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A finite mixture latent trajectory model for modeling

ultrarunners’ behavior in a 24-hour race

Francesco Bartolucci & Thomas Brendan Murphy

June 22, 2015

Abstract

A finite mixture latent trajectory model is developed to study the performance and

strategy of runners in a 24-hour long ultra running race. The model facilitates

clustering of runners based on their speed and propensity to rest and thus reveals

the strategies used in the race. Inference for the adopted latent trajectory model is

achieved using an expectation-maximization algorithm. Fitting the model to data

from the 2013 World Championships reveals three clearly separated clusters of run-

ners who exhibit different strategies throughout the race. The strategies show that

runners can be grouped in terms of their average moving speed and their propensity

to rest during the race. The effect of age and gender on the probability of belonging

to each cluster is also investigated.

Keywords: Clustering; Expectation-maximization algorithm; Non-ignorable

drop-out; Ultra running
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1 Introduction

The International Association of Ultrarunners (IAU) 24-Hour World Championships were

held in Steenbergen, Netherlands from May 11th-12th, 2013. In this race, two hundred

and ninety nine competitors ran for twenty four hours on a course that had a 2.314 km lap.

The runners had a chip on their shoe, so their lap count could be recorded automatically

and so that time that they finished each lap was also recorded. At the end of the 24-hour

time period, an alarm is sounded and all runners must stop running immediately. Then,

the fraction of the final lap is recorded for each runner. Throughout the race, during any

of these laps a runner can continue running, rest for a while and, obviously, he/she can

leave the competition before the end. The strategy and performance of the runners in the

event are potentially very different due to the age and gender of the participants.

In this paper, we study these data to uncover the strategies used by the runners in

the race. We anticipate that the runners will fall into clusters depending on how their

strategy might evolve throughout the race. The study of the pacing strategies used allows

for comparing the strategies used to those in races over shorter distances. Further, the

influence of age and gender on performance can be assessed.

In order to analyze these data and, in particular, cluster runners according to the

adopted strategy, we introduce a latent trajectory model in the spirit of Roeder et al.

(1999); see also (eg. Muthén and Shedden, 1999; Muthén, 2004; Bollen and Curran, 2006).

In practice, the approach is based on a finite mixture of linear and multinomial logit

regressions models. The linear regression component is for the speed observed at every lap

completed by the runner as response variable. The multimonial logit regression component

is for the a categorical response variable that, again for every lap, indicates if the subject

is regularly running, resting, or leaves before completing the lap. In this way we account

for a form of non-ignorable drop-out.

The proposed model accounts for a number of aspects of modeling race duration data

that have not been accounted for in many previous studies. In fact, previous studies
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aggregate the runner pace data over fixed distance intervals and analyze the data using

analysis of variance methods (eg. Hanley, 2015). This approach removes important infor-

mation when the aggregation is used and the analysis of variance doesn’t account for the

temporal dependence in the pacing data throughout the race. Our model accounts for

the temporal dependence in the runner speeds within the race. We explicitly model the

runner resting or stopping, which is a feature of ultra running data that doesn’t appear

in races over shorter distances. Thus, the clustering of the runners into distinct strategies

is determined by the runner speed and propensity to stop rather than their speed alone

which can vary hugely if resting is not explicitly accounted for in the model.

The paper is structured as follows. In Section 2 we introduce the data from the IAU

24-Hour World Championships and discuss previous studies on race pacing. In Section 3

we develop the model for analyzing the runners’ strategies and discuss issues to do with

model fitting and model selection. The results of fitting the model are presented in

Section 4 and the paper concludes by discussing the analysis and the methodology in

Section 5.

We make the data and the R code that we used to fit the model available to the reader

upon request.

2 Preliminaries

In the following we provide more details on the background and the data studied in this

article.

2.1 Background

The IAU 24-Hour World Championships were held in Steenbergen, Netherlands, in 2013.

