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Department of Computer Science, University of Bremen

Abstract. In recent years, a tight connection has emerged between
modal logic on the one hand and coalgebras, understood as generic tran-
sition systems, on the other hand. Here, we prove that (finitary) coal-
gebraic modal logic has the finite model property. This fact not only
reproves known completeness results for coalgebraic modal logic, which
we push further by establishing that every coalgebraic modal logic ad-
mits a complete axiomatization of rank 1; it also enables us to establish
a generic decidability result and a first complexity bound. Examples cov-
ered by these general results include, besides standard Hennessy-Milner
logic, graded modal logic and probabilistic modal logic.

1 Introduction

Coalgebra has recently had increasing success as a generic theory of reactive
systems, providing a unifying perspective on a wide variety of system types [21].
Many concepts of concurrency theory can be cast in the coalgebraic framework;
this includes general notions of bisimulation, coinduction, and corecursion, as
well as a generic modal logic [10, 19, 12, 15, 17]. The role of this coalgebraic
modal logic is twofold: on the one hand, one obtains a suitable generic reac-
tive specification language, which respects encapsulation of the state space, i.e.
relates well to behavioral equivalence of states [17, 23], and is sufficiently intu-
itive for use in actual software specification languages, including object-oriented
specification [20, 12, 14]. On the other hand, coalgebraic modal logics frequently
correspond to known modal logics such as graded modal logic or probabilistic
modal logic, and thus provide these logics with a coalgebraic semantics.

In [16] and subsequent work [5, 11], a (necessarily weak) completeness re-
sult for coalgebraic modal logic has been established stating that a deductive
system consisting of propositional entailment, a congruence rule, and a given
set of axioms of rank 1 is weakly complete, provided that the axioms are in a
precise sense sufficiently strong; the latter property is referred to as reflexivity.
Here, we exhibit a finite model construction which relies on reflexivity. We thus
reprove the mentioned weak completeness result. Moreover, we show that every
coalgebraic modal logic admits a reflexive axiomatization, which then implies
that coalgebraic modal logic has the finite model property, i.e. every satisfiable
formula is satisfiable in a finite model. We further exploit the finite model con-
struction to obtain a generic decision procedure which reduces the satisfiability
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problem for a coalgebraic modal logic to the much simpler one-step satisfiability
problem. This yields not only decidability of a large number of modal logics,
including the above-mentioned graded and probabilistic modal logics, but also,
under mild conditions, a first complexity bound.

The material is organized as follows. Section 2 gives an introduction to coalge-
bra and coalgebraic modal logic, including a number of examples. In Section 3,
we recall the deduction system of coalgebraic modal logic [16, 5, 11] and the
above-mentioned notion of reflexivity, and prove that reflexive axiomatizations
always exist. We then prove the finite model property in Section 4, from which
we obtain the generic decision procedure and the arising complexity bound in
Section 5.

2 Coalgebraic Modal Logic

We briefly recapitulate the basics of the coalgebraic modelling of reactive systems
and of the specification of such systems by means of coalgebraic modal logic.

Definition 1. Let T : Set → Set be a functor (in this work, all functors will im-
plicitly be set functors), referred to as the signature functor. A T -coalgebra A =
(X, ξ) consists of a set X of states and an evolution map ξ : X → TX . A
morphism (X1, ξ1) → (X2, ξ2) of T -coalgebras is a map f : X1 → X2 such
that ξ2 ◦ f = Tf ◦ ξ1. A T -coalgebra C is called final if there exists, for each
T -coalgebra A, a unique morphism A → C.

Intuitively, the evolution map describes the successor states of a state, organized
in a data structure given by T . These data encode the observable behavior of a
system, and morphisms of coalgebras preserve this behavior.

We shall occasionally require a technical condition on the signature functor:

Definition 2. A functor T is called κ-accessible, where κ is a regular cardinal,
if T preserves κ-directed colimits.

Intuitively, this amounts to a restriction on the branching degree, stating that
every state in a T -coalgebra has less than κ successors. Many of the examples
given below are ω-accessible; however, the central results presented here hold for
arbitrary functors.

We explicitly fix some logical terminology:

Definition 3. Let T be a functor. A language for T -coalgebras is a set L of
formulae, equipped with a family of satisfaction relations �C (or just �) between
states of T -coalgebras C = (X, ξ) and formulae φ ∈ L; we define [[φ]]C (or
just [[φ]]) as the set {x ∈ X | x �C φ}. The coalgebra C satisfies a formula φ if
x � φ for all x ∈ X ; in this case, we write C � φ. We say that C satisfies a set Φ
of formulae, and write C � Φ, if C � φ for each φ ∈ Φ.

