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Abstract. Using the left merge and communication merge from ACP,
we present an equational base (i.e., a ground-complete and ω-complete
set of valid equations) for the fragment of CCS without restriction and
relabelling. Our equational base is finite if the set of actions is finite.

1 Introduction

One of the first detailed studies of the equational theory of a process algebra was
performed by Hennessy and Milner [9]. They considered the equational theory of
the process algebra that arises from the recursion-free fragment of CCS (see [11]),
and presented a set of equational axioms that is complete in the sense that all
valid closed equations (i.e., equations in which no variables occur) are derivable
from it in equational logic [15]. For the elimination of parallel composition from
closed terms, Hennessy and Milner proposed the well-known Expansion Law, an
axiom schema that generates infinitely many axioms. Thus, the question arose
whether a finite complete set of axioms exists. With their axiom system ACP,
Bergstra and Klop demonstrated in [3] that it does exist if two auxiliary operators
are used: the left merge and the communication merge. It was later proved by
Moller [13] that without using at least one auxiliary operator a finite complete
set of axioms does not exist.

The aforementioned results pertain to the closed fragments of the equational
theories discussed, i.e., to the subsets consisting of the closed valid equations
only. Many valid equations, such as the equation (x ‖ y) ‖ z ≈ x ‖ (y ‖ z) ex-
pressing that parallel composition is associative, are not derivable (by means
of equational logic) from the axioms in [3] or [9]. In this paper we shall not
neglect the variables and contribute to the study of full equational theories of
process algebras. We take the fragment of CCS without recursion, restriction and
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relabelling, and consider the full equational theory of the process algebra that
is obtained by taking the syntax modulo bisimilarity [14]. Our goal is then to
present an equational base (i.e., a set of valid equations from which every other
valid equation can be derived) for it, which is finite if the set of actions is finite.
Obviously, Moller’s result about the unavoidability of the use of auxiliary opera-
tions in a finite complete axiomatisation of the closed fragment of the equational
theory of CCS a fortiori implies that auxiliary operations are needed to achieve
our goal. So we add left merge and communication merge from the start.

Moller [12] considers the equational theory of the same fragment of CCS,
except that his parallel operator implements pure interleaving instead of CCS-
communication and the communication merge is omitted. He presents a set of
valid axiom schemata and proves that it generates an equational base if the set
of actions is infinite. Groote [6] does consider the fragment including communi-
cation merge, but, instead of the CCS-communication mechanism, he assumes
an uninterpreted communication function. His axiom schemata also generate an
equational base provided that the set of actions is infinite. We improve on these
results by considering the communication mechanism present in CCS, and by
proving that our axiom schemata generate an equational base also if the set of
actions is finite. Moreover, our axiom schemata generate a finite equational base
if the set of actions is finite.

Our equational base consists of axioms that are mostly well-known. For par-
allel composition (‖), left merge (‖ ) and communication merge (|) we adapt the
axioms of ACP, adding from Bergstra and Tucker [4] a selection of the axioms
for standard concurrency and the axiom (x | y) | z ≈ 0, which expresses that the
communication mechanism is a form of handshaking communication.

Our proof follows the classic two-step approach: first we identify a set of
normal forms such that every process term has a provably equal normal form,
and then we demonstrate that for distinct normal forms there is a distinguishing
valuation that proves that they should not be equated. (We refer to the survey [2]
for a discussion of proof techniques and an overview of results and open problems
in the area. We remark in passing that one of our main results in this paper,
viz. Corollary 31, solves the open problem mentioned in [2, p. 362].) Since both
associating a normal form with a process term and determining a distinguishing
valuation for two distinct normal forms are easily seen to be computable, as a
corollary to our proof we get the decidability of the equational theory. Another
consequence of our result is that our equational base is complete for the set of
valid closed equations as well as ω-complete [7].