Over the 24-hour period a total of two hundred and ninety nine competitors ran on a

course that had a 2.314 km lap. The athletes in the race were selected from their home

country using qualification criteria set by their home ultrarunning association, thus most

4



participants would be considered to be elite ultrarunners with experience in events that

are challenging in distance and duration.

The weather over the two race days averaged 10o C which was 3o C lower than the

mean temperature for that time of year in the region. Further, there was a considerable

amount of precipitation, 8.8 mm of rain over the two days which included the race, and

the winds were about 6 m/s with gusts as strong as 17 m/s. So, the race conditions were

considered to be very difficult. These weather conditions increased the necessity to stop

and change strategy during the race and contributed to the high drop-out rate due to

injury, hypothermia, exhaustion and other factors during the 24 hours.

A number of factors have been shown to influence the performance of a runner and

their probability of completion in extreme ultrarunning events of the type being analyzed

herein. Zingg et al. (2013) found that 40-44 year old men and 35-39 year old women had

the fastest pace in 24-hour races. Further, they found that female athletes have an average

speed that is approximately 10% slower than the male athletes. Lambert et al. (2004)

studied the decrease in pace in 100 km ultra races and showed that the top runners were

able to maintain their speed for 50 km but declined by 15% from their starting speed by

the finish; however, in the IAU 24-hour race data the runners tend to cover much greater

distances than those studied therein. Further, Kao et al. (2008) found that runners in

a 24-hour race lose 5.05 ± 2.28% of their body weight, so the nutritional and hydration

demands of such events are crucial and thus the races can have high attrition throughout.

A significant amount of research has been completed on pacing in athletic events

including running, cycling, swimming, speed skating and triathlon. Abbiss and Laursen

(2008) review the strategies used and characterize them into: negative pacing (where

speed increases throughout the event), all-out pacing (where there is an initial burst of

speed followed by a slowly decreasing speed), positive pacing (where there is a gradually

decreasing speed), even pacing (where the speed is constant), parabolic pacing (where the

speed gradually decreases through an event but increases at a later stage in the event)
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and variable pacing (where the speed varies throughout an event, usually due to external

factors like geography or environment). Within the parabolic pacing strategy, three shapes

were characterized, a U-shaped (with a symmetric pacing profile), a J-shaped (where a

small pacing decrease is followed by a steep rise in pace) and reverse J-shaped (where a

strong pacing decrease is followed by a small rise in pace). Hanley (2015) studied pacing in

the IAAF World Half Marathon (21.1 km) championships and found that the top runners

maintained a constant speed for 15 km followed by a small decrease from 15–20 km and a

strong increase in speed for the final 1.1 km whereas other runners had a gradual decrease

in speed over the first 20 km followed by an increase for the final 1.1 km. Lima-Silva

et al. (2010) did a similar analysis for a 10 km running race and observed similar pacing

profiles where the pace was constant or slowly decreasing for the first 9600 m followed by

a sudden increase for the final 400 m. Further, March et al. (2011) and Santos-Lozano

et al. (2014) found similar pacing profiles in races over the marathon distance.

There have been fewer studies of pacing within ultra marathon events. However,

Lambert et al. (2004) showed that in a race over 100 km, the pace of athletes tends to

decrease over the duration of the event; they didn’t observe a strong increase at the end

of the race, but this may because their data are aggregated over 10 km intervals.

Therefore, the performance in terms of speed, minimizing resting and avoiding drop-

ping out are dictated by a number of factors for runners in ultra running events of long

duration. Thus, it is of great interest to investigate the strategies used and to see how

different clusters of runners utilize different strategies during such an event. This will also

allow for comparison of the pacing strategies in 24-hour ultra races with races of a shorter

duration.

2.2 Data

For each of the n = 299 runners we have a record of the lap time for each completed lap

until the 24-hour period was completed. Overall, 219 of the runners were still running at
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the end of the 24-hour period and 80 runners finished running a significant time period

before the end of the 24-hour period.