A formula ψ ∈ L is a global consequence of a set Φ ⊂ L if, for every
T -coalgebra C, C � ψ whenever C � Φ. In this case, we write Φ �g ψ. We
say that ψ is valid if ∅ �g ψ. Moreover, ψ is a local consequence of Φ if, for every
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state x in every T -coalgebra, x � ψ whenever x � Φ. A set Φ of formulae is
locally satisfiable if it is satisfied in some state in some T -coalgebra; Φ is globally
satisfiable if Φ �g ⊥ (i.e. if Φ is satisfied by some non-empty T -coalgebra).

Every local consequence is also a global consequence, and every globally satisfi-
able formula is locally satisfiable. A formula φ is valid iff ¬φ is locally unsatisfi-
able.

As a specification logic for coalgebraically modelled reactive systems, coalge-
braic modal logic in the form considered here has been introduced in [17], gener-
alizing previous results [10, 19, 12, 15]. The semantics is based on the following
central notion.

Definition 4. A predicate lifting for a functor T is a natural transformation

λ : 2 → 2T ,

where 2 denotes the contravariant powerset functor Setop → Set, with 2f(A) =
f−1[A].

A predicate lifting λ induces a transposite λ� : T → 2(2 ), given by λ�
X(t)

= {A ⊂ X | t ∈ λX(A)}. A set Λ of predicate liftings for T is called separating
if for each set X , the source of maps (λ�

X : T → 2(2 ))λ∈Λ is jointly injective.

In the terminology introduced above, a coalgebraic modal logic is a language
Lκ(Λ) for T -coalgebras, determined by a set Λ of predicate liftings for T and a
regular cardinal κ which serves as a bound for conjunctions. Since we are aiming
at finite model results here, we restrict the exposition to the finite case κ = ω,
and we write L(Λ) in place of Lω(Λ). Formulae φ, ψ ∈ L(Λ) are defined by the
grammar

φ ::= ⊥ | φ ∧ ψ | ¬φ | [λ] φ,

where λ ranges over Λ. Disjunctions φ∨ψ, truth 	, and other boolean operations
are then defined as usual. In the definition of satisfaction, the clauses for boolean
operators are as expected; the clause for the modal operator [λ] is

x �(X,ξ) [λ] φ ⇐⇒ ξ(x) ∈ λX [[φ]](X,ξ).

The size |φ| of a formula φ is the number of subformulae of φ.

Remark 5. It is shown in [17, 23] that if Λ is separating and T is ω-accessible,
then L(Λ) is adequate and expressive: states x and y in T -coalgebras A and B,
respectively, satisfy the same L(Λ)-formulae iff they are behaviorally equivalent in
the sense that there exists a coalgebra C and morphisms f : A → C, g : B → C
such that f(x) = g(y). This is one reason why modal logic is regarded as a
suitable means of expression for coalgebraic specification — it automatically
ensures encapsulation of the state space, allowing judgements precisely about
the observable behavior of states.

Remark 6. By the results of [23], obtaining an expressive logic for a given ω-
accessible functor may require the use of polyadic modal operators obtained from
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polyadic predicate liftings. The results of this paper extend straightforwardly to
polyadic modal logic; we restrict the exposition to the unary case purely in the
interest of readibility.

Example 7. [17, 5, 23]

1. Let P be the covariant powerset functor. Then P-coalgebras are graphs,
thought of as transition systems or indeed Kripke frames. A separating set
of predicate liftings is formed by the single predicate lifting λ∀ defined by

λ∀
X(A) = {B ⊂ X | B ⊂ A}.

This lifting gives rise to the standard box modality � = [λ∀]. All this is
easily adapted to transition systems with branching degree limited by a
regular cardinal κ, described as coalgebras for the κ-accessible functor Pκ

defined by Pκ(X) = {A ⊂ X | |A| < κ}.
2. It is straightforward to extend a given coalgebraic modal logic for T with a

set V of propositional symbols. This amounts to considering the functor T ×
P(V ), where P(V ) stands for the corresponding constant functor. Separation
is then ensured by adding predicate liftings λa, a ∈ V , defined by

λa
X(A) = {(t, B) ∈ TX × P(V ) | a ∈ B}.

Since λa is independent of its argument, the induced modal ‘operator’ can
be written as just the propositional symbol a, with the expected meaning.