The positive result that we obtain in Corollary 31 of this paper stands in
contrast with the negative result that we have obtained in [1]. In that article we
proved that there does not exist a finite equational base for CCS if the auxiliary
operation |/ of Hennessy [8] is added instead of Bergstra and Klop’s left merge
and communication merge. Furthermore, we conjecture that a finite equational
base fails to exist if the unary action prefixes are replaced by binary sequential
composition. (We refer to [2] for an infinite family of valid equations that we
believe cannot all be derivable from a single finite set of valid equations.)
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The paper is organised as follows. In Sect. 2 we introduce a class of algebras
of processes arising from a process calculus à la CCS, present a set of equations
that is valid in all of them, and establish a few general properties needed in
the remainder of the paper. Our class of process algebras is parametrised by a
communication function. It is beneficial to proceed in this generality, because it
allows us to first consider the simpler case of a process algebra with pure inter-
leaving (i.e., no communication at all) instead of CCS-like parallel composition.
In Sect. 3 we prove that an equational base for the process algebra with pure
interleaving is obtained by simply adding the axiom x | y ≈ 0 to the set of equa-
tions introduced in Sect. 2. The proof in Sect. 3 extends nicely to a proof that,
for the more complicated case of CCS-communication, it is enough to replace
x | y ≈ 0 by x | (y | z) ≈ 0; this is discussed in Sect. 4.

2 Algebras of Processes

We fix a set A of actions, and declare a special action τ that we assume is not
in A. We denote by Aτ the set A ∪ {τ}. Generally, we let a and b range over A
and α over Aτ . We also fix a countably infinite set V of variables. The set P of
process terms is generated by the following grammar:

P ::= x | 0 | α.P | P + P | P ‖ P | P | P | P ‖ P ,

with x ∈ V , and α ∈ Aτ . We shall often simply write α instead of α.0. Fur-
thermore, to be able to omit some parentheses when writing terms, we adopt
the convention that α. binds stronger, and + binds weaker, than all the other
operations.

Table 1. The operational semantics

α.P
α−−→ P

P
α−−→ P ′

P + Q
α−−→ P ′

Q
α−−→ Q′

P + Q
α−−→ Q′

P
α−−→ P ′

P ‖ Q
α−−→ P ′ ‖ Q

P
α−−→ P ′

P ‖ Q
α−−→ P ′ ‖ Q

Q
α−−→ Q′

P ‖ Q
α−−→ P ‖ Q′

P
a−−→ P ′, Q

b−−→ Q′, γ(a, b)↓
P | Q

γ(a,b)−−−−→ P ′ ‖ Q′

P
a−−→ P ′, Q

b−−→ Q′, γ(a, b)↓
P ‖ Q

γ(a,b)−−−−→ P ′ ‖ Q′

A process term is closed if it does not contain variables; we denote the set of
all closed process terms by P0. We define on P0 binary relations α−−→ (α ∈ Aτ )
by means of the transition system specification in Table 1. The last two rules in
Table 1 refer to a communication function γ, i.e., a commutative and associative
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partial binary function γ : A × A ⇀ Aτ . We shall abbreviate the statement
‘γ(a, b) is defined’ by γ(a, b)↓ and the statement ‘γ(a, b) is undefined’ by γ(a, b)↑.
We shall in particular consider the following communication functions:

1. The trivial communication function is the partial function f : A × A ⇀ Aτ

such that f(a, b)↑ for all a, b ∈ A.
2. The CCS communication function h : A × A ⇀ Aτ presupposes a bijection

.̄ on A such that a = a and a 	= a for all a ∈ A, and is then defined by
h(a, b) = τ if a = b and undefined otherwise.

Definition 1. A bisimulation is a symmetric binary relation R on P0 such that
P R Q implies

if P α−−→ P ′, then there exists Q′ ∈ P0 such that Q α−−→ Q′ and P ′ R Q′.

Closed process terms P, Q ∈ P0 are said to be bisimilar (notation: P ↔γ Q) if
there exists a bisimulation R such that P R Q.

The relation ↔γ is an equivalence relation on P0; we denote the equivalence
class containing P by [P ], i.e.,

[P ] = {Q ∈ P0 : P ↔γ Q} .

The rules in Table 1 are all in de Simone’s format [5] if P , P ′, Q and Q′ are
treated as variables ranging over closed process terms and the last two rules are
treated as rule schemata generating a rule for every a, b such that γ(a, b)↓. Hence,
↔γ has the substitution property for the syntactic constructs of our language of
closed process terms, and therefore the constructs induce an algebraic structure
on P0/↔γ , with a constant 0, unary operations α. (α ∈ Aτ ) and four binary
operations +, ‖ , | and ‖ defined by 0 = [0], α.[P ] = [α.P ], and [P ]�[Q] = [P �Q]
for � ∈ {+, ‖ , |, ‖}.