In Table 1 we report some summary statistics for the runners: age at the start of the

race, the number of completed laps, number of laps completed in a non-standard way (eg.

resting during the lap), speed per lap and average speed per athlete (km/h). In these

summaries, we consider a lap to be not completed in a non-standard way when the lap

speed is below 4 km/h which indicates that the runner may have stopped during the lap

or commenced walking during the lap. Further, 68% of the participants in the race were

male and 32% were female. In order to properly read the table, note that the column

“Speed” refers to single laps, whereas the column “Av. Speed” is referred to athletes and

then it happens that the maximum average speed is lower than the maximum speed and

the minimum average speed is higher than the minimum speed.

Table 1: Descriptive statistics for the runners, the lap count and the lap speed data for
the participants in the race.

Age N. laps N. laps Speed Av. speed
(not running) (km/h) (km/h)

Min. 21.0 14.000 0.000 4.000 4.133
1st Qu. 39.0 55.000 0.000 8.106 8.312
Median 45.0 80.000 0.000 9.450 8.998
Mean 45.5 74.550 1.087 9.184 8.965

3rd Qu. 51.0 92.000 2.000 10.440 9.708
Max. 72.0 116.000 13.000 13.930 11.390

The only covariates available for the runners are age and gender. Whilst the perfor-

mance of the runners may depend on many other factors including training, experience

and nutrition, this information is not available for modeling purposes. However, the

event is one for elite athletes selected by their home nation, so the athletes need to be

experienced and well prepared to participate in the event.

The main variables of interest in this study are the runner’s speed per lap and a

categorical variable that records the runner’s behavior (or status) during a lap (ie. if the

subject is running, resting, or leaves the race in a certain lap). The trajectory of the speed
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and of the categorical variable throughout the race are displayed in Figure 1.

The overall appearance from Figure 1 is that the speed has a convex shaped behavior

with respect to the lap number. Different explanations may be conjectured for this shape.

A natural explanation is that runners tend to decrease the speed during the first part of

the competition but they increase the speed when the end of the race is getting close.

However, there is a drop-out effect due to the race being run for a fixed time (24 hours)

rather than a fixed distance. Thus, faster runners complete more laps, whereas slower

runners complete fewer laps and they are not considered in the computation of the average

speed when the lap number is large. Moreover, there is one further form of drop-out due

to a runner leaving the race before the end of the competition and this may have a similar

effect on the shape of the average lap speed.

We also note that the proportion of subjects still running dramatically decreases after

the 50th lap and this is again due the two forms of drop-out mentioned above. On the

other hand, we have a parabolic behavior for the proportion of subjects resting in a certain

lap with the proportions being very low for low lap numbers and decreasing again for high

lap numbers.

Thus, appropriate statistical modeling of the race data will need to account for the

features found in this exploratory data analysis; the development of such a model is given

in Section 3.

3 The Statistical Model

For the sample of n runners, let Li denote the random variable for the number of laps

completed by runner i before the end of the race, with i = 1, . . . , n. Moreover, let Bil

be a discrete random variable for the behavior (or status) of runner i during lap l, with

l = 1, . . . , li, where li is the realization of Li (the convention of using lower-case letters for

realizations of random variables or vectors is used throughout the article). In particular,

Bil = 0 stands for a standard run lap, Bil = 1 for a lap in which the runner rests, and
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Figure 1: The top panel shows trajectories of speed for the individual runners (one every
five) and the average speed per lap in red; the middle panel shows the proportion of subjects
still running in a certain lap; the bottom panel shows the proportion of runners resting in
a certain lap.
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Bil = 2 denotes that subject i leaves before the end of the race during lap l. For a runner

with a good performance we expect to observe all values of Bil equal to 0 (or almost all

values equal to 0). Finally, we denote the speed at which runner i completed lap l by Yil.

The observed speed, yil, is available for i = 1, . . . , n and l = 1, . . . , li and when Bil = 0;

when Bil = 1 the observed speed, yil, is not relevant in our analysis and when Bil = 2 no

speed is observed because the runner is finished running.