3. The finite multiset (or bag) functor BN is given as follows. The set BN(X)
consists of the maps B : X → N with finite support; we say that B contains
x ∈ X with multiplicity B(x). We write multisets additively, denoting by∑

nixi the multiset that contains x with multiplicity
∑

xj=x nj . For f :
X → Y , BN(f)(

∑
nixi) =

∑
nif(xi). Coalgebras for BN are directed graphs

with N-weighted edges, often referred to as multigraphs [6].
A separating set of predicate liftings λk, k ∈ N, is defined by

λk
X(A) = {

∑
nixi ∈ BNX |

∑
xi∈A ni > k}.

The arising modal operators are exactly the modalities ♦k of graded modal
logic (cf. e.g. [6]), i.e. x � ♦kφ iff φ holds for more than k successor states
of x, taking into account multiplicities. Note that �k, defined as ¬♦k¬,
is monotone, but fails to be normal unless k = 0. (Recall that a modal
operator � is called monotone if it satisfies �(p ∧ q) → �p, and normal if it
satisfies �(p → q) → �p → �q).

4. A similar functor, denoted BZ, is given by a slight modification of the multiset
functor where we allow elements to have also negative multiplicities, i.e. BZX
consists of finite maps X → Z, called generalized multisets (this set is also
familiar as the free abelian group over X).

A separating set of predicate liftings λk, k ∈ Z, with induced modal opera-
tors ♦k is defined analogously as for multisets. Note that �k fails to be mono-
tone even for k = 0. One may imagine an interpretation of BZ-coalgebras
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as transition systems that allow some form of trading — formulae may be
violated in ‘positive’ successor states, as long as this is counterbalanced by
violations in ‘negative’ successor states.

5. The finite distribution functor Dω maps a set X to the set of proba-
bility distributions on X with finite support. Coalgebras for the functor
T = Dω × P(V ), where V �= ∅ is a set of propositional symbols, are proba-
bilistic transition systems (also called probabilistic type spaces [8]) with finite
branching degree. (The example is easily extended to countable branching by
considering instead the functor Dω1 of probability distributions with count-
able support, while higher branching degrees require a more elaborate mea-
sure theoretic treatment [27].)

A separating set for T is obtained by combining the propositional symbols
(cf. Example 2) with the predicate liftings λp, p ∈ [0, 1] ∩ Q, defined by

λp(A) = {P ∈ DωX | PA ≥ p}.

These induce the modal operators 〈p〉 = [λp] of probabilistic modal logic
(PML) [13, 8], where 〈p〉φ reads ‘φ holds in the next step with probability
at least p’. Note that [p], defined as ¬〈p〉¬, is monotone, but not normal.

6. For a field k, the linear space functor k · takes a set X to the free k-vector
space k ·X , i.e. the set of formal k-linear combinations, over X . A coalgebra
for k · is a linear automaton [3, 26] (where one would in general also assume
linear output in a vector space V , corresponding to the functor (k · ) × V ).
In the case k = R, a separating set of predicate liftings can be constructed
in the same way as for Dω, giving rise to modal operators 〈p〉 for p ∈ Q.
Here, 〈p〉φ holds if the sum of the coefficients of successor states satisfying φ
is at least p.

7. The above examples may be extended by adding inputs from an alpha-
bet I, i.e. by passing from T to one of the functors S and R given by
SX = I → TX and RX = T (I × X), respectively. When I is finite, these
functors are isomorphic for T ∈ {Pω, BN, BZ} but not for T = Dω. In the lat-
ter case, S-coalgebras are reactive probabilistic automata, and R-coalgebras
are generative probabilistic automata [1] (more precisely, one allows for
terminal states by additionally introducing the constant functor 1 as a
summand).

An expressive set of modal operators is then obtained by indexing modal
operators over a ∈ I in the form [ ]a. In the case T = Pω, this leads to
the usual operators �a of Hennessy-Milner Logic [9]. In the probabilistic
case, the meaning of 〈p〉a φ in reactive probabilistic automata is that on
input a, φ holds in the next step with probability at least p, and in generative
probabilistic automata that with probability at least p, the input is a and φ
holds in the next step.

Remark 8. Graded modal logic is more standardly interpreted over Kripke
models by just counting successor states (as e.g. in [25]), rather than in multi-
graphs as in the above example and e.g. in [6]. One can regard Kripke models as
multigraph models by just regarding sets as multisets where all elements have
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multiplicity 1; conversely, one can unroll a state in a multigraph model into a
tree-like Kripke model by making copies of elements according to their multiplic-
ity. Both constructions preserve satisfaction of graded modal formulae, so that
the two semantics induce the same local consequence relations.

