dénote its vertices by
ay Thenif p e P ^ ; ) and

a0) (flj) = dj, j = l, 2, 3 (3.3)

then

This follows easily from the linearity of x + TH ao> P a n d from the convexity of ƒ

Let YlaeP1(Ki) be the linear Lagrange interpolate of ot on Kt. Defme
rePr (Ki) by the relations

(0, d J -a (a J ) ) = [dJ—a(flj)]
 +

 > (3.4)

X,). (3.5)

Then obviously $h(
aj) à dj, 7 = 1, 2, 3.

It is well-known that

|a|H2(Xi), (3.6)

where the seminorm of the second order derivatives stands on the right-hand side
(cf. [2]).

Using the assumptions (1.1), (1.2) and (3.1), we may write

[ ( ( ï i | a 0 |

Consequently, we have

^ (3.7)

From (3.6) and (3.7) we obtain

- l i c t ^ p f c ^ ^ J a - n a l l e ^ + l l r j ^

Summations of the squares of these estimâtes Ieads to the following inequality

X (i^j+liaoll2,^). (3.8)

From (3.1) we conclude that

vol. 14, n°4, 1980



364 I. HLAVAÖEK

Inserting (3.8) and (3.9) in (3.2), we obtain
3

_ n | | 2 <^ / ^ r .4 V 1 I I! * n I I 2 _i_ V I « " I 2

It is readily seen that

and the assertion of the theorem foliows.
Q.E.D.

REMARK 3.1: In three-dimensional problems one can employ an analogue of
the triangular block-element, i.e. a tetrahedron composed of four
subtetrahedrons. Estimâtes parallel to (3.1) and (3.6) hold — see the forthco-
ming paper [12] and the book [2], respectively. Thus the approach proposed
above leads to the assertion of theorem 3.1, as previously.

THEOREM 3.2: Let the assumptions of theorem 3.1 be satisjied. Then constants C
and k0 exist such that

max ||â--â!fc||^C(fc+7fc)
n = l , ...,N

holdsfor k ^ k0, h ^ h0.

Proof is an immédiate conséquence of the theorems 2.1 and 3. L

REMARK 3.2: An algorithm for solving the approximate problem (2.2).

Defming ££ and Vh as previously, we obtain for xgeE^:

(X« + TS) p»)Gp ^ F{aj)>f(xn + ïno)(aj) (3.10)

at all vertices a}eKi c K o f all triangles Ke3Th.

Thus we have aiso nonlinear constraints for the parameters of P" and xg. (In
case of the von Mises yield function — see remark 1.1—these constraints are
quadratic.)

At each time level we have to minimize the quadratic functional (2.3) with the
nonlinear constraints (3.10) and with linear constraints (équations), which
guarantee the continuity of the stress vectors across the interelement boundaries.
Therefore we have to choose a suitable algorithm of convec prograrnming
(e. g. feasible directions, linearization a. o.).
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4. CONVERGENCE TO A NON-REGULAR SOLUTION

First we consider the two-dimensional problems. Let us preserve the
assumptions on F° and g° from section 3, so that the functions %° and % (t„) are
piecewise linear with respect to the triangulation 3~^ The main resuit of the
present section is the foliowing.

THEOREM 4.1: Let us assume that:

(i) if F = FCT, then Q is a starlike domain;

(ii) i/T = F ( luFCT, thereexists a point A e R2 such that if A coïncides with the
origin, then for X= 1 +£ and s > 0 sufficiently smail, either

Xf.cz R2-Q or l f o c Q ,

H ere XTO dénotes the image ofT.by the dilatation mapping y = Xx.

Let thefamily { Jh} of triangulations be generaled by regular refinements of the

triangulation J*ho.

Then for any k sufficiently small

lim inf||a-T||,2(JÏ) = 0.

In the proof we shall need the folio wing:

PROPOSITION 4.1: Let the assumptions (i), (ii) of theorem 4.1 be satisfïed. Then
the set —

E(0,0)n[C°°(n)]4

is dense in E (0,0) {with respect to the L2-norm).

For the proof, see [7], theorems 4.1-4.3.

REMARK 4.1: A more gênerai resuit could be proven for the case F = F(r) by
means of the Airy stress function [13].

Proof of theorem 4.1: Let us consider a fixed time t„ and let us omit the

superscript n.Using proposition 4. l, onecan find aOe e E (0,0) r\JCœ (Cl)]4' such

a O £ | | s ^£ . (4.1)

By a regularization of oc, we obtain aeeC°°(Q) such that

H a - a J I o ^ e . (4.2)

Defming
a, # > ƒ (x + aO£)-a£,

we see that SF ̂  0 a. e. in Q, but the same inequality is not true for J^g, in gênerai.
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Note that xelP^K0)]4 for ail K°e^K We choose T = (X + T0, P*), where
To^ rh^oÊ) P/i = n h a e + p ; hère nfta£ and p are defined locally in every
Kt cz K a K°, as follows: nftoce coinddes with the linear Lagrange interpolate
HK ote of ae on Kh

Kt), p(a,-) = (ij-ae(aj)) + , 7=1,2,3

where a, are the vertices of the sub triangle Kt and

It is easy to verify that % + rhGOs€E(tn) and

/(X + r h a o «)-p f c ^0 a.e.infl.

Next we have to estimate p in L2 (Q). We may write for any j = l, 2, 3:

since
-ct,(aj) S &t (aj)- ƒ Oc+-<T0e) (aj).

Moreover, we have

\dj-f(x + Goe)(<ij)\ è Cfc2||a0,||[C.^M.ss1(/i, aOe)

and therefore
^ ^ ^ n / ; On X;, |

p ||0
2
K| ^ 2 e î mes Kt + 21| n K i J^E

+ ||0
2
K, J

LEMMA 4.1: The following estimate holds

||jFe
+|lo,*°^C8,

Proof: Using (1.1) and (1.2), we dérive

and therefore

||iF-jFE | |0iKO ^ | | / (x + CT0)-/(x + a0e)llo,Ko + l|a-o,| |0iX. ^ CE.

Furthermore, denoting Qj =supp #"E
+ n K°, we have
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LEMMA 4.2: Let Ilh J%
+ be defined locally on every Ktcz K a K° by the linear

Lagrange interpolate UK =^£
+. Then

e2(*)->0 forh^O (4.4)

holdsfor any Ko€$rho.

Proof: Since ^BeC(K°), also J%+eC(K°). For any r| > 0 there exists a
polynomial p such that

Moreover, we have for any Kx a K <= K°:

\ \ u k P ~ u h ^ : IIC(KJ) ^ \ \ p - ^ : \\CiKi) Û

II p-n f cp| | c ( J C i ) ^ c o

Consequently, we may write

and (4.4) follows with

(fc)= max

Altogether, we have

Q.E.D.

Using lemmas 4.1, 4.2 and (4.3), we deduce

g 2(e2 + C /i41| a0Jlfc^r) + C(e2 + h* \ aE

Consequently,

l im| |a"-x| | = 0, n = l iï.
h-*0

If k=T/N is fixed, we are led to the assertion of theorem 4.1.

REMARK 4.2: In three-dimensional problems, the theorem 4.1 can be proved,
if we use tetrahedral block-elements (see remark 3.1). As the density of infinitely
smooth functions in £(0, 0) is concerned, an analogue of proposition 4.1 in R3

follows by means of the approach used in [7].
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