3.1 Model assumptions

We adopt a latent trajectory model (Muthén and Shedden, 1999; Roeder et al., 1999;

Muthén, 2004; Bollen and Curran, 2006) that accounts for different possible strategies

in running and at the same time facilitates clustering runners according to the adopted

strategy by considering that for certain laps they may be running normally (Bil = 0), also

they may have a rest (Bil = 1), they may finish before the end of the race (Bil = 2), or they

finish because the 24-hour time limit is reached. Essentially different lap performances

are grouped into a finite number of possible states and different strategies are represented

by specific probabilities for these states. Also the runners are clustered in finite number

of latent classes according to their overall performance and the a priori probabilities to

belong to each cluster are allowed to depend on individual covariates.

Let Ui denote a latent variable for the overall performance of runner i and let k

denote the number of its possible values, labeled from 1 to k, with the corresponding

mass probabilities indicated by πiu = p(Ui = u) where πiu may depend on runner-specific

covariates. Each of the values (u) identifies a cluster of runners. The model is based on

the following assumptions for every runner i given that he/she is in cluster u:

• on the first lap (l = 1), Bil has a generalized Bernoulli distribution with probabilities
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parametrized on the basis of multinomial logits, that is,

p(Bil = 0|Ui = u) =
1

1 + exp(x′

lγ1u) + exp(x′

lγ2u)
,

p(Bil = 1|Ui = u) =
exp(x′

lγ1u)

1 + exp(x′

lγ1u) + exp(x′

lγ2u)
, (1)

p(Bil = 2|Ui = u) =
exp(x′

lγ2u)

1 + exp(x′

lγ1u) + exp(x′

lγ2u)
,

where xl is a function of l; in particular, every xl is a column vector containing the

terms of an orthogonal polynomial (Kennedy and Gentle, 1980) of order r, which in

our application is fixed equal to 3. If Bil = 0, then we assume the following model

for the lap speed:

Yil|Bil = 0, Ui = u ∼ N(µlu, σ
2), µlu = x′

lβu. (2)

If Bil = 1 then the distribution of Yil is left unspecified whereas if Bil = 2 then the

process is stopped. The process is also stopped if the distance between the time of

the lap (depending on the speed) is close to the end. Parameter vectors γ
1u, γ2u,

and βu and cluster specific, whereas the variance σ2 is common to all clusters.

• for the following laps (l > 1) and provided that the runner is still in the competition,

Bil and Yil are assumed to have the same distribution as above. Again, if the overall

time is close to the end of the race or Bil = 2, then the precess is stopped as the

runner leaves the competition.

Note that there are two forms of drop-out. The first is due to the overall time of

the race which is non-informative as it deterministically depends on the previous values

of response variables. The second, for the runner leaving the competition before the

end, is informative and it is explicitly accounted in by the multinomial logistic regression

model (1). Also note that, according to assumption (2), the lap speeds are conditionally

independent given latent class and that running normally. This assumption needs to be

carefully checked on the basis of the corresponding residuals as we will show in Section 4.
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Additionally, we allow for individual covariates to affect the distribution of the latent

variables Ui. In particular, we adopt a parametrization based on multinomial logits of the

following type:

log
p(Ui = u)

p(Ui = 1)
= log

πiu

πi1

= z′

iδu, u = 2, . . . , k, (3)

where zi is the vector of covariates (including a constant term for the intercept) for

individual i, which are considered as fixed and given and δu is the corresponding vector

of regression parameters for being in the u-th category instead of the first category. In

the context of this race we have the age and gender of each runner available and these

are included as covariates.

The labeling on the clusters is arbitrary and thus the model is only identifiable up to a

permutation of the cluster labels. This problem is known as the label-switching problem

in mixture models (Redner and Walker, 1984). When studying the fitted models we label

the clusters in terms of increasing race performance so that the results are presented in

an intuitive manner.