3 Proof Systems for Coalgebraic Modal Logic

We now discuss completeness of derivation for coalgebraic modal logic, partly
following [16, 5, 11]. Since an otherwise unstructured signature functor T con-
tains information only about the one-step evolution of the system (as opposed
to a comonad, which may contain information also about further steps), it is
natural to expect that for the axiomatization of a coalgebraic modal logic for T
it is enough to consider modal axioms of rank 1. The approach taken in [16, 5, 11]
is based on this expectation; we shall prove below that it is indeed formally the
case that axioms of rank 1 are sufficient. This fact will be crucial for our finite
model result to be proved in Section 4.

To begin, we note that both the global and the local consequence relation
(Definition 3) of a coalgebraic modal logic in general fail to be compact:

Example 9. In the case of Hennessy-Milner logic over finitely branching sys-
tems [9] with two inputs a, b, the set

Φ = {♦a (�b n+1⊥ ∧ ♦b n	) | n ∈ N},

where �b n stands for n consecutive boxes, is locally (and hence globally) unsat-
isfiable, since it requires, for each n, the existence of an a-successor from which
exactly n b-steps are possible. However, every finite subset of Φ is globally (and
hence locally) satisfiable. For an example of the same kind, but of bounded rank,
consider the set

{♦k	 | k ∈ N}

of graded modal formulae over BN. Non-compactness of PML is observed in [8];
in this case, non-compactness does not have to do with bounded branching.

Thus, in general neither the local nor the global consequence relations of a coal-
gebraic modal logic admit a finitary complete proof system. Instead, one is lead
to study weak completeness, where a proof system is called weakly complete if it
proves all valid formulae. This notion is equivalent to completeness in the sense
used in [5, 11, 16], where only local consequence with singleton sets of premises
is considered (ψ is a local consequence of {φ} iff φ → ψ is valid).

For the remainder of the paper, we assume given a functor T and a set Λ of
predicate liftings for T . We recall a few basic notions from propositional logic,
as well as notation for coalgebraic modal logic introduced in [16, 5]:

Definition 10. Let V be a set. We denote the set of propositional formulae
over V by Prop(V ). Here, we regard ¬ and ∧ as the basic connectives, with
all other connectives defined in the standard way. A literal over V is either an
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element of V or the negation of such an element. A (conjunctive) clause is a
finite, possibly empty, disjunction (conjunction) of literals. Moreover, we denote
by Up(V ) the set {[λ]a | λ ∈ Λ, a ∈ V }.

If the elements of V are, or have an interpretation as, subsets of a given
set X , then φ ∈ Prop(V ) can be interpreted as a subset [[φ]]X of X ; we say
that φ holds in X and write �X φ if [[φ]]X = X , and we say that φ is satisfiable
in X if [[φ]]X �= ∅. Similarly, if a ∈ V is interpreted as a subset A of X , then we
interpret [λ]a ∈ Up(V ) as the subset [[[λ]a]] = λX(A) of TX . (This can of course
be iterated, leading to interpretations [[φ]] ⊂ TX of φ ∈ Up(Prop(V )) etc.)

In case the elements of V are formulae in L(Λ), we also regard propositional
formulae over V as formulae in L(Λ). We sometimes explicitly designate V as
consisting of propositional variables ; propositional variables retain their sta-
tus across further applications of Up and Prop (e.g. if V is a set of proposi-
tional variables, then V and not Prop(V ) is the set of propositional variables
for Up(Prop(V ))). Given a set L, an L-substitution is a substitution σ of the
propositional variables by elements of L. Then, φσ is called an instance of φ
over L. If L ⊂ P(X) for some X , then we also refer to σ as an L-valuation or a
P(X)-valuation.

The format we impose on axioms is essentially equivalent to the formal notion
of axiom used in [16, 11]:

Definition 11. A rank-1-clause over a set V of propositional variables is a
clause over Up(Prop(V )). Such a clause is valid if all its instances over L(Λ) are
valid.

Proposition 12. Let φ be a rank-1-clause. If φσ holds in TX for every set X
and every P(X)-valuation σ, then φ is valid. The converse holds if T is
ω-accessible, Λ is separating, and the final T -coalgebra is infinite.

(The condition on φ in the above proposition has been called admissibility in [16],
where also the first implication is proved.)

A given set Ax of valid rank-1-clauses, called axioms, induces a proof system
for L(Λ) as follows [11].