Henceforth, we denote by Pγ (for γ an arbitrary communication function)
the algebra obtained by dividing out ↔γ on P0 with constant 0 and operations
α. (α ∈ Aτ ), +, ‖ , |, and ‖ as defined above. The elements of Pγ are called
processes, and will be ranged over by p, q and r.

2.1 Equational Reasoning

We can use the full language of process expressions to reason about the elements
of Pγ . A valuation is a mapping ν : V → Pγ ; it induces an evaluation mapping

[[ ]]ν : P → Pγ

inductively defined by [[x]]ν = ν(x), [[0]]ν = 0, [[α.P ]]ν = α.[[P ]]ν and [[P � Q]]ν =
[[P ]]ν � [[Q]]ν for � ∈ {+, ‖ , |, ‖}. A process equation is a formula P ≈ Q with
P and Q process terms; it is said to be valid (in Pγ) if [[P ]]ν = [[Q]]ν for all
ν : V → Pγ . If P ≈ Q is valid in Pγ , then we shall also write P ↔γ Q. The
equational theory of the algebra Pγ is the set of all valid process equations, i.e.,

EqTh(Pγ) = {P ≈ Q : [[P ]]ν = [[Q]]ν for all ν : V → Pγ} .



496 L. Aceto et al.

The precise contents of the set EqTh(Pγ) depend to some extent on the choice
of γ. For instance, the process equation x | y ≈ 0 is only valid in Pγ if γ is
the trivial communication function f ; if γ is the CCS communication function
h, then Pγ satisfies the weaker equation x | (y | z) ≈ 0.

Table 2. Process equations valid in every Pγ

A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x
A4 x + 0 ≈ x

L1 0 ‖ x ≈ 0
L2 α.x ‖ y ≈ α.(x ‖ y)
L3 (x + y) ‖ z ≈ x ‖ z + y ‖ z
L4 (x ‖ y) ‖ z ≈ x ‖ (y ‖ z)
L5 x ‖ 0 ≈ x

C1 0 | x ≈ 0
C2 a.x | b.y ≈ γ(a, b).(x ‖ y) if γ(a, b)↓
C3 a.x | b.y ≈ 0 if γ(a, b)↑
C4 (x + y) | z ≈ x | z + y | z
C5 x | y ≈ y | x
C6 (x | y) | z ≈ x | (y | z)
C7 (x ‖ y) | z ≈ (x | z) ‖ y

P1 x ‖ y ≈ (x ‖ y + y ‖ x) + x | y

Table 2 lists process equations that are valid in Pγ independently of the choice
of γ. (The equations L2, C2 and C3 are actually axiom schemata; they generate
an axiom for all α ∈ Aτ and a, b ∈ A. Note that if A is finite, then these
axiom schemata generate finitely many axioms.) Henceforth whenever we write
an equation P ≈ Q, we shall mean that it is derivable from the axioms in Table 2
by means of equational logic. It is well-known that the rules of equational logic
preserve validity. We therefore obtain the following result.

Proposition 2. For all process terms P and Q, if P ≈ Q, then P ↔γ Q.

A set of valid process equations is an equational base for Pγ if all other valid
process equations are derivable from it by means of equational logic. The purpose
of this paper is to prove that if we add to the equations in Table 2 the equation
x|y ≈ 0 we obtain an equational base for Pf , and if, instead, we add x| (y |z) ≈ 0
we obtain an equational base for Ph. Both these equational bases are finite, if
the set of actions A is finite.

Definition 3. Let P be a process term. We define the height of a process term
P , denoted h(P ), inductively as follows:

h(0) = 0 ,
h(x) = 1 ,
h(α.P ) = h(P ) + 1 ,

h(P + Q) = max(h(P ), h(Q)) ,
h(P � Q) = h(P ) + h(Q) for � ∈ {‖ , |, ‖}.

Definition 4. We call a process term simple if it is not 0 and not an alternative
composition.
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Lemma 5. For every process term P there exists a collection of simple process
terms S1, . . . , Sn (n ≥ 0) such that h(P ) ≥ h(Si) for all i = 1, . . . , n and

P ≈
n∑

i=1

Si (by A1, A2 and A4).

We postulate that the summation of an empty collection of terms denotes 0.
The terms Si will be called syntactic summands of P .