3.2 Maximum likelihood estimation

In order to express the model likelihood, we have first to express the distribution of the

response variables given the latent variables. In particular, for each subject i we observe

the sequence bi = (bi1, . . . , bili)
′; we also observe yi,obs which corresponds to all or a part

of the sequence yi = (yi1, . . . , yili)
′. In particular, if all elements of bi are equal to 0, then

yi,obs and yi will coincide; if some elements of bi are equal to 1 or 2, then yi,obs will be a

subvector of yi.

Based on the assumptions formulated in the previous section, the distribution of in-

terest has the following density function:

f(bi,yi,obs|Ui = u) =

[

li
∏

l=1

p(bil|Ui = u)

][

li
∏

l=1: bil=0

φ(yil|Ui = u)

]

, u = 1, . . . , k,

where p(bil|Ui = u) is defined in (1), the second product is extended to all observed el-
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ements of yi, and φ(yil|Ui = u) denotes the density of the normal distribution defined

according to assumption (2). As in a standard finite mixture model, the manifest distri-

bution has density that may be obtained as

f(bi,yi,obs) =
k
∑

u=1

πiuf(bi,yi,obs|Ui = u).

This is the basis for the model log-likelihood, which has expression

ℓ(θ) =
n
∑

i=1

log f(bi,yi,obs),

where θ is a vector containing all model parameters, that is, βu, γ1u, γ2u, δu, for u =

1, . . . , k, and σ2.

In order to maximize ℓ(θ) with respect to θ, we rely on the Expectation-Maximization

(EM) algorithm (Dempster et al., 1977). This algorithm has been used extensively for

fitting mixture models (see McLachlan and Krishnan, 1997; McLachlan and Peel, 2000;

Fraley and Raftery, 2002) in the maximum likelihood framework.

The EM algorithm is based on alternating the following two steps until convergence

in the target function:

• E-step: it consists of computing the conditional expected value, given the observed

data and the current value of parameters, of the complete data log-likelihood, which

is defined as follows:

ℓ∗(θ) =
n
∑

i=1

k
∑

u=1

ziu log[πiuf(bi,yi,obs|Ui = u)].

In the above expression, ziu is an indicator variable equal to 1 if subject i belongs

to cluster u (ie. Ui = u), and to 0 otherwise.

• M-step: the expected value resulting from the E-step is maximized with respect to

θ and, in this way, this parameter vector is updated.

In practice, the E-step reduces to compute the (conditional) expected value of each
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indicator variable ziu, denoted by ẑiu, by the following simple rule on the basis of the

current value of the parameters:

ẑiu =
πiuf(bi,yi,obs|Ui = u)

f(bi,yi,obs)
.

Regarding the M-step, we can use explicit solutions for the parameter vectors βu and

for the common variance σ2:

βu =

(

n
∑

i=1

ẑiu

li
∑

l=1: bil=0

xlx
′

l

)−1
n
∑

i=1

ẑiu

li
∑

l=1: bil=0

yilxl, u = 1, . . . , k,

σ2 =

∑n

i=1

∑k

u=1
ẑiu
∑li

l=1: bil=0
(yil − µlu)

2

∑n

i=1
oi

,

where oi is the dimension of yi,obs, that is, the number of regularly completed laps by

runner i. On the other hand, updating the remaining parameters γ
1u and γ

2u in (1)

requires an iterative algorithm of a Netwon-Raphson type. However, this is a simple algo-

rithm since the objective function being maximized is of the same form as the objective

function used when fitting a standard multinomial logit model with weights by maximum

likelihood. The same Netwon-Raphson algorithm is also applied to update the parame-

ters δu in (3) that affect the distribution of each latent variables Ui on the basis of the

individual covariates. In the case where the πiu probabilities are assumed to be equal

for all subjects (ie. πiu = πu), we have an explicit solution for the maximization of the

expected complete-data log-likelihood with respect to the πu probabilities:

πu =
1

n

n
∑

i=1

ẑiu, u = 1, . . . , k.