Definition 13. The set of formulae derivable from Ax is the smallest set con-
taining all instances of axioms over L(Λ) and closed under propositional entail-
ment and the congruence rule

φ ↔ ψ

[λ]φ ↔ [λ]ψ
.

It is easy to see that this proof system is sound. The completeness results in [16,
5, 11] require the presence of ‘enough’ axioms in the following sense.

Definition 14. The set Ax is reflexive if, for each set X and each A ⊂ P(X),
every clause φ over Up(A) that holds in TX is derivable, i.e. propositionally
entailed by instances of axioms over A and by formulae of the form [λ]φ ↔ [λ]ψ,
where φ, ψ ∈ Prop(A) and φ ↔ ψ holds in X .
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Of course, we can restrict ourselves to finite A. The definition originally used
in [16] to establish weak completeness is stronger than the notion above in that
derivations of clauses over L are restricted to use only the subset relation on
A rather than propositional formulae that hold in X . By the results of [5], the
weaker definition above, which is essentially equivalent to one given in [11],
suffices to establish weak completeness. Examples of reflexive axiomatizations
are given in [16, 5].

The weak completeness theorem, stating that reflexive sets induce weakly
complete proof systems [16, 5], will appear as a corollary to our finite model
result in Section 4. We now proceed to establish that every functor indeed admits
a reflexive set, i.e. that the set of all valid rank-1-clauses is reflexive.

As a preparation, we note that rank-1-clauses are equivalent to rules of a
restricted format.

Definition 15. An (extended) one-step rule R over a set V of propositional
variables is a rule φ/ψ, where φ ∈ Prop(V ), and ψ is a clause over Up(V )
(over Up(Prop(V ))). The rule R is valid if, whenever φσ is valid for an L(Λ)-
substitution σ, then ψσ is valid. As part of a proof system, R allows deriving
ψσ from φσ for each L(Λ)-substitution σ.

Thanks to the congruence rule, one-step rules can replace extended one-step rules
(just introduce premises abbreviating propositional formulae as propositional
variables). In particular, every rank-1-clause can be replaced by a one-step rule.
Conversely, we have

Proposition 16. For each one-step rule R over V , there exists a rank-1-clause
χ over V such that χ and R are derivable from each other by propositional
reasoning and the congruence rule.

The proof needs the following fact from propositional logic.

Lemma 17. Let φ ∈ Prop(V ) be satisfiable. Then there exists a Prop(V )-
substitution σ such that

φ → (a ↔ σ(a)) (for each a ∈ V ) and
φσ

are tautologies.

Proof (Proposition 16). We can assume that the the premise φ of R = φ/ψ is
satisfiable. Thus, fix σ as in the above lemma for φ. Then R and the rank-1-
clause ψσ are mutually interderivable as claimed. ��

We are now ready to prove the announced axiomatizability result:

Theorem 18. The set of all valid rank-1-clauses is reflexive.

Proof. (Sketch) Let X be a set, let A ⊂ P(X) be finite, and let the clause ψ
over Up(A) hold in TX . Let the formula φ be the ‘propositional theory’ of A,
i.e. the (finite) conjunction of all clauses over A that hold in X . Then one can
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show that the one-step rule R ≡ φ/ψ over A, abused as a set of propositional
variables, is valid. By Proposition 16, it follows that R is derivable from the set
of all valid rank-1-clauses; combined with the fact that φ holds in X , this yields
a derivation of ψ over TX in the sense of Definition 14. ��

4 The Finite Model Construction

The non-compactness of coalgebraic modal logic (cf. Example 9) means that
canonical models, based on the set of all maximally consistent sets w.r.t. a fini-
tary deduction system, do not in general exist. An alternative is to use filtration
methods (cf. e.g. [4, 2]), in the variant that uses consistent subsets of closed
sublanguages.

We recall a few basic definitions:

Definition 19. Given a set Ax of axioms, a finite set {φ1, . . . , φn} of formulae
is called consistent (w.r.t Ax) if ¬(φ1 ∧ . . . ∧ φn) is not derivable according to
Definition 13. A set Σ of formulae is called closed if it is closed under subformulae
and under normalized negation ∼, where ∼ φ is defined to be ψ in case φ is of
the form ¬ψ, and ¬φ otherwise. A subset A of Σ is called a Σ-Hintikka set if
⊥ /∈ A and, for φ, ψ ∈ Σ, φ, ψ ∈ A iff φ ∧ ψ ∈ A, and, for ¬φ ∈ Σ, ¬φ ∈ A iff
φ /∈ A. Moreover, A is called a Σ-atom if A is maximal among the consistent
subsets of Σ.