2.2 General Properties of Pγ

We collect some general properties of the algebras Pγ that we shall need in the
remainder of the paper.

The binary transition relations α−−→ (α ∈ Aτ ) on P0, which were used to asso-
ciate an operational semantics with closed process terms, will play an important
rôle in the remainder of the paper. They induce binary relations on Pγ , also
denoted by α−−→, and defined as the least relations such that P

α−−→ P ′ implies
[P ] α−−→ [P ′]. Note that we then get, directly from the definition of bisimulation,
that for all P, P ′ ∈ P0:

[P ] α−−→ [P ′] iff for all Q ∈ [P ] there exists Q′ ∈ [P ′] such that Q
α−−→ Q′.

Proposition 6. For all p, q, r ∈ Pγ :

(a) p = 0 iff there do not exist p′ ∈ Pγ and α ∈ Aτ such that p
α−−→ p′;

(b) α.p
β−−→ r iff α = β and r = p;

(c) p + q α−−→ r iff p α−−→ r or q α−−→ r;
(d) p ‖ q

α−−→ r iff there exists p′ ∈ Pγ such that p
α−−→ p′ and r = p′ ‖ q; and

(e) p | q α−−→ r iff there exist actions a, b ∈ A and processes p′, q′ ∈ Pγ such that
α = γ(a, b), p

a−−→ p′, q
b−−→ q′, and r = p′ ‖ q′; and

(f) p ‖ q α−−→ r iff p ‖ q α−−→ r or q ‖ p α−−→ r or p | q α−−→ r.

Let p, p′ ∈ Pγ ; we write p → p′ if p
α−−→ p′ for some α ∈ Aτ and call p′ a residual

of p.
It is easy to see from Table 1 that if P α−−→P ′, then P ′ has fewer symbols than

P . Consequently, the length of a transition sequence starting with a process [P ]
is bounded from above by the number of symbols in P .

Definition 7. The depth |p| of an element p ∈ Pγ is defined as

|p| = max{n ≥ 0 : ∃pn, . . . , p0 ∈ Pγ s.t. p = pn → · · · → p0}.

The branching degree bdeg(p) of an element p ∈ Pγ is defined as

bdeg(p) = |{(α, p′) : p
α−−→ p′}| .

We establish some useful properties of parallel composition on Pγ .
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Lemma 8. For all p, q ∈ Pγ , |p ‖ q| = |p| + |q|.

According to the following lemma and Proposition 2, Pγ is a commutative
monoid with respect to ‖, with 0 as the identity element.

Lemma 9. The following equations are derivable from the axioms in Table 2:

P2 (x ‖ y) ‖ z ≈ x ‖ (y ‖ z)
P3 x ‖ y ≈ y ‖ x
P4 x ‖ 0 ≈ x .

An element p ∈ Pγ is parallel prime if p 	= 0, and p = q ‖ r implies q = 0 or
r = 0. Suppose that p is an arbitrary element of Pγ ; a parallel decomposition of p
is a finite multiset [p1, . . . , pn] of parallel primes such that p = p1 ‖ · · · ‖ pn. (The
process 0 has as decomposition the empty multiset, and a parallel prime process
p has as decomposition the singleton multiset [p].) The following theorem is a
straightforward consequence of the main result in [10].

Theorem 10. Every element of Pγ has a unique parallel decomposition.

The following corollary follows easily from the above unique decomposition
result.

Corollary 11 (Cancellation). Let p, q, r ∈ Pγ . If p ‖ q = p ‖ r, then q = r.

Lemma 12. For all p, q ∈ Pγ , bdeg(p ‖ q) ≥ bdeg(p), bdeg(q).

We define a sequence of parallel prime processes with special properties that
make them very suitable as tools in our proofs in the remainder of the paper:

ϕi = τ.0 + · · · + τ i.0 (i ≥ 1). (1)

Lemma 13. (i) For all i ≥ 1, the processes ϕi are parallel prime.
(ii) The processes ϕi are all distinct, i.e., ϕk = ϕl implies that k = l.
(iii) For all i ≥ 1, the process ϕi has branching degree i.

3 An Equational Base for Pf

In this section, we prove that an equational base for Pf is obtained if the axiom

F x | y ≈ 0

is added to the set of axioms generated by the axiom schemata in Table 2. The
resulting equational base is finite if A is finite.