It is important, as for any other iterative algorithm, that the EM algorithm described

above is suitably initialized; this amount to guessing starting values for the parameters in

θ. We suggest to use both a simple rule providing sensible values for these parameters and

a random rule which allows us to properly explore the parameter space. Just to clarify,

we choose the starting values for the mass probabilities πiu as 1/k for u = 1, . . . , k under

14



the first rule, which is equivalent to fix the same size for all clusters. The corresponding

random starting rule is instead based on first drawing each parameter πiu from a uniform

distribution between 0 and 1 and then normalizing these values.

We recall that trying different starting values for the EM algorithm is important to

face the problem of multimodality of the likelihood function that may arise in finite

mixture model and combining different initialization rules (deterministic and random) is

an effective strategy in this regard.

3.3 Model selection

Given that our application is focused on the clustering of individuals in separate groups,

the main selection criterion we use for the number of these groups is the Normalized

Entropy Criterion (NEC; Celeux and Soromenho, 1996; Biernacki et al., 1999). This

criterion is based on the following index:

NECk =
−
∑n

i=1

∑k

u=1
ẑiu log ẑiu

ℓ̂k − ℓ̂1
, k ≥ 2,

with NEC1 = 1, where the numerator corresponds to the entropy and the denominator

to the difference in maximum log-likelihood between the model with k classes and with 1

class. According to this approach, the value of k corresponding to the minimum of NECk

has to be preferred, as it corresponds to the model being the best compromise between

separation of the classes (as measured by the entropy) and goodness-of-fit (measured by

the log-likelihood).

For completeness, we mention that another important criterion for the number of

components of a mixture model is the Bayesian Information Criterion (BIC; Schwartz,

1978; Kass and Raftery, 1995), which is based on the minimization of the index

BICk = −2ℓ̂k + log(n)(#par),

where #par is the number of free parameters in the model; for an illustration see McLach-
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lan and Peel (2000), Chapter 6. However, it is known that this criterion typically leads

to a less parsimonious model than the model selected with NEC and, in particular, with

classes not well separated. Therefore, given the target of our application, we prefer to

rely on NEC.

4 Results

The proposed model was fitted, using maximum likelihood, for increasing values of k from

1 to 5. For each model fit, the value of the maximized likelihood, the entropy, NEC and

BIC values were computed; the results are shown in Table 2.

Table 2: Model summaries for the choice of the appropriate number of strategies (k).

k Log-likelihood #par BIC Entropy NEC
1 -42559.12 12 85186.65 0.0000 1.000000
2 -37979.32 27 76112.55 3.0549 0.000667
3 -36073.36 42 72386.13 3.7283 0.000575
4 -35054.75 57 70434.43 5.9694 0.000795
5 -34539.12 72 69488.67 8.2349 0.001027

Considering that our primary aim is the clustering of runners into distinct states, we

rely on the NEC criterion and choose k = 3 clusters, corresponding to the minimum of the

corresponding index. In any case, we have very good separation (low entropy) between

the clusters under any choice of k; thus the model clearly separates runners into clusters

and does this in a definitive manner.

For the selected model, with k = 3, the parameter estimates together with correspond-

ing standard errors are reported in the Tables 3, 4 and 5. The clusters have been labelled

according to average speed, with the lowest speed cluster labelled as Cluster 1 and the

highest speed cluster labelled as Cluster 3.

In order to interpret the clusters according to the estimated parameters, in Figure 2 we

show the mean lap speed and the probability of Bil = 0 and the conditional probability

of Bil = 1 given Bil > 0. These curves are based on the estimated parameters, but

the represented points are obtained by a Monte Carlo simulation, in order to account
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Table 3: Estimates of the parameters βu, with standard errors in parentheses.

Cluster (u)
Power 1 2 3

0 9.524 9.235 10.014
(0.209) (0.042) (0.016)

1 27.970 2.482 -6.514
(2.975) (0.606) (0.228)

2 29.615 16.135 6.697
(2.126) (0.497) (0.229)

3 5.619 6.702 4.480
(0.874) (0.278) (0.190)

Table 4: Estimates of the parameters γ
1u and γ

2u. The standard error of the estimates
are given in parentheses.