Thus, a Σ-atom is just a consistent Σ-Hintikka set.

Lemma 20 (Lindenbaum Lemma). Every consistent subset of Σ is con-
tained in a Σ-atom.

Given a closed set Σ, the carrier of the model to be constructed will be the set S
of Σ-atoms; the main problem is then to define the coalgebra structure on S.
The following lemma is crucial for this purpose.

Lemma 21. Let V be a set of propositional variables, let φ ∈ Prop(V ), and let σ
be a Σ-substitution. Then φσ is derivable iff φτ holds in the set S of Σ-atoms,
where τ is the P(S)-valuation given by τ(a) = {A ∈ S | σ(a) ∈ A}.
Expecting that the extension of a formula φ ∈ Σ in the coalgebra (S, ξ) to be
constructed will be the set {A ∈ S | φ ∈ A}, we will need to require that

ξ(A) ∈ λS{B ∈ S | φ ∈ B} ⇐⇒ [λ]φ ∈ A (∗)

for all A ∈ S and all formulae [λ]φ in Σ. This is where reflexivity comes in:

Lemma 22 (Existence Lemma). If Ax is reflexive and Σ is finite, then ξ(A)
satisfying (∗) exists for each A ∈ S.

Proof. Assume that ξ(A) does not exist. Let V be the set {aφ | φ ∈ Σ} of propo-
sitional variables. Let ψ be the clause over Up(V ) containing, for each [λ]φ ∈ Σ,
the literal ¬[λ]aφ if [λ]φ ∈ A, and the literal [λ]aφ otherwise. Let τ be the P(S)-
valuation taking aφ to {B | φ ∈ B}. Then ψτ holds in TS by assumption. By
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reflexivity, ψτ is derivable in the sense of Definition 14 from the propositional
formulae of the form χτ that hold in S. This derivation can be copied to ob-
tain a derivation of ψσ from those χσ for which χτ holds in S, where σ is the
Σ-substitution taking aφ to φ. These χσ are derivable by Lemma 21. Thus, ψσ
is derivable, in contradiction to the consistency of A. ��

It remains to prove the truth lemma, which we state in a slightly more general
form than needed in this section for reuse in Section 5:

Lemma 23 (Truth Lemma). Let Σ be a closed set, let S be a set of Σ-
Hintikka sets, and let ξ : S → TS satisfy condition (∗) above. Then for all
φ ∈ Σ and all A ∈ Σ,

A �(S,ξ) φ ⇐⇒ φ ∈ A.

Proof. Straightforward induction over φ. ��

This is all we need in order to establish

Theorem 24. Let Ax be reflexive. Then every formula φ that is consistent w.r.t.
Ax is locally satisfiable in a finite T -coalgebra of size at most 2|φ|.

The proof is just an application of the lemmas above to the (finite) smallest
closed set Σ(φ) containing a given consistent formula φ.

As announced, the above result implies weak completeness [16, 5]; explicitly:

Corollary 25 (Weak completeness). The proof system induced by a reflexive
set of axioms is weakly complete.

Combining Theorems 18 and 24, we obtain independently of deduction:

Corollary 26 (Finite model property). Every locally satisfiable formula φ
is locally satisfiable in a finite T -coalgebra of size at most 2|φ|.

Remark 27. The finite model property does not generalize to the case where
global axioms are present, i.e. it may be the case that φ is locally satisfiable in
some model globally satisfying a formula ψ, but not in any finite such model.
Examples are found already in standard modal logic [18].

5 Decidability

Unlike in the classical case, the finite model construction of the preceding sec-
tion does not immediately imply decidability, even though it gives a computable
bound on the size of the model, since there may in general be infinitely many T -
coalgebras on a given finite set. (In fact, this is the interesting case; for functors
T that preserve finite sets, a finite model construction is given already in [16].)
If T takes finite sets to recursively enumerable sets — as is the case e.g.
for BN, BZ, and Z[ ], but not for Dω — then the finite model property implies
that the set of satisfiable formulae is r.e.. We then obtain decidability provided
that the set of valid formulae is also r.e., which by the weak completeness theo-
rem and Theorem 18 is the case if the set of all valid rank-1-clauses is r.e.
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We can however improve on this by exploiting the details of the finite model
construction, as follows. We have no direct access to the set of all Σ(φ)-atoms,
since this would already require a decision procedure for consistency. We can
however easily decide the set H of Σ(φ)-Hintikka sets. We are then faced with
the following decision problem:

Definition 28. The one-step satisfiability problem is to decide, given a finite
set X and a conjunctive clause φ over Up(P(X)), whether φ is satisfiable in TX .