Henceforth, whenever we write P ≈F Q, we shall mean that the equation
P ≈ Q is derivable from the axioms in Table 2 and the axiom F.

Proposition 14. For all process terms P and Q, if P ≈F Q, then P ↔f Q.
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To prove that adding F to the axioms in Table 2 suffices to obtain an equational
base for Pf , we need to establish that P ↔f Q implies P ≈F Q for all process
terms P and Q. First, we identify a set of normal forms NF such that every
process term P can be rewritten to a normal form by means of the axioms.

Definition 15. The set NF of F-normal forms is generated by:

N ::= 0 | N + N | α.N | x ‖ N (x ∈ V , α ∈ Aτ ).

Lemma 16. For all P ∈ P there is an N ∈ NF s.t. P ≈F N and h(P ) ≥ h(N).

It remains to prove that for every two F-normal forms N1 and N2 there exists
a distinguishing valuation, i.e., a valuation ∗ such that if N1 and N2 are not
provably equal, then the ∗-interpretations of N1 and N2 are distinct. Stating it
contrapositively, for every two F-normal forms N1 and N2, it suffices to establish
the existence of a valuation ∗ : V → Pf such that

if [[N1]]∗ = [[N2]]∗, then N1 ≈F N2. (2)

The idea is to use a valuation ∗ that assigns processes to variables in such a
way that much of the original syntactic structure of N1 and N2 can be recovered
by analysing the behaviour of [[N1]]∗ and [[N2]]∗. To recognize variables, we shall
use the special processes ϕi (i ≥ 1) defined in Eqn. (1) on p. 498. Recall that the
processes ϕi have branching degree i. We are going to assign to every variable a
distinct process ϕi. By choosing i larger than the maximal ‘branching degrees’
occurring in N1 and N2, the behaviour contributed by an instantiated variable is
distinguished from behaviour already present in the F-normal forms themselves.

Definition 17. We define the width w(N) of an F-normal form N as follows:

(i) if N = 0, then w(N) = 0;
(ii) if N = N1 + N2, then w(N) = w(N1) + w(N2);
(iii) if N = α.N ′, then w(N) = max(w(N ′), 1);
(iv) if N = x ‖ N ′, then w(N) = max(w(N ′), 1).

The valuation ∗ that we now proceed to define is parametrised with a natural
number W ; in Theorem 21 we shall prove that it serves as a distinguishing
valuation (i.e., satisfies Eqn. (2)) for all F-normal forms N1 and N2 such that
w(N1),w(N2) ≤ W . Let �� denote an injective function

�� : V → {n ∈ ω : n > W}

that associates with every variable a unique natural number greater than W .
We define the valuation ∗ : V → Pf for all x ∈ V by

∗(x) = τ.ϕ�x� .

The τ -prefix is to ensure the following property.

Lemma 18. For every F-normal form N , bdeg([[N ]]∗) ≤ w(N).



500 L. Aceto et al.

Lemma 19. Let S be a simple F-normal form, let α ∈ Aτ , and let p be a process
such that [[S]]∗

α−−→ p. Then the following statements hold:

(i) if S = β.N , then α = β and p = [[N ]]∗;
(ii) if S = x ‖ N , then α = τ and p = ϕ�x� ‖ [[N ]]∗.

An important property of ∗ is that it allows us to distinguish the different types
of simple F-normal forms by classifying their residuals according to the number
of parallel components with a branching degree that exceeds W . Let us say that
a process p is of type n (n ≥ 0) if its unique parallel decomposition contains
precisely n parallel prime components with a branching degree > W .

Corollary 20. Let S be a simple F-normal form such that w(S) ≤ W .

(i) If S = α.N , then the unique residual [[N ]]∗ of [[S]]∗ is of type 0.
(ii) If S = x ‖ N , then the unique residual ϕ�x� ‖ [[N ]]∗ of [[S]]∗ is of type 1.

Theorem 21. For every two F-normal forms N1, N2 such that w(N1),w(N2) ≤
W it holds that [[N1]]∗ = [[N2]]∗ only if N1 ≈ N2 modulo A1–A4.

Proof. By Lemma 5 we may assume that N1 and N2 are summations of collec-
tions of simple F-normal forms. We assume [[N1]]∗ = [[N2]]∗ and prove that then
N1 ≈ N2 modulo A1–A4, by induction on the sum of the heights of N1 and N2.