Bil

Cluster (u) Power 1 2
1 0 -12.088 -12.189

(2.829) (0.603)
1 -113.806 -88.901

(39.343) (2.426)
2 -82.106 -71.177

(25.082) (3.915)
3 -18.031 -14.235

(9.989) (5.665)
2 0 -6.120 -7.022

(0.431) (0.747)
1 2.824 11.623

(10.856) (19.827)
2 -27.313 -23.202

(4.749) (8.282)
3 2.789 9.233

(5.842) (10.780)
3 0 -8.199 -7.644

(2.163) (0.863)
1 33.418 11.216

(39.297) (19.556)
2 -37.100 -24.525

(21.962) (9.541)
3 1.834 3.251

(16.060) (11.213)
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Table 5: Estimates of the parameters δu with standard errors in parentheses.
Cluster (k)

Covariate 2 3
intercept 1.135 0.777

(0.227) (0.240)
gender -0.298 -0.512

(0.320) (0.345)
age -0.003 -0.034

(0.024) (0.025)

for the non-informative drop-out due reaching the race time deadline of 24 hours. This

procedure amount to randomly draw a large number of trajectories for each cluster and

then computing the average trajectory. In practice, each simulated trajectory is obtained

as of series of values randomly drawn from the conditional distribution of the response

variables Yil and Bil given the cluster.

Interestingly, all of the clusters are characterized by a decreasing speed profile but

with a rise in speed prior to the end of the race. The rise is particularly strong in Cluster

1 but this can be explained by the fact that a number of runners from this cluster drop

out and the remaining runners have a higher average speed than those in the laps prior

to when they who dropped out. Further, Cluster 2 and 3 initially have a flat speed profile

before the profile drops and eventually rises. Thus, the speed profiles of the groups can

be characterized as a mix of those outlined in Abbiss and Laursen (2008). Most runners

follow an even pacing initial phase for the early laps but this is followed by a reverse-J

pacing phase. The athletes in the higher performing groups are able to maintain the even

pacing for more laps than the lower performing groups.

It is also worth noting that the effect of the runner covariates, gender and age, as shown

in Table 5 are only minor. The possibility of including higher order regression terms was

considered but these terms had little effect on the model, so they are omitted. The fitted

cluster probabilities can also be seen in Figure 3 where the probability of each cluster

membership is shown for males and females and the range of ages of the participants

in the race; the probabilities are approximately constant with respect to the covariates.
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Figure 2: The top panel shows the estimated mean trajectories given the cluster; the middle
panel shows the trajectories of the conditional probability that a subject is still running in
a certain lap; the lowest panel shows the proportion of a subject resting in a certain lap.
The solid line corresponds to the first group, the dashed line to the second group, and the
dotted line to the third group.
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In addition, it is clear that Cluster 2 is the most prevalent, followed by Cluster 3 and

Cluster 1. Thus, the cluster of slowest runners is the least prevalent one within the set of

competitors.
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Figure 3: Probability of belonging to each cluster for each gender and age. The pink lines
show the probabilities for females and the blue lines for males. The probability of belonging
to Cluster 1 is shown as solid line, Cluster 2 as a dashed line and Cluster 3 as a dotted
line.

As already noticed in the entropy calculations from Table 2, the clustering divides the

runners into very distinct clusters. In fact, the maximum a posteriori probabilities are

almost all very close to 1, with a mean value of 0.9933. Thus, the model has effectively

clustered the runners into different and distinct strategies.

The trajectories of the runners in each cluster are reported in Figures 4. The plot of

the trajectories and the mean trajectory shows that the model fits the data very well and

the differences between the clusters are highlighted. In particular, the speed trajectory for

each cluster is quite similar but the runners in different clusters are running at different

average speeds (increasing from Cluster 1 to Cluster 3). Further, the clusters are also

characterized by the rate of resting and dropping out with these behaviors being less

prevalent and later as the cluster number goes from 1 to 3.