Remark 29. For purposes of determining the input size for the above problem,
we assume that subsets of X can be represented in |X | bits. Moreover, we as-
sume that Λ is countable, with a reasonable size measure for the representation
of modal operators supposed as given (e.g., size log k for the graded modal oper-
ator [k], and size log n + log m for the probabilistic modal operator [n/m], with
n, m ∈ N relatively prime). The same applies to the size of a formula φ as input
for the satisfiability problem, which is thus larger than the size |φ| as defined in
Section 2.

A decision procedure for one-step satisfiability leads to the following algorithm
for satisfiability of φ.

Algorithm 1. For all subsets S of H , perform the following steps.

1. Check whether φ ∈ A for some A ∈ S; if not, continue with the next S.
2. Decide whether for all A ∈ S, the conjunctive clause

∧

[λ]ψ∈A

[λ]{B ∈ S | ψ ∈ B} ∧
∧

¬[λ]ψ∈A

¬[λ]{B ∈ S | ψ ∈ B}

is satisfiable in TS. If yes, terminate with output ‘yes’; otherwise, continue
in Step 1 with the next S.

If all S have been checked unsuccessfully, terminate with output ‘no’.

The correctness of the algorithm is guaranteed by the Truth Lemma. Thus,

Theorem 30. If one-step satisfiability is decidable, then satisfiability of L(Λ)-
formulae is decidable.

A non-deterministic variant of Algorithm 1 will also be useful:

Algorithm 2. Nondeterministically choose S ⊂ H ; then proceed as in Algo-
rithm 1, but fail (i.e. loop infinitely) rather than continue with the next S if one
of the checks in Steps 1 or 2 fails.

In this algorithm, we can also employ a semi-decision procedure for one-step
satisfiability. Since acceptance sets of non-deterministic algorithms are r.e., we
thus have

Theorem 31. If one-step satisfiability is semi-decidable, then satisfiability of
L(Λ)-formulae is semi-decidable.
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(Note that semi-decidability of one-step satisfiability is weaker than the above-
mentioned condition that T takes finite sets to r.e. sets. E.g., the one-step satis-
fiability problem will turn out to be decidable for Λ as in Example 7.5, although
Dω(X) is uncountable for |X | ≥ 2.)

Algorithm 2 yields the not overly tight complexity bound to be expected for
filtration-based algorithms:

Theorem 32. If the one-step satisfiability problem is in NP, then satisfiability
of L(Λ)-formulae is in NEXPTIME.

Remark 33. In [5], logics for coalgebras are constructed in a modular fash-
ion, following the structure of the signature functor; this raises the question of
whether the above decidability and complexity results behave well w.r.t. these
constructions. It is easy to see that decision procedures for one-step satisfiability
can be combined along products and sums of functors and their logics, while this
is not so clear for the case of functor composition S ◦T : here, one has to do with
conjunctive clauses over Up(S(TX)), where the application of T may produce
an exponential blowup or lead to infinite sets.

Besides the examples whose decidability is already captured by the finite model
result of [16], i.e. functors preserving finite sets, such as P , our results cover the
following cases.

Example 34. 1. Let Λ be the set of predicate liftings λk for the multiset func-
tor of Example 7.3. Then the one-step satisfiability problem amounts to de-
ciding the solvability of systems of linear inequations over the naturals; this
problem is in NP [22]. By Theorem 32, we obtain that the satisfiability prob-
lem for graded modal logic is in NEXPTIME. (In fact, this problem is in
PSPACE [25].)

2. By the same line of reasoning, the satisfiability problem for generalized
graded modal logic over coalgebras for the generalized multiset functor (Ex-
ample 7.4) is in NEXPTIME .

3. Let Λ be the set of predicate liftings for PML as in Example 7.5. Then
the one-step satisfiability problem amounts to the solvability of systems of
rational linear inequations over the reals, which is decidable in polynomial
time by standard linear programming methods (using Motzkin’s transposi-
tion theorem to treat also strict inequalities) [22]. By Theorem 30, it follows
that probabilistic modal logic is in NEXPTIME .

4. By the same reasoning, the modal logic for linear automata of Example 7.6
is decidable in NEXPTIME

5. It is straightforward to extend the above results to include proposition sym-
bols, where not already present, or inputs (cf. Examples 7.2 and 7.7).