We first prove that for every syntactic summand S1 of N1 there is a syntactic
summand S2 of N2 such that S1 ≈ S2 modulo A1–A4. To this end, let S1 be
an arbitrary syntactic summand of N1; we distinguish cases according to the
syntactic form of S1.

1. Suppose S1 = α.N ′
1; then [[S1]]∗

α−−→ [[N ′
1]]∗. Hence, since [[N1]]∗ = [[N2]]∗,

there exists a syntactic summand S2 of N2 such that [[S2]]∗
α−−→ [[N ′

1]]∗. By
Lemma 18 the branching degree of [[N ′

1]]∗ does not exceed W , so [[S2]]∗ has
a residual of type 0, and therefore, by Corollary 20, there exist β ∈ Aτ and
a normal form N ′

2 such that S2 = β.N ′
2. Moreover, since [[S2]]∗

α−−→ [[N ′
1]]∗,

it follows by Lemma 19(i) that α = β and [[N ′
1]]∗ = [[N ′

2]]∗. Hence, by the
induction hypothesis, we conclude that N ′

1 ≈ N ′
2 modulo A1–A4, so S1 =

α.N ′
1 ≈ β.N ′

2 = S2.
2. Suppose S1 = x‖ N ′

1; then [[S1]]∗
τ−−→ϕ�x�‖[[N ′

1]]∗. Hence, since [[N1]]∗ = [[N2]]∗,
there exists a summand S2 of N2 such that [[S2]]∗

τ−−→ ϕ�x� ‖ [[N ′
1]]∗. Since S2

has a residual of type 1, by Corollary 20 there exist a variable y and a normal
form N ′

2 such that S2 = y ‖ N ′
2. Now, since [[S2]]∗

τ−−→ ϕ�x� ‖ [[N ′
1]]∗, it follows

by Lemma 19(ii) that

ϕ�x� ‖ [[N ′
1]]∗ = ϕ�y� ‖ [[N ′

2]]∗ . (3)

Since [[N ′
1]]∗ and [[N ′

2]]∗ are of type 0, we have that the unique decomposition
of [[N ′

1]]∗ (see Theorem 10) does not contain ϕ�y� and the unique decomposi-
tion of [[N ′

2]]∗ does not contain ϕ�x�. Hence, from (3) it follows that ϕ�x� = ϕ�y�
and [[N ′

1]]∗ = [[N ′
2]]∗. From the former we conclude, by Lemma 13(ii) and the

injectivity of �.�, that x = y and from the latter we conclude by the induction
hypothesis that N ′

1 ≈ N ′
2 modulo A1–A4. So S1 = x ‖ N ′

1 ≈ y ‖ N ′
2 = S2.
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We have established that every syntactic summand of N1 is provably equal to
a syntactic summand of N2. Similarly, it follows that every syntactic summand
of N2 is provably equal to a syntactic summand of N2. Hence, modulo A1–A4,
N1 ≈ N1 + N2 ≈ N2, so the proof of the theorem is complete. ��

Note that, by instantiating the parameter W with a sufficiently large value, it
follows from the preceding theorem that there exists a distinguishing valuation
for every pair of F-normal forms N1 and N2. Thus, we get the following corollary.

Corollary 22. For all process terms P and Q, P ≈F Q if, and only if, P ↔f Q.

4 An Equational Base for Ph

We now consider the algebra Ph. Note that if A happens to be the empty set,
then Ph satisfies the axiom F, and it is clear from the proof in the previous
section that the axioms generated by the axiom schemata in Table 2 together
with F in fact constitute a finite equational base for Ph. We therefore proceed
with the assumption that A is nonempty, and prove that an equational base for
Ph is then obtained if we add the axiom

H x | (y | z) ≈ 0

to the set of axioms generated by the axiom schemata in Table 2. Again, the
resulting equational base is finite if the set A is finite.

Henceforth, whenever we write P ≈H Q, we shall mean that the equation
P ≈ Q is derivable from the axioms in Table 2 and the axiom H.

Proposition 23. For all process terms P and Q, if P ≈H Q, then P ↔h Q.

We proceed to adapt the proof presented in the previous section to establish the
converse of Proposition 23. Naturally, with H instead of F not every occurrence
of | can be eliminated from process terms; we therefore need to adapt the notion
of normal form.