Finally, to check the conditional independence assumption in equation (2), we obtained

the residuals for each athlete and lap as the difference between the observed speed and
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Figure 4: Trajectories of the runners assigned to each cluster with corresponding mean
(solid) and estimated mean on the basis of the parameters (dashed).
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the predicted speed given the latent class assignment of the athlete. We then computed

the autocorrelation of the residuals for each athlete given that he/she is running normally,

obtaining in this way n autocorrelation coefficients. Table 6 shows the main descriptive

statistics for these autocorrelations.

Table 6: Descriptive statistics about the athlete-specific autocorrelations coefficients be-
tween residuals.

Minimum 1st Quartile Median Mean 3rd Quartile Maximum
-0.3625 0.3091 0.4929 0.4681 0.6585 0.9583

These results in Table 6 indicate that the aforementioned assumption of conditional

independence between lap speeds may be too restrictive. To overcome this limitation we

suggest some possible extension in Section 5.

5 Discussion & Conclusions

The running strategies of the runners in the 2013 International Association of Ultrarunners

24-Hour World Championships has been investigated using a latent trajectory model. The

model was constructed to capture the changing speeds of the runners in the race and to

facilitate modeling runners who rest or stop during the race duration.

The modeling strategy established that there were three distinct clusters of runners

who differed in both their running speed and their prevalence to rest or stop running

completely. In all clusters, the runners exhibited a gradual decrease in pace throughout

the race; this is similar to the pacing observed by Lambert et al. (2004) in a 100 km race.

However, interestingly, in all clusters the average speed of runners increased when the end

of the race became closer; this is similar to what has been previously observed in a wide

range of race distances as outlined in Section 2.

Further, the propensity to stop shows a peak towards the middle of the race only. The

group of best performing runners had very little tendency to stop at any point during

the race. The cluster membership was not strongly influenced by either gender or age.
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The middle speed runners form the largest cluster, faster runners forming the next largest

cluster and slower runners forming the smallest cluster.

Likelihood-based inference for this model was achieved using the EM algorithm com-

bined with model selection using the normalized entropy criterion, so that clearly sepa-

rated clusters were yielded.

Limitations of the proposed approach are mainly due to the structure of the data and,

in particular, to the reduced number of covariates that are available. In fact, it would be

of interest to dispose of more details about the athletes, such as previous performances

in similar races. However, if available, this information may be easily included among

the individual covariates affecting the probability of belonging to each cluster. Similarly,

time-varying covariates related, for instance, to the temporary weather conditions, could

be included in the model, but this would require a suitable data manipulation to take into

account that the outcomes are referred to each lap run by every athlete and the same lap

number may correspond to different moments of the race for different athletes. This is

mainly due to the variability of the performances in terms of lap speed.

The proposed approach assumes that, given the latent class, the probability of running

normally at any time is independent of any other time. In addition, given the latent class

and running normally, the speed at a particular time is conditionally independent of

that at any other times. In particular, the diagnostic analysis illustrated at the end of

previous section indicates that the second assumption is restrictive for the data at issue.

A possibility to relax this assumption is to assume a mixed-effects model based on random

intercepts and/or regression coefficients as in the approach of Muthén and Shedden (1999).

This approach may result in more precise inferences and reduced bias by addressing the

dependence between consecutive laps.

Finally, it is also important recalling that a basic assumption of the proposed model is

the independence between athletes in terms of behavior during the race. This assumption

rules out possible interactions between runners which would be of interest to study. In
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particular, there might exist particular “group” strategies that lead to an improvement

of the performance of certain athletes. This again would require a more complex data

structure and, in particular, a much more sophisticated model having elements of a model

for social networks that could be the object of future research.
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Zingg, M., Rüst, C. A., Lepers, R., Rosemann, T., and Knechtle, B. (2013). Master

runners dominate 24-h ultramarathons worldwide—a retrospective data analysis from

1998 to 2011. Extreme Physiology and Medicine, 2:21.

26