Remark 35. A decision algorithm for PML is announced in [7], but not explic-
itly contained in the full version [8]. The latter proves the finite model property
for PML, from which decidability does follow by the argument sketched at the
beginning of this section, with some additional work required to reduce to models
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with rational probabilities in order to ensure recursive enumerability of the set
of finite models. Our algorithm improves this result by giving an upper bound
on the complexity, albeit a rather generous one (see below).

Remark 36. It is, of course, desirable to obtain better general complexity
bounds; this is the subject of ongoing research. The best general bound we
can hope for is PSPACE , since the decision problem for K, i.e. the modal logic
of P , is known to be PSPACE -complete [2]. The following further results are
forthcoming [24]:

(i) One can show by means of elimination of Hintikka sets (in the same manner
as in known algorithms for PDL [2]) that satisfiability of L(Λ)-formulae is
in EXPTIME if one-step satisfiability is in P .

(ii) Given a tractable axiomatization of L(Λ), one can show that satisfiability of
L(Λ)-formulae is in PSPACE by means of a shallow model construction.

(Neither of these results makes Theorem 32 obsolete, since both rely on stronger
assumptions.) By (i), one immediately improves the bound for PML as well
as for the modal logic of linear automata from NEXPTIME (Example 34) to
EXPTIME . The method of (ii) reproduces the known PSPACE bounds for K
and for graded modal logic, and very likely leads to novel PSPACE bounds for
all other logics mentioned in Example 34, including PML. An open problem that
remains is whether there is a semantic criterion (not involving deduction) that
guarantees a PSPACE bound.

We conclude this section with a few remarks on axiomatizability.

Definition 37. The one-step validity problem is to decide, given a finite set X
and a (disjunctive) clause φ over Up(P(X)), whether φ holds in TX .

Of course, one-step validity and one-step satisfiability are, via negation, reducible
to each other’s complements.

Proposition 38. Let T be ω-accessible, let Λ be separating, and let the final
T -coalgebra be infinite. Then a rank-1-clause φ over a set V of propositional
variables is valid iff φσ holds in T (P(V )), where σ is the P(P(V ))-valuation
taking a ∈ V to the set

{B ∈ P(V ) | a ∈ B}.

Corollary 39. Let T be ω-accessible, let Λ be separating, and let the final
T -coalgebra be infinite. Then the validity of rank-1-clauses is decidable (semi-
decidable) if the one-step validity problem is decidable (semi-decidable).

We have seen in Example 34 that the one-step validity problem is decidable
in many important cases. Thus, Theorem 18 does frequently supply a feasible
axiomatization of L(Λ), although one will, of course, in general strive for a more
compact, preferably finite axiomatization.
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6 Conclusion

Coalgebraic modal logic in general fails to be compact, so that completeness re-
sults are necessarily restricted to weak completeness and moreover cannot rely on
constructing full canonical models. Above, we have described a finite model con-
struction for coalgebraic modal logic, using the ‘small canonical model’ method
known from standard modal logic; weak completeness is a corollary to this result.
Here, the notion of reflexive axiom sets, which has appeared as a prerequisite
for existing weak completeness results for coalgebraic modal logic [16, 5, 11], has
played a crucial role. In particular, we have proved that every coalgebraic modal
logic admits a reflexive axiomatization by axioms of rank 1; this not only means
that the mentioned completeness results are, in principle, always applicable, but
also implies a finite model property which states that all satisfiable formulae can
be satisfied in a finite model whose size is exponentially bounded by the size of
the formula.

We have then described a generic decision procedure for satisfiability in coal-
gebraic modal logic, assuming a decision procedure for the rather simpler one-
step satisfiability problem. We have thus proved decidability for a wide range
of modal logics, including graded and probabilistic modal logic. This goes sig-
nificantly beyond the decidability result of [16], which applies only to signature
functors that preserve finite sets, such as the powerset functor (whose coalge-
bras are standard Kripke frames). Moreover, assuming a mild complexity bound
(NP) for one-step satisfiability, we have established a first general complexity
bound for coalgebraic modal logic (NEXPTIME ). This result applies to both
graded and probabilistic modal logic; while for graded modal logic, a better
bound (PSPACE ) is known, no complexity bound at all has, to our knowledge,
so far been given for probabilistic modal logic. Forthcoming work [24] will estab-
lish, under additional assumptions, tighter generic bounds which in particular
push the bound for PML at least to EXPTIME and likely to PSPACE .
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