Definition 24. The set NH of H-normal forms is generated by:

N ::= 0 | N + N | α.N | x ‖ N | (x | a) ‖ N | (x | y) ‖ N ,

with x, y ∈ V , α ∈ Aτ and a ∈ A.

Lemma 25. For every process term P there exists an H-normal form N such
that P ≈H N and h(P ) ≥ h(N).

We proceed to establish that for every two H-normal forms N1 and N2 there
exists a valuation ∗ : V → Ph such that

if [[N1]]∗ = [[N2]]∗, then N1 ≈H N2. (4)
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The distinguishing valuations ∗ will have a slightly more complicated definition
than before, because of the more complicated notion of normal form.

As in the previous section, the definition of ∗ is parametrised with a natural
number W . Since | may occur in H-normal forms, we now also need to make sure
that whatever process ∗ assigns to variables has sufficient communication abili-
ties. To achieve this, we also parametrise ∗ with a finite subset A′ = {a1, . . . , an}
of A that is closed under the bijection .̄ on A. (Note that every finite subset of
A has a finite superset with the aforementioned property.) Based on W and A′

we define the valuation ∗ : V → Ph by

∗(x) = a1.ϕ(1·�x�) + · · · + an.ϕ(n·�x�) .

We shall prove that ∗ satisfies Eqn. (4) provided that the actions occurring in
N1 and N2 are in A′ ∪{τ} and the width of N1 and N2, defined below, does not
exceed W . We must also be careful to define the injection �� in such a way that
the extra factors 1, . . . , n in the definition of ∗ do not interfere with the numbers
assigned to variables; we let �� denote an injection

�� : V → {m : m a prime number such that m > n and m > W}

that associates with every variable a prime number greater than the cardinality
of A′ and greater than W .

The definition of width also needs to take into account the cardinality of A′

to maintain that the maximal branching degree in [[N ]]∗ does not exceed w(N).

Definition 26. We define the width w(N) of an H-normal form N as follows:

(i)–(iii) see Definition 17(i–iii).
(iv) if N = x ‖ N ′, then w(N) = max(w(N ′), n);
(v) if N = (x | α) ‖ N ′, then w(N) = max(w(N ′), 1); and
(vi) if N = (x | y) ‖ N ′, then w(N) = max(w(N ′), n).

Lemma 27. For every H-normal form N , bdeg([[N ]]∗) ≤ w(N).

Lemma 28. Let S be a simple H-normal form, let α ∈ Aτ , and let p be a
process such that [[S]]∗

α−−→ p. Then the following statements hold:

(i) if S = β.N , then α = β and p = [[N ]]∗;
(ii) if S = x ‖ N , then α = ai and p = ϕi·�x� ‖ [[N ]]∗ for some i ∈ {1, . . . , n};
(iii) if S = (x | a) ‖ N , then α = τ and p = ϕi·�x� ‖ [[N ]]∗ for the unique

i ∈ {1, . . . , n} such that a = ai; and
(iv) if S = (x | y) ‖ N , then α = τ and p = ϕi·�x� ‖ ϕj·�y� ‖ [[N ]]∗ for some

i, j ∈ {1, . . . , n} such that ai = aj .

As in the previous section, we distinguish H-normal forms by classifying their
residuals according to the number of parallel components with a branching de-
gree that exceeds W .

Corollary 29. Let S be a simple H-normal form such that w(S) ≤ W and such
that the actions occurring in S are included in A′ ∪ {τ}.
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(i) If S = α.N , then the unique residual of [[S]]∗ is of type 0.
(ii) If S = x ‖ N , then all residuals of [[S]]∗ are of type 1.
(iii) If S = (x | a) ‖ N , then the unique residual of [[S]]∗ is of type 1.
(iv) If S = (x | y) ‖ N , then all residuals of [[S]]∗ are of type 2.

Theorem 30. For every two H-normal forms N1, N2 such that w(N1),w(N2) ≤
W and such that the actions occurring in N1 and N2 are included in A′ ∪ {τ} it
holds that [[N1]]∗ = [[N2]]∗ only if N1 ≈ N2 modulo A1–A4, C5.

Proof. The proof of this theorem is very similar to the proof of Theorem 21, only
there are two more cases to consider and the reasoning is slightly more complex
due to the more complex definition of ∗. ��

Corollary 31. For all process terms P and Q, P ≈H Q if, and only if, P ↔h Q.